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The quantum-mechanical response of a two&imensional electron gas in the presence of a strong dc
magnetic field is calculated in the random-phase approx~~ation The results are used to discuss the
magnetoplasma oscillations of a two-dimensional electron gas. The general dispersion relation is derived,
and numerical results are presented for both long and short wavelengths.

I. INTRODUCTION

The study of a two-dimensional electron gas
(2 DEG) has aroused considerable interest during
the past few years. This interest is in part due
to the technological importance of the metal-oxide-
semiconductor (MOS) system in which many ex-
perimental studies have been carried out, and to
similarities between some properties of the 2 DEG
and those of thin films and surfaces. In addition,
however, the 2 DEG is of quite fundamental in-
terest since it represents a many-body system
in which the effective electron density can be ex-
perimentally varied over a wide range.

By the application of a very strong electric
field normal to the surface of a semiconductor,
electrons or holes can be confined to the surface.
If the electric field is strong enough, the motion
perpendicular to the surface will be quantized. At
very low temperature when electron scattering is
unimportant, such a system will behave as a
2 DEG. This behavior has been confirmed by ob-
servation of the oscillatory magnetoconductance
in inverted silicon surfaces. ' It was also found
that surface quantization into Landau levels depends
only on the normal component but not the tangential
component of the magnetic field. Very recently,
other experiments have been carried out in order
to study the dependence of the effective mass' and
the quasiparticle g factor on the surface electron
density of a 2 DEG. It is worth mentioning that
in the inversion layers of MOS structures, the
carrier concentration can easily be controlled
and can be varied over a wide range by simply
changing the applied electric field. Such a system
is very useful for the study of many-body effects.

The study of plasma oscillations in a 2 DEG is
still in an early stage. The first theoretical
discussion was given by Stern. ~ In his paper, the
response of the electron gas to a longitudinal
electric field was calculated in the self-consistent-
field approximation. With this result, the plasmon
dispersion for a 2 DEG imbedded in a three-
dimensional dielectric was obtained. In the past
few years, the problem of surface plasmons and

especially, surface magnetoplasmons in a semi-
infinite solids and layer structures has attracted
the interest of many authors. s It is interesting
to ask what kind of magnetoplasma waves can
exist in a 2 DEG. In this paper, we generalize
Stern's work by allowing an external dc magnetic
field normal to the plane of the 2 DEG. In the
presence of the applied field, the electrons become
quantized in the Landau levels and a new param-
eter u„ the cyclotron frequency, is introduced.
The plasma oscillations are no longer purely
longitudinal as they were in the absence of the ap-
plied field. How the magnetic field affects the
plasmon dispersion, and what the behavior of the
dispersion curves is in the long- and short-wave-
length limits are studied in this paper.

In Sec. II, we calculate the quantum-mechanical
response of a 2 DEG in the presence of a strong
dc magnetic field in the random-phase approxima-
tion. For simplicity, the effect of collisions of the
electrons is neglected. The calculation is similar
to that presented by Quinn et al. and in a later
paper by Greene et al. ' for the three-dimensional
case. As in that case, the components of the con-
ductivity tensor are found to consist of two terms,
namely, an oscillatory term and a secular term.
The former gives rise to quantum oscillations
and the latter is simply the result one would ob-
tain in the semiclassical limit. In Sec. III, we
present the derivation of the plasma dispersion
relation of a 2 DEG imbedded in a dielectric in the
presence of a perpendicular applied magnetic
field. The dispersion relation written in terms
of the polarizability tensor is completely general.
In the limit of zero applied field, the longitudinal
mode reduces to the plasmon mode obtained by
Stern. In Sec. IV, the magnetoplasma oscillations
of the 2 DEG are investigated carefully in both
the long-wavelength and the short-wavelength
limits. In the long-wavelength limit, we make
series expansions of the Bessel functions. For
short wavelengths, the asymptotic expressions of
the Bessel functions are used. For simplicity,
we consider here only the nonoscillatory terms
of the polarizability tensor. Therefore, the dis-
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5= vxA. (2)

The Hamiltonian for an electron of charge —e and
mass m* is

H= (I/2m~)[p+ (e/c)AO+ (e/c)A] —eP . (3)

Here p is the canonical momentum and Ao= (0, Box,
0) is the vector potential associated with the dc
magnetic field 50. In the linear response theory,
the Hamiltonian H may be written in the form

H= Hp+Hg,

where

(4)

persion curves presented in this section are valid
only in the semiclassical limit.

II. QUANTUM MAGNETOPOLARIZABILITY TENSOR

In this section, we evaluate the response func-
tion of a 2 DEG to an external disturbance in the
random-phase approximation. Our treatment is
quite similar to that presented by Greene et al. ,
but for simplicity, electron collisions are neglected.
The result obtained for the polarizability tensor can
be expressed as a sum of terms involving Bessel
functions. It consists of two parts: an oscillatory
part whose amplitude decreases exponentially
with increasing temperature and a nonoscillatory
part which is insensitive to temperature. The
oscillatory part gives rise to quantum oscilla
tions and will not be discussed in any detail in this
paper. The nonoscillatory part of the polarizability
tensor, also known as the semi-classical result,
will be used later in Sec. IV in calculating the
magnetoplasma dispersion relation for a plane of
electrons imbedded in a dielectric.

We consider a 2 DEG to occupy the plane z =0
of a Cartesian coordinate system in the presence
of a dc magnetic field 50 oriented in the z direction.
If such a system is perturbed by a small electro-
magnetic disturbance, a self-consistent electro-
magnetic field will be set up. This field can be
described by a scalar potential g(r, t), and a vec-
tor potential A(r, t). The electric field E and the
magnetic field 5 associated with the self-con-
sistent field are related to the potentials by the
equations

1 8AR= —vQ ——
c

and

and

~
v) =

~
nk) = L e' 'u„(r+Kk/m*(u, )

E„=E„=(n+ —,')k&u, .

(8)

(9)

In writing these equations we have imposed periodic
boundary conditions with period L in the x and y
directions. In Eqs. (8) and (9), &u, =eBo/m~c
is the cyclotron frequency, u„ is a normalized har-
monic-oscillator wave function, and k= (2w/L)
x integer. Furthermore, in order to restrict the
center of the wave packet to lie inside the square
of edge L, it is necessary to impose the condition

0- Kk/m*&u, - L . (10)

The response of the system to the disturbance
can be obtained by solving for the density matrix
which satisfies the equation of motion

Z—+—[H, f]=0.
at g

In Eq. (11), the effect of collisions of electrons has
been neglected. In solving Eq. (11), we make the
assumption that

f=fo+fi,

where

(12)

(H ~) (I ~e(H-g) IRT) (18)

is the thermal equilibrium density matrix for the

electron gas in the absence of the disturbance. f„
which is to first order in A and Q, is small com-
pared to f, . By linearizing Eq. (11) and by taking
matrix elements on both sides, we obtain

(vlf, /v') =A„.„&vi H, iv'&, (i4)

where

The current and charge densities are given by the
trace of the product of the density matrix and the
current and charge density operators

j(ro, t) = Tr( —~ e[vo+ (e/m*c)A(r, t)] 6(r- ro) f

H~ = (e/2c)(vo ~ A+ A vo) —eP

to first order in the self-consistent field.
The eigenfunction and eigenvalues of Hp are well

known. They can be written

Hp= 2m vp
g~2 +H. c.] (i8)

is the Hamiltonian of an electron in the absence
of the self-consistent field. vp is the velocity
operator given by

v, = (1/m")[p+ (e/c)A, ] . (8)

The quantity H& is given by

and

p(ro, t) =Tr[- e5(r —ro) f ]
where H. e. denotes the Hermitian conjugate of
the preceding operator. By charge conservation,
p is related to j by
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V ~ J+ =0.
Bg (18)

Therefore, it is sufficient to evaluate the current
j(ro, t). Including only terms linear in the self-
consistent field, Eq. (16) becomes

j (r(&, t) = —2e E ( v
I [k v05(r —r )

P

+ —,'5(r —r()) v(&] f, I v)

2

Z(vIA(r, t) 5(r —ro)foIv) . (19)

j(r, t) =j(q, z) e""' '".
In order to obtain j(q, w), we express the two-di-
mensional 5 function of Eq. (19) in terms of its
Fourier transform

(22)

The factor 2 in front of the summation signs is due
to the two spin states W.e recall that f, is linear
in the disturbance A and (j). Suppose A and (j) have
a single Fourier component, namely,

A(r t) =A(q (z) e""' '~'
(2p)

y(r, t) = y(q, ~) e""'-"& .
It is easy to see that the current j must have the
same Fourier component, i.e. ,

&n', k+ q I V, (q) In, k) =i(d, (31)

(n, k+qI I„(q) In, k) =((d,/q) (n'-n) f„.„(q), (32}

&n'k+qIe' In, k&=f„,„(,), (33)

where f„.„(q) stands for the integral

f„,„(q) = dxu„, x+ u„(x) .Sq
(34)

u„(x) is the well-known simple-harmonic-oscillator
wave function. Substituting Eqs. (31) and (32) into
Eq. (24), it is easy to see that

By making use of Eqs. (27) and (28), Eq. (23) can
be written in the following convenient form:

j(q, (d) =o (q, (d) E(q, (d) =i(o7(q, (d) ~ E(q, (o),
(29)I

where y and 0 are givenby

7(q, (d) = —(i/~) e (q, ~)
= —(Ne /m*(d }[1+I (q, ~}] . (3p}

It is obvious that y is the polarizability tensor and
0 is the conductivity tensor.

Due to the rotational symmetry of the system,
we can choose the direction of the propagation vec-
tor q to lie along the y axis. This will simplify the
problem with no loss of generality. The only non-
zero matrix elements of V(q} and e'~ are

and take the Fourier transform of Eq. (19) making
use of Eq. (14). For the 2 DEG, j(q, (o) is found
to be

2

j(q, (e) = [—A(q, e)-I A(q, d)+Kgq, (d}],
(23)

where N is the density of electron, i.e. , the num-
ber of electrons per unit area.

In Eq. (23), the tensor I and the vector K are
defined by

I„„= Z + A„.„~(n'-n)' f'„,„(q),N y „~„""q
=' 'Z ZA. .I' f"."' '

I„=—I~„= Z 2 A„,„Ii~ (n'-n)
n'yf

(35)

(38}

(37)

I = Z A„,„(v'IV(q) I v& (v'IV(q)
I
v&*,

K=
* ~ A„.„&v'Iv(q&Iv&(v'Ie'""Iv&*, (25)

where the operator V(q) is given by

V(q) = —,'e"'vo+ —,'voe" . (28}

It is not difficult to demonstrate that Eq. (23) is
gauge invariant. Therefore, we can choose a par-
ticular gauge such that

In order to obtain the polarizability tensor or
the conductivity tensor, we have to evaluate the
matrix I defined by Eqs. (35)-(37). This can be
done by following almost exactly the procedure
given in Appendix C of the paper by Greene et al.
We therefore merely give the final result, refer-
ring the reader to that paper for the details of the
derivation. We find that

A~ " 0(„=—1 —R~ 1 ~ Z J, (x))

Q =0. (27)
(38)

For this particular gauge, the electric field E is
related to the vector potential A by

(39)
1 ~AE=-——=-~A .c&t c (28)

and
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00 Q2
I =-1-2 Z, „,[Z.'(X)]'

1+ 2 2
— — J~ . 40

0 (A —X~) 1
egal% Q ~ Q

In these equations

m g (- )'cos(2zl p/S~, )
P p, ii0 sinh(2zzl/Plfid, } (41)

In this section, we present the derivation of the
dispersion relation of a magnetoplasma wave in a
2 DEG imbedded in a dielectric (dielectric constant
= &0). The method used is similar to that used for
the case of surface plasmons or surface polaxitons
in semi-infinite solids. We consider a system of
electron gas confined in the plane z =0 of a Carte-

~eel

sian coordinate. The dc magnetic field Bo is ori-
ented in the z direction. The dispersion relation
is obtained by solving Maxwell's equations inside
the dielectric and by matching the standard bound-
ary conditions at the surface z =0. For conve-
nience, let us divide space into two regions. Sub-
script 1 will be used to denote quantities in region
1 with z &0, and subscript 2 for region 2 with z&0.
I et E(r, f) and B(r, t) be the electric field and the
magnetic field associated with the plasma oscilla-
tions. For a wave propagating in the y direction,
we may simply consider E and 8 to be proportional
to e'"' '~", where (d is the angular frequency and

q„ is the wave vector. E and B must satisfy Max-
well's equations

0 = &d/~„and X=qv„/&o, . The functions J' (X) and
J' (X}denote the Bessel function of order a and
its first derivative, respectively. The terms pro-
portional to 5 are the oscillatory terms. They be-
come exponentially small as p = I/IiT is decreased
to temperature for which 2n kT» 5u, . The non-
oscillatory terms, or semiclassical polarizability
will be used later in evaluating the dispersion re-
lation of magnetoplasma waves.

III. DERIVATION OF THE DISPERSION RELATION

For z eO, the last term in Eil. (44} vanishes. By
solving that wave equation, we get the solution

E(z y z) E &icosi-ia&y~iais . (45)

with

E,(r, f) =E, z ~e'"' "2, z & 0

(47)

E2(r, f) =E2em e«i ia„~ -z & 0

where

p =qy —z0(d /c & 0 . (45)

To take into account the surface current, let us
go back to Eil. (44). By taking the curl operator
twice on the electric field E, we get

Vx(VXE}=(q~zE, —E„",—iq„E,'-E„'', q~aE, -iq„E„').

Here we have used a prime to denote the first de-
rivative with respect to z, and a double prime the
second derivative. Knowing that the amplitude of
the electric field decreases exponentially in both
directions away from the plane z = 0, it is easy to
see that for z c0,

qy+qi=zo ~ /c (45)

It is easy to see from Eil. (46) that when q„& &0& /
e2, q2 becomes negative. In other words, q, it-
self is imaginary. In this region of the ~- cq„
plane, we can have waves with either exponentially
growing or exponentially decaying amplitude. This
is the region where one may find surface waves.
Of course, the waves with amplitude exponentially
growing away from the surface z = 0 must be dis-
regarded. Hence we must have

1 88VxE=-—
C ~t

rrxB=~ -- +—j(x,y, t) 5(z).c et c

(42)

(42)
&')

(51)

Substituting Eil. (49) into (44) and making use of
Eils. (50) and (51), we obtain (for z xO)

4g(g ~2

Vx(VxE) =z, ~ E —f, j5(z) .
C 0

(44)

In Eil. (43), j 5(z) is the surface current which is
induced by the self-consistent field. Likewise, the
self-consistent field itself is determined by the
surface current and the surface charge with the
proper boundary conditions satisfied at the plane
z =0. Eliminating B from Eils. (42) and (48), we
obtain

2 2 ~O4'q„-p—
2 &O(aP

2

-P —
2

2 &04P

(52)
In order to have nontrivial solution, the determi-
nant of the matrix must vanish. This gives the
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secular equation

Eo(qy p fo& /c ) = 0.

The wave solution is found to be

ward. For that case, the dispersion relation is
found to be

p~+pz c 1
~X —

4 ~ X +4
~

o+ -X,„X„„=O

~g~E„

where the + signs are used corresponding to me-
dium 1 (z &0) and medium 2 (z & 0), respectively.
E„and E„can be chosen arbitrarily. We emphasize
that Eqs. (50) and (51) are valid everywhere ex-
cept at z =0. From the behavior of the electric
fields given in Eq. (47) or (54), it is easy to note
that E and E are continuous but E„' and E„' and E,
are discontinuous at z =0. Therefore E„", E,", and

E,' will have 5-function singularities at z =0, i.e. ,

E„' = P E„—2PZ„(0)5(z),
E"= P E —2PE„(0)5(z),

E' = + PE +2E~( 0' }5(z }
=+ PE. »(e,/—P) „E(5)z.

We substitute Eqs. (55}and (49}into Eq. (44). By
picking up only those terms with &-function singu-
larities in Eq. (44), we obtain

p, = (q' —z,(o'/c')'" and p, = (q' —z,(o'/c')'" .
Further study of the dispersion relation [Eq.

(58)] in both the long- and the short-wavelength
limits will be given in Sec. IV. We will not con-
sider any further the more general case with two
different dielectrics as described by Eq. (58a).

IV. MAGNETOPLASMA OSCILLATIONS IN THE
LONG- AND SHORT-WAVELENGTH LIMITS

In this section. we study the magnetoplasma oscil-
lations of 2 DEG in both the long- and short-wave-
length limits using the results we obtained for the
dispersion relation and the polarizability tensor

For simplicity, we take into account only the
nonoscillatory part (n. o. ) of x, the oscillatory
part (osc. }of X being disregarded. Therefore,
the results obtained in this section are valid only
in the semiclassical limit. For convenience, we
given here once again the expressions for the po-
larizability tensor X, which we have obtained in
Sec. II:

P ca
E =] =$40X'E,

2m (d
"'

2mP
(56)

p g2
Xxx —

2 ~ &ay E.
2w co

where g is the polarizability tensor which we have
discussed in great detail in Sec. II. Equation (56)
can be rewritten in the following matrix form:

x„„=—(~/&)(&+I„),

X„,= —(&/0 )(1+1„„),

x =-x,.=-(x/II')I„„.
The matrix elements of T are given by

A ~~ 0
1 ~ l,„(n.o. ) = —2 —1+ L, .Z', ),

01+I„(n.o. )= —2 Z, , (8')z,„n —0

(59)

By putting the determinant of the matrix equal to
zero, we readily obtain the dispersion relation

(58)

Recall that p = (q„—zouP/c )'~'. Equations (58)
gives the dispersion relation of the plasma oscilla-
tions of a plane of electrons imbedded in a dielec-
tric with a normal magnetic field. It is easy to
see that in the limit of zero magnetic field, X„„and
g~ vanish and the result reduces to ao+2nPX. »=0,
the result obtained by Stern. 5

The generalization of Eq. (58) for a plane of
electrons imbedded in two dielectrics with differ-
ent dielectric constants &» and &3 is straightfor-

I„,= I~ = i ——[X (1 zf+}~,

where II= &u/e, and X=qvz/ur, . In Eq. (59) we have
introduced the parameter & defined by

X=Ne /m*&oz .

In the following, we will discuss the dispersion re-
lation given by Eq. (58) in the long-wavelength
limit qv~ « ~, and in the short-wavelength limit
qv~» e,.

A. Long-wavelength limit

In the long-wavelength limit where @vs«&o, (vz
being the Fermi velocity), we make series expan-
sion of the Bessel functions Z„(X),
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for n=o, 1, 2, . . .; and

J „(X)=(-1)"J„(X). (63)

By substituting Eqs. (62) and (63) into Eq. (60), it
is straightforward to show that

i X
X~=X~= g 1 ~ +0(X') .

lf the small quantity O(X ) is neglected, then

Eq. (68) is obviously the result one would obtain
for a classical system of noninteracting electrons.
The dispersion relation Eq. (58) becomes

(
p c'5

1 —A' 2wp& 1 —0' 2w &u iI 1 —O' 0&
+

(69)
We find it convenient to introduce the parameter
a by

a=2vX+, /c0=2vNe /m*co . (70)
0' 1 (Xl'~'

+ . —
I

—
[

+ I, (84l
Q &n&I (2 &

Then Eq. (69) can be expressed in the following
simple form:

0 1 0 1 X)~ 1 (Xia'+' =-4, „.4+4 „.4
—„I --2I„,I

2 2

fOQ — + pc ——((d —(d~) = 0 .0 2 2 2

P a (71)

and

»' -&&' 2!a -1)!

1 A2 1 (X12'"
1 n''4 -n'2Ii-2&I '''

(65)

When c- ~, Eq. (71) agrees with that obtained by
Horing and Yildiz. But in their work, they have
neglected the effect of retardation and used the lo-
cal dielectric constant. Equation (71) is a qua-
dratic equation whose solution is

&0(d 1 a/ o 40

(66)

X„„= & +O(X'),

X =
1 ~ +0(X'),X

(68)

Although the symbol (n. o. ) denoting the nonoscil-
latory part of Y is omitted in the above three equa-
tions, we should bear in mind that we are looking
only in the semiclassical limit in this section. It
is easy to see from Eqs. (64}-(66)that when 0 is
not very close to an integer, the first term of each
of these infinite series is most important because
X=qv~/&u, is small compared to 1. However, when
0 is sufficiently close to an integer o, then the
particular term proportional to (n —A )

' will give
the major contribution to the sum. The criterion
may be stated as follows: If 0 is very close to an
integer a such that

~2 1 X) 2O-2

IA —Q I&
[( )t]3 2 I ! o. —2, 3, 4!.. . ,

(67)
the ath term with denominator o. -0 is dominant.
On the other hand, if the inequality given by Eq.
(67} is not true for all n ~ 2, then the first term in
each series, i.e. , the term proportional to
(1 —GF) will give major contribution.

Let us first consider 0= &d/&d, not too close to
any integer ~2, then X», X„„, and)(~ are given by

~2 ~2 2 ~2 1/2

cq
c

FIG. 1. Plasmon dispersion curve for a 2 DEG is
plotted as ~ vs cq in the long-wavelength limit. This
curve is valid when (d is not close to n&~ where n is an
integer greater or equal to 2. The parameters are N
=2@10 cm Qp=2 22kG cp=l and ~+=0 195~p.
These give a cyclotron frequency of 2 &10' sec '. For
semiconductors like Si with spin degeneracies 2 and val-
ley degeneracies 2 along the [100] direction, vz is found
to be 1.5 &&10 cm/sec. Since E'p= 1, our numerical cal-
culations are for the case of a 2 DEG imbedded in
vacuum.
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Here, a/c&u, is a dimensionless quantity. When
a» c&@„Eq. (V2) can be approximated by

q' = e,(o'/c'+ (o'/a' . (V3)

This is exactly the result obtained by Stern~ for
zero magnetic field. In Fig. 1, we plot the dis-
persion curve given by Eq. (V2) as &o vs cq. The
parameters are chosen such that X= 2~10~2 cm 2,

B0=2.22 ko, &0=1, and m*=0. 195mo. The cyclo-
tron frequency is found to be ~, =2X20 ' sec '.
Since &0=1, our numerical calculations are for the
(unphysical) case of a 2 DEG imbedded in vacuum.
For low frequencies, the dispersion curve ap-
proaches the light line (d =cq. As co increases, cq
increases. The dispersion curve begins to bend
to the right-hand side where the phase velocity
u&/q is smaller than the speed of light c. The ef-
fect of the magnetic field on this dispersion curve
Eq. (72) is very small.

When A= &u/&o, is sufficiently close to an integer
n~2, such that Eq. (6V) is satisfied, we have,
from Eqs. (64)-(66),

~ QP"- CqO~
e

)o6
l

I

I

I

I

Ii

2.5
I

2.5
I

2.8
I

cq
@PC

FIG. 2. Plasmon dispersion curve in a 2 DEG is
plotted for frequency (d close to 2+c in the long-wave-
length limit to illustrate the splitting of the dispersion
curve at a frequency very close to but slightly less than
2u . Similar behavior is found fox ur = n~, fox e =3, 4, 5,

The same parameters are used here as in Fig. 1.

x„,~x/0+ x/(I —A'),
X

X, —(n /A')
q

+
(1 Az)

(V4)
In order to obtain the dispersion curve for e

close to o.v„ it is convenient to introduce the pa-
rameter P defined by

I/e =~/(I -n') . (80)

X.,=-'f(n/A)x/e+(1/A)x/(I —A')],

I/Q=lA'/( '-A')](I/ t)'(X/2)" '. (75)

We note that I/Q diverges as A approaches n
Substituting x into the dispersion relation Eq. (58},
we easily get

eo) n2X X p c2

Q 1 —A 2vp) A Q 1 —A' 2v&a

(~X 1
=~ Aq'A 1-A'

Those terms proportional to Q cancel. The
terms proportional to Q

' are

C 2+60
2rrg P a~ ro(rdr «.)) '

The root at u =a(d~ where 0. ~ 2 can easily be ob-
tained by putting the large parentheses of Eq. (7V)
equal to zero. This gives

fo(d QQQO
2 1/2

c (n + 1)e'

Using Eqs. (V5) and (80), we see that

A' —n'=—(I/P)n'(n' —l)(1/n t)'(&/2)"", (81)

X„,=X„„=[X/(I-n')](1+P),

X„=-X„.=f [&/(I -n')l(n '+P)

For convenience, we introduce a tensor ™Zdefined
by

(82)

Z =(2v&u, /c)X .
With Eq. (83), the dispersion relation Eq. (58) can
be written

(Z»+ e~&o,/c p)(A Z —cp/ur, ) = A Z,„Z„„, (84)

which is a quadratic equation in cP/&o, written

cP cp 2 g~+2 —Zp —&OA = 0,
QPc (d~ Zyy

for X«1, and A close to n. p describes how close
0 is to a. When IPI' is very large, v is very close
to ev, . As IP l decreases, ~ gets further and
further away from nrem, . Substituting Eq. (80) into
Eq. (74), we obtain

2@2Q
2 ~2 1/2+, 1,,'4+co~ . (VS)(@+1)c c

For s»c&u, Eq. (V8) can be approximated by

where

Z~ = —,'(eo —A Z„,Z„„+A Z,„Z„)/Z„, .
Solving Eq. (85}, we obtain

(86)

&+1
+~, at co=A(d

C & 2Q' (79}
(SV)
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J,' (X) = (2/wX) ~ 2 cos[X ——,
'

w(n + —,')],
&' (X) = (1/wX)[1+ (- 1)' sin2X] .

(89)

(90)

Substituting Eq. (90) into Eqs. (59) and (60), it is
easy to show that

X,„=(a/X')A,

where

A= ——p(I+I )

Equation (87) is valid for A very close to n
Therefore, we may put (d =o, (d, everywhere in Eq.
(87). For any given P, Eq. (87}gives a value of
q. WhenP and q are both given, one can easily
find the frequency &u from Eq. (81). Hence by
varying the parameter P, we can obtain the disper-
sion curves near co =ax,. To illustrate the result,
we present the dispersion curve near ~ = 2~, in
Fig. 2. At frequency very close to but slightly
less than 2e we find splitting of the dispersion
curve due to the magnetic field. As a matter of
fact, splittings are found for all &u = c.&u, (n being
integer larger or equal to 2). No splitting is
found for v = v, . When v is less than and not too
close to 2~„ the dispersion curve is quite similar
to that given in Fig. 1. As q increases, v in-
creases until it reaches its maximum value and
then decreases gradually. As we will see later,
when q becomes sufficiently large, v will come
close to (d, and oscillate. Another curve starts
at the light line ~ =cq with frequency ~ slightly
less than 2~,. As q increases, (d also increases.
The dispersion curve approaches asymptotically
to the curve we presented in Fig. 1. In Fig. 2,
the upper curve actually cuts the line (d = 2(d, . At
the intersection of the dispersion curve and the
light line, we have P=O. This implies that X„„=O.
From Eq. (74) this gives a frequency

(@~au)$1 —2(n —1)(1/a I) (ave/2c} ], o. ~ 2 .
(88)

B. Short-wavelength limit

In the short-wavelength limit where X=qvz/&o,
» 1, we use the asymptotic expansion of the Bessel
functions, i.e. ,

In a similar way, we can show that

X,„=(&/A')B, X„„=—X~ = &(&/AX}C,

where B and C are given by

B= —(2A/X) cotwA+ (2Q/X)(sin2X

+X i cos2X) cscwA,

C = (A/X )(cotwA+ cscwA sin2X)

—(2A/X) cscwQ cos2X .

(95)

(96)

With Eqs. (91) and (95), the dispersion relation
can be written

(A +X to/2wpX}[B —(p/2w}c~/&u~X] = C (97)

With the parameters which we have been using,
namely, N=2&10" cm, v„=l.5&&10' cm/sec,
Bo= 2' 22 kG& Mc= 2X 10 sec, ~0= 1 and
=0. 195mo, it is easy to see that

X co/2w pX =1.5 x 10~X

and

(P/2w)c'/~'. ~ -600X

(98)

(A+1. 5X10 X)=(B—600X) iC =0. (99)

In solving Eq. (99) together with Eq. (94), we fur-
ther neglect the term 1.5&& 10 'X which is small
compared to 2. Then it is straightforward to show
that

2.I—

for cq» &u. In order to solve Eq. (97) with Eq.
(98) we consider a trial solution such that when X
is very large, A= &u/&o, is very close to an integer
a. The parameter X =qv~/&o, is assumed to have
the value from 9 to 20. We make the expansion
A(X) = a + 5(X}with 5(X)«1. A study of Eq. (97)
shows that the parameters B and C are small com-
pared to 90'. Therefore, without too much error,
we can write

1 m
= ——cotmA,„n —A A

(-1} w~ ———csc77A .6 —IO A

(93}

Substituting Eq. (93) into Eq. (92) we easily obtain

A = 2 —(2Q/X)(cotwA+ cscwA sin2X) . (94)

= 2+ Z, [1+(-1) sin2X] . (92)
2 " 1
wX „n'—

We then make use of the following identities:

I3' I

47r
I5' I

671 q Vp

Gfg

FIG. 3. Plasmon dispersion curve in a 2 DEG is
plotted in the short-wavelength limit showing oscillatory
behavior of the dispersion curve. Same parameters are
used here as in Fig. 1.



4732 K. W. C HIU AND J. J, QUINN

0= a + 5, —a (a/X) v5, [1 —(I/vX) (1 + sin2X) ]
(100)

where

5, = (a/vX)(1 + sin2X)[1 —(I/vX)(1 + sin2X)] '.
(101)

In Eqs. (100) and (101), the upper sign is used
when e is even and the lower sign is used when 0.

is odd. Terms of order &z or higher are neglected
in Eq. (100) for simplicity. To illustrate the dis-
persion curves in the short-wavelength limit, we
present in Fig. 3 a plot of the solution of Eq. (100)
giving 0 as a function of X. The large values of
X (from 3w to Vw) make possible the asymptotic ex-
pansion of the Bessel functions. The dispersion
curve is found to oscillate with X and the amplitude
of the oscillations decreases as X increases. As a
matter of fact, the lower curve of Fig. 2 and the
lower curve of Fig. 3 are two limits of the same
curve. Similarly, the upper curve of Fig. 2
will go up rapidly as X increases. After reaching
its maximum frequency very near but slightly less
than 3+ the frequency gradually decreases and
finally goes to the upper curve of Fig. 3 in the
short-wavelength limit.

V. CONCLUSION

In this paper, we have studied the plasma oscil-
lations of a two-dimensional electron gas in a nor-
mal dc magnetic field. In Sec. II we have calcu-

lated the quantum-mechanical response of a two-
dimensional electron gas in the presence of a
strong magnetic field. We have obtained an ex-
pression of the polarizability tensor in terms of
the mell-known Bessel functions. The result is
found to consist of two parts: the oscillatory part
and the nonoscillatory part. The semiclassical
nonoscillatory part was used later in Sec. IV in
discussing the dispersion curves of the plasma os-
cillations. Quantum effects are described by the
oscillatory part of the polarizability tensor, ' they
were not discussed in this paper. In Sec. III, we
have derived the plasma dispersion relation of a
two-dimensional electron gas imbedded in a three-
dimensional dielectric. Our result, given in Eqs.
(58) and (58a), is a generalization of that obtained
by Stern' to include the effect of an applied mag-
netic field. In Sec. IV we have investigated the
magnetoplasma oscillations of a two-dimensional
electron gas in both the long- and short-wavelength
limits. For very long wavelengths, we found in-
teresting splittings of the dispersion curves at
frequencies slightly less that o.v, for e ~ 2. When-
ever there is a splitting of the dispersion curve,
the upper curve st~s at the light line co = cq and
goes up very rapidly as q increases. The lower
curve bends over and the frequency gradually de-
creases (the group velocity being negative). In
the short-wavelength limit, the dispersion curves
display oscillatory behavior as shown in Fig. 3.
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