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The Jahn-Teller energies and distortions for four excited states of Mn++ in RbMnF, have been
obtained- The states are 'T, (I), 'T&gI), 'T,g), and 'T,{II).An effective force constant and cluster

frequency were derived from the data for 'T,g) and used to find the Jahn-Teller energies for all the
states. A semiquantitative treatment of the lattice dynamics of RbMnF3 has enabled us to analyze the
phonon sidebands and to describe the coupling of the cluster modes to the lattice. The experimental
methods p6m~rily involve the use of uniaxial stress, and the theoretical interpretation involves the
calculation of the multiplet splitting, including the reorientation of the exchange field. Both E and T~
distortions were observed and the Jahn-Teller energies found vary from 58 to 458 cm '. Even when

small, the Jahn-Teller effect has significant spectral consequences. Although we did not use the
crystal-field model to analyze the data, we found that it gave a good ration~»~ation of the results.

I. INTRODUCTION

In two previous papers' an experimental and

theoretical study of the Jahn-Teller effect in the

T«(I) state of RbMnF, having its spectral origin at
18221 cm ' was presented. In this paper we extend
the analysis to the 4T,~(I}, 'T2~(II}, and 4T~(II)
states, appearing in the optical-absorption spec-
trum of RbMnF3 with origins at - 22 000, 27 877, and
32367 cm ', respectively (see Fig. 2 of Ref. 3).
The two remaining T states lie in the pair-absorp-
tion region and were not studied. The four states
we studied each have different Jahn-Teller effects,
and we believed it would be illuminating to com-
pare these effects in a system where the environ-
ment is the same in each. The RbMnF3 crystal
has an advantage over a mixed-crystal system in
the sense that the positions of the atoms surround-
ing the Mn" of interest are well known and that
other properties of this crystal are very well un-
derstood. It was therefore possible to analyze the
stress behavior of the spectra and the coupling of
the electronic system to lattice vibrations in terms
of properties of the pure crystal. The results pro-
vide examples of Jahn-Teller effects ranging from
weak to strong, relative to the spin-orbit splitting
of the T multiplets.

We have modified the analysis of a previous
paper so as not to depend on the crystal-field mod-
el, and so as to include an effective cluster fre-
quency which takes proper account of the details
of the lattice spectrum. The numerical values of
the Jahn-Teller energies found are believed to be
as accurate as any heretofore obtained. These
values lead to a detailed interpretation of many
spectral features and allow a great deal of informa-
tion to be extracted from the optical spectra. The
new analysis leads to a critique of the crystal-field
model and shows how it can be applied to the Jahn-
Teller effect.

After a brief mention of the experimental meth-
ods in Sec. II, we outline the theoretical approach
in Sec. III. In Sec. IV, the parameters of the lat-
tice cluster model are obtained. The lattice dy-
namics of RbMnF3 and the phonon sidebands of the
four transitions are considered in Sec. V. We
give the experimental results and analysis for the
T,(II), and T2(II) states in Secs. VI and VII. We

obtained very little information from the broad
spectrum of the 4T,(I) state, but use the results
from the other states to give a plausible explana-
tion of it in Sec. VIII. Then in Sec. IX, the Jahn-
Teller effects as measured by several methods for
the four states are compared and discussed, and
Sec. X is the critique of the crystal-field model.

II. EXPERIMENTAL METHODS

The experimental methods used were described
in Ref. 1. We would like to add here some remarks
about the RbMnF3 samples used.

We have used samples from several sources with
varying amounts of impurities and internal strains.
The best material was that grown by Guggenheim
of Bell Laboratories. We find the energies of
the transitions to vary from sample to sample.
There is about a. 15-cm ' range for T,(I) and T,(II),
and a 5-cm ~ range for 'T2(II). All the numbers
we give are adjusted to those of the samples having
the highest purity. We also found several samples
which appeared to be single crystals but gave very
diffuse Laue patterns. These did not show the spin
reorientation stress effects that were dominant in
most of our samples.

Also for some transitions when the crystal is
under stress there is only partial polarization even
at high-stress values. These effects are real, as
we have looked at other spectral regions while
taking the data and find the polarizations there to
be complete.
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III. HAMILTONIAN AND WAVE FUNCTIONS

Before proceeding with the actual calculations
and interpretation of the data, we will outline the
theoretical background. As we will be interested
in the BA«-41' (I' = T2 or T«) transitions, we
give in Table I the d' orbital-triplet (X, Y, Z for
T, or $, q, 1 for T,) spin-quartet many-electron
wave functions for strong-field terms.

Implicit in each of the three orbital partners for
each strong-field term are four spin projections
(M, = —

2, &, —2, and ——,'), making the total degener-
acy 12.

In order to obtain wave functions corresponding
to the observed transitions, we must now allow for
configurational interaction between strong -field
terms of the same symmetry. This is done by
diagonalizing the Tanabe and Sugano' d' 'T, and T,
matrices, using B=840, C=3080, and Dq=780
cm ', which were found to fit the 77 K spectrum.
From these solutions we find the coefficients of the
configurationally mixed crystal-field wave function

'T)~(I)
4T„(ll)
4T„(I)
4T„(II)

(t4e)

0.97719
0.03418
0.79495

—0. 50999

P
(t'e')

0. 15174
0. 578 02

—O. 51724
—0. 852 79

'Y

(t'e')

—0.148 54
0. 81531

—0.317 04
0.11252

0. 93
—0. 66

0. 53
0. 25

effective Hamiltonian which operates on a given
orbtial triplet

Y for Tr or g for T2,

(3. 1)

X K ~b +K +X +BC

The terms are now discussed in order.

TABLE II. Coefficients of configuration components in
the strong-field wave functions.

@(I', i)=a~ I', te)+P~ I', te )

+y~l'g, te&,
where i=I, II, or III. These coefficients are listed
in Table II.

Assuming that we have the correct octahedral
wave functions, we now write the complete vibronic

A. Terms relating to Eq. (3.1a)

Q~ 0 0

r+&rrQr +V 0 Q 0A
r

0 0 Qp

-a vgQ, +zQg 0

TABLE I. Strong-field d orbital-triplet spin-quartet
real many-electron wave functions.

+ V~

0

0 Q, Q,

g vSQ, +pQ, 0

I'T&, t2e,

I T), t2e,

I Tq, t2e,

I4T, , t,'e',

I T„t2e,

I Tq, t2e,

I Tq, t2e,
t2e'

I Tg, tte,
I T2, t2e,

I T2, t2e,

I T„t2e,

I T2, tpe,

I T2, t2e,
I T2, t2e,

I T2, t2e,
I T2, t2e,

I T2, t2e,

&&=-'Ih 5 n k e&--'(3)' 'I& Fn C ~&

T) = —y I $ g g g e ) ——(3) I $ 'g j f 6)
z&=- I( n g S e)
X)=(2) ~ (l$ I I 8 e)+ lt 'I) '8 8 6&)

Y)=(2) '~ (IS I f 8 e)+ l$ f q 8 e))
z&= (2)-"'(l 4 8 I «&+ l n v I 8 & &)

~) = ——
I f n e «&+-,'(3)'~'

I g q e e &)

Y)=--2lf f e «)--,'(3)' 'If g e «)
z)= In( e~~)
~&=-.'(3)'~2I& Z~ ~ e&+-.'I~ ~ n «&
l) 2(3) Ih l 7~ e) 2 I& n T~

—I(gCC~)
(2) ~2(14 '8 q 8 ~) I t t tsc)),
(2) ' (18 I f 8 e) —lt t q 8 c))
(2) ' ' { l 4 8 I «) —

l s "8 I 8 & ))
—2(3) Igg e 6&)——Igg e e E)

+-,'(3)«2Ig g e 6 ~) —yIg g e e ~)

g)=+ Iqg e e~)

(3. la)

Q~ ——(I/v 6)[(Xq -X4) + (Yq —Ys) + (ZB —Z6)],

Qa = (1//12)[2(Z3 —ZB) —(X~ -X4) —Y~ —Y5)],

Q, = (1/E4)[(X~ —X4) —(Y2 —Y5)],
Qg = (I@4)[(Z2—Zs)+ (Ys —Ys)1,

Q. = (I/&4)[(Xs —X6) + (Zg —Z4)]

Q t ——(I//4)[( Yi —Y4) + (Xq —X5)],

(3 2)

a,nd are illustrated in Ref. 8.
The excitation is treated as if it were immobi-

lized in the crystal since the exciton bandwidth ap-

+ Vz, Q» 0 Q

Q, Qg

X„~serves two purposes. The K,(= p„&u2) de-
termines the vibrational frequencies, and the ratio
of V„/K„determines the Jahn-Teller coupling,
which produces displacement of the near neighbors
and is responsible for the strength of various vi-
brations in the sidebands. The Q„describing al-
lowed displacements of nearest neighbors for a T
state in a cubic environment are given in terms of
the MnF6 cluster by
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s gP

Q& = 2f
& g [e *„sin(&q a) + e "&„sin(&q„a)

+ e~g ~ sin(2 q~s)] k~ ~,

Q) = 2i ~ g [2e.„sin()q, a}—e "z „'sin()q+}

—e;"„,, sin(~ q, a)] k„~,

Q, = 2s + g [c'„,sin() q, a)

—a-"„,sin(~ q„a)]k,„,
Qg = 28 g g[f~g~sin(g ques)

s,

+c~ g ysln()q Q)]k

(3.3}

pears to be practically zero. Therefore, the in-
teresting even-parity vibrations belong to the sub-
set of lattice modes for which the excitation is
fixed on one Mn atom. This fact allows us to
classify the crystal modes in terms of the A,~ E~
and. T2 representations of the cubic point group.
The Q„expressed in terms of the plane-wave nor-
mal modes, 0,„,of the crystal are (the notation is
explained in Ref. 2 and we use the normalization
conditions of Peierls )

therefore electronically pure, but spatially sepa-
rated. The displacement along a 8-type direction
and the corresponding energy are

ds = Vs/Ks,

Es = Vs/2Ks. (3.5b)

The relative spatial separation of the partners has
the effect of reducing matrix elements between dif-
ferent partners by the overlap of the zeroth vibra-
tional levels of the displaced-harmonic-osciQator
wave functions. The Ham reduction factor~' is

+-3EE /RhtuE (3.5c}

(Vf. )'

Matrix elements diagonal within an X, F, Z ($, g, t')
basis will not be reduced. %e note that we obtain
from experiment a fairly accurate value of BE and
not the Jahn-Teller energy EE directly. To get the
latter, we need to know the vibrational frequency
of the E~ mode in Eg. (3.5c). Since we are not
dealing with an impurity which changes the local
force constants enough to cause local modes, we
must express RE in terms of the propagating modes
of the pure lattice. Thus the reduction factor be-

&~ = V~/K~

&~ = V~/2K~

(3.4a)

(3.4b)

(where V is a linear coupling constant and K is a
harmonic force constant}.

The E~ force is also seen to be diagonal in the
electronic partners but with each partner forced
into a different configuration in Q~, Q, space and

Q„=2f
& Z [e;&„sin(—,

'
q~)

~X

+e;"& sin(2q~)]k, „,
Q&-2i ~[a;"„,„sin(& q„a)s„

q)X

+ t~ g sin(2

ques)]

k

The k~ „diagonalize a vibrational Hamiltonian as
Eg. (3. la} having the associated frequency &o~ „,a
linear coupling coefficient V"; ~, and a mass equal
to that of the crystal Ng, M, . Extended cluster
vibrations involving many neighbors could be sig-
nificant, but see Ref. 10.

The totally symmetric A,~ mode is seen from
Eq. (3. la} to displace all three electronic partners
equally in Qz space and it therefore leads to a dis-
tortion with no electronic mixing. Such a distor-
tion has no effect on energies within the multiplet
but shifts the excited state geometry relative to the
ground state and thus contributes to the vibrational
progression. The distortion and its associated en-
ergy are given by

Er = 2Vr/3Kr . (3.6b)

This leaves a complicated vibronie problem to be
solved numerically. The results of such a solu-
tion are given in Sec. VX. Ham~~ gives approxi-
mate quenching factors for the response to T~ dis-
tortion. The trigonal splitting will be only partially
quenched by a factor of the form (& + ~ e ')~4's»""r).
This reflects the fact that the T2~ electronic matrix
cannot be completely diagonalized in any one dis-
tortion direction. The nontrigonal terms will be

where K~
„

is the force constant of the q, X mode
(see, for example, Ref. 11}. Thus, in order to ob-
tain an estimate of EE we must use an effective vE
which accounts for coupling to the phonon continu-
um. The lower frequencies have a larger reduc-
tion factor because of the 1/&u dependence in the ex-
ponent. %'ithin the cluster approximation there
will be an associated effective force constant, KE
= pE~~, where pE is the mass of the Quorine and
~E is an effective frequency. This frequency will
be somewhat less than the maximum value of 470
cm ' assumed in Ref. 2 (see Sec. IV).

The T2~ forces cannot be diagonalized within the
electronic partners, but instead lead to the distor-
tions

(2Vr/3Kr}(Qg, Q„Qg) (3.6a)

along four equivalent [111]directions. The Jahn-
Teller energy is
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C. Terms relating to Eq. (3.1c)

R,~ = 2PeS H„. , (3. lc)
This term brings in the effects of the internal

exchange field which leads to the antiferromagnetic

strongly quenched by a factor R~ as e '

This reduction factor also represents coupling to
a yhonon continuum with an effective frequency v~.
The associated cluster force constant is obtained
from R~ = p. ~+~, where p, ~ is again the fluorine
mass. We will find in Sec. IV that the MnF6 group
in a perovskite lattice is similar to an octahedral
molecule in having a much lower force constant for
the transverse T2~ mode than for the bond stretch-
ing A~ and E~ modes. Since the displacements
caused by the V„will be in units of the effective
frequency, a small T~~ force can still lead to sig-
nificant effects in the spectrum.

B. Terms relating to Eq. (3.1b)

&~= —X(L ~ S)+tc(i. ~ S) +p(L,S,+LP, +L,S,).
(3. 1b)

This term" allows us to include the spin-orbit
interaction to second order within the multiplet.
The L ~ S term splits the twelve-fold degenerate
manifold into three levels. These are twofold,
fourfold, and sixfold degenerate, given, respec-
tively, by I 6, I'8, and I"~+I's for Ty and by I'~, r„
and I'6+ I', for T, in Bethe double-group notation.
The reduced matrix element X is obtained for each
configurationally mixed term by using the coeffi-
cients obtained from Table II in Eq. (3.7),

Xr = +g„(o.-y)(n+y —2v2P),
(3.7)

Xr =+6&3~(o. +y)(a -y+2v 6P),

where $3„=300cm '. This is by far the largest
contribution to the spin-orbit splitting. The Jahn-
Teller effect, however, when present will reduce
the importance of this term as it is off diagonal in
both E~ and T2~ distortions and will therefore be
quenched by the two reduction factors, R~ and R~.
The second and third terms give the second-order-
spherical and second-order-octahedral spin-orbit
interaction. The octahedral term (L„S,'+ ~ ~ ~ ) in-
duces the full nonmagnetic symmetry of the system
and splits the sixfold degeneracy left by the previous
two terms into one fourfold and one twofold degen-
erate level. The K and p coefficients are most ac-
curately obtained by fitting' this part of the Ham-
iltonian to the results of a complete calculation,
including spin-orbit, octahedral field, and electro-
static interaction, on the whole d' manifold as done
by Goode. " The necessary coefficients are given
in Table III. It should be noted that the octahedral
term is diagonal in an E~ distortion (but not in TR~)
and becomes important~ as the first-order term is
quenched.

D. Terms rehting to Eq. (3.1d)

e, 0 0

X~ „=V~ 0 e, 0

0 0 e,
j. 1
ae, -2 &3e,

+ VE'
1see+2 &3e,

0 e~ e„
I+V~ e& 0 e~

e„e~ 0

TABLE III. Coefficients for effective spin-orbit
Hamiltonian.

'r„(I)
4r„(ll)
4m~(l)
T2g(II)

X (cm-')

—29
30.7

—33.0
95. 5

K (cm-')

—3. 0
—1.0~

b
—2. 7

p (cm-')

9.1
—0. 7

b
—6. 5

~Using Dq=800 cm ~.

~Detailed fit was not necessary for calculations.

ordering at low temperatures. In the molecular-
field approximation, it has the form of the Zeeman
operator, but acts only on the spins. Since it is
diagonal in M„taken alone it splits a twelve-fold
degenerate T into four sets of three orbitally de-
generate states. In the presence of the spin-orbit
interaction, no degeneracy is left. In the ground
state the exchange field (H„)for RbMnF, is'6 about
83 cm ' and is in the direction of the spins. This
direction is [111]but it can be changed to the direc-
tion of applied stress at values above 0. 5 kbar. '
In a magnetic field above 3 kG along [100]or [111]
directions, the spine will flop to [110]directions
perpendicular to the field. Since H,„doesnot com-
mute with the octahedral second order spin-orbit
interaction, there should be an energy dependence
on the spin direction. Since H,„hasno orbital
component, it will not be affected by Jahn-Teller
distortions.

The simultaneous effects of &(L.S) and gpsH M,
in the presence of strong Jahn-Teller effects are
illustrated in Fig. l. The left-hand side corre-
sponds to having only first-order spin-orbit splitting
while the right-hand side includes only exchange
effects. The center corresponds to the removal of
all degeneracy by the collective action of these two
effects. If we now add the Jahn-Teller quenching,
we shift from the center to the right of the diagram.
The p-type terms would then be added unquenched
to the resultant solutions.
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[31,
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I
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FIG. 1. Corre a ionl t' between spin-orbit and exchange
tate. The left corresponds to thesplitting for a Tf &2&

s e.
bit effect only (assuming X to be positive andspin-or i e ec on

K =p= 0); the right-hand side corresponds o p
change sp x ing;ang l'tting the numbers in brackets give the de-

ion of a Jahn-Teller effect corresponds
to a shift from the center line to the right on the xagram.

1where e =&(e +e, +e }, e~=[e —~(e„,+e,
„

V' t ain-coupling coefficients analogous to the„aresr '

V„ofEq. (3. la), and both will be discusse in
III E.

sThe coupling o e1' f th Mn electrons to stress ha
the same form as eth linear coupling to vibrations
given in Eq. ~ . a.g' ' . (3 1 ) The e's are defined'8 in terms
of compliance constants and stresses as follows,
for two important cases:

pressure parallel to [001]:
vy 12 ~ era ii

pressure parallel to [111]: (3.8)

e, =e„„=e=4(Sii+2S»)
1e, =e =e~ 3844P.

The resulting strains completely determine the
displacemen s ot f all the atoms from their normal
lattice positions. There are no unknown param-
eters as there would be for some noncubic crystals.
The compliance constants are g'iven in Table IV.

The splitting and shifts of a T state due to ap-
plied stress are given in terms o. th.the static cou-

I
pling parameters V„by

&(hydrostatic) = V„e,= 3 V'„(S,i+ 2S»,

4(tetragonal) = & Vse~ = —,
'

VQ (S —S )P, (3.9)

&(trigonal) =3Vre~ = Vr S44P.

Th antities measured experiment y,nt 1 however,e qu
Rare h(hydrostatic), Rr x 4 (tetragonal), and

x 6(trigonal), the splittings having been reduced by
the appropriate Jahn-Teller effects. These quan-

t'ties are sometimes modified by the presence of
sizable spin-or i inb't ' teractions as will be discussed
in Sec. VG.

E. Coupling coefficients

IThe two types of coupling coefficients V„and V„
will be trivially related to each other if only the
motions o e nearf th rest neighbors are considered,
so that information on one can be used d thused to find the
o eri ith 'f this approximation is justified.

Several factors in the RbMnF3 system do j
'

y'ustif
it. Firs, n at, M h s localized 3d electrons. Second,
the Rb and Mn (second- and third-nearest neig-
bors) are much heavier than the F atoms and can-

'
ns of thenot readily follow the high-frequency motio

latter. The MnF6 group may therefore act as a
molecule, a east 1 t for some modes of vibration.
Third, the frequency of the most prominent vibra-

'd b d is definitely higher than the LO,
latt' mode this increase could be explaine
the force constants in the locale of the excited ion

d if most of the lattice motion occurs'increase, an
'

m
there. We have also estimated from crys - ie
theory that the cube of Rb' ions at v 3 R contributes
only 8o as muc o eh t th stress response as does the
F octahedron at R, where R is the MnF bond
en th R=2. 125 A.

V' if the clusterThe relations between V„and V„i e c
19' 20model is valid are

V'„=&6RV„,Vs=(2/v 3)RVs, Vr =2RVr .
(3.10}

The observed stress response canan be used to de-
c Jahn-Tellertect the presence of E- and T, -type Jahn-

forces and to tell the direction of motion of the near
hbo resulting from the Jahn-Teller effect,

indepen en y
'

d dently of Eq. (3.10). But using q.
to the d-al ows usll to relate the stress response o y-

s. 3.4—namic Jahn-Teller effect expressed in Eqs. ( . )-
(3.6). Although the V„'are obtained reliably since
they depend on y on1 the bulk compliance constants,
the reliability of the V„is limited by q. .1E . 3.10.

F. Correlation of theory and experiment

The roots of the Schrodinger equation using
Hamiltonian (3. s ou. 1 h ld give the relative energies
of the 12 substates in a T term, and by ying h4 nd b varying the

TABLE IV. Compliance constant expressions. a

Sff 0. 939x 10-f2 cm2/dyn
Sf2=-0.232x 10 ' cm/dyn
S =3.03x 10-' cm /dyn44-

(Sf f Sf2)P =1.17x 10 kbar
S P=3x 10+ kbar f

44

(Sf f +2S,2)P =0.49x 10 kbar

aValues at 4.2 K From R. L. Melcher and D. J.
Bolef, Phys. Rev. 178, 864 (1969).
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parameters to achieve agreement with the spectrum
we should reach an interpretation of the multiplet
structure. Although we observe several purely
electronic levels, i.e. , the magnetic dipole lines,
most of these are obscured by the much stronger
electric dipole spin-wave sidebands. In Sec. V, we
give the experimental evidence that all of the major
spectral features are due to the spinwave sidebands
or vibrations built upon them. Thus the roots of
Egs. (3.1) will be compared to spin-wave sideband
intervals. The intensity of a spin-wave sideband
is entirely due to transitions for which 4M, = —l.
Since the antiferromagnetic ground state is almost
entirely 64~/M, = ——,}, we only observe excited
states of the type T(M, = ——,'). The ratios of the in-
tensities of the sidebands should then be given ap-
proximately by the ratios of the squares of the M,
= —

& component of each substate wave function.
The spread of intensity over the 12 sublevels de-
creases as the Jahn-Teller energy increases, cor-
responding to a shift to the right in Fig. l.

The spin-wave sidebands in an ideal case mould
have a sharp high-energy edge corresponding to the
high density of states expected at the Brillouin-
zone boundary. Such an example is shown in Fig.
15 where the cutoff is at 70 cm ~. We have evi-
dence, in Ref. 2, that the spacing between the mag-
netic-di. pole line and the corresponding sideband
edge does not depend strongly on uniaxial stress.

The spin-wave sidebands, however, do not all
have the same shape and therefore me may make
an error by assuming that the electronic levels are
spaced in the same way as sideband peaks. In two
multiplets, T,(I) and T~(N, enough magnetic di-
pole lines mere observed to show that no error
was made, but small and somewhat uncertain cor-
rections had to be made for 4T~(II), Sec. Vlf, since
only one magnetic-dipole line is observed.

In the case of the 4T,(I) state, Ref. 2, we found

that changes in the spin orientation strongly modify
the spin-orbit splitting. These changes inevitably
follow the application of small stress or magnetic
fields, and in the 4T,(II) and 4T,(II) states their ef-
fects are very large. The solutions of Eg. (3.1)
were therefore carried out with several orienta-
tions of the exchange field. The spin reorientation
phenomenon provided additional experimental data
to test the reliability of our calculations.

The solutions of Eqs. (3.1) gave unreduced and
reduced multiplet splittings for comparison with
experiment, so as to give a Ham reduction factor
[Eq. (3. 5c}]. The stress response can be used to
obtain the corresponding Jahn-Teller force V„
through Egs. (3.9) and (3. 10). These data, lead to
the values of the Jahn-Teller energy if the effective
force constant and cluster frequency of the lattice
are known. These quantities will be obtained in
Sec. IV.

IV. EFFECTIVE CLUSTER FREQUENCY AND FORCE
CONSTANT

The data obtained in Ref. 2 in the 4&&~(I) state
can be used to provide values for the E~ cluster
frequency and the corresponding force constant.
We are treating the data for this state in a way that
is different than Ref. 2, because it is not appropri-
ate to use the highest lattice fundamental, 470 cm ',
as the cluster frequency, as mas done there.

The experimental measurements, interpreted
using Eqs. (3.1}, give us a reduction factor Rs and
a stress response factor V~. In. terms of the clus-
ter model these can be equated to

Bs = exP(-3Es/2jt ~s), Vs (2/g3)ft Vs

Es = Vs/2I7s,

where (d~ and K~ are the effective frequency and
force constant for the E-type cluster mode. They
are related to each other by

where p.~ is the mass of the F atom. '
From Ref. 2 we find Es/ktds=1. 6 and Vs=i. 3

x 10 dyn, gzvxng S(d~ =287 cm ', E =458 cm, and

IYs =0.915&& 10~ dyn/cm. These values give Q~

=0.14 A. There are notenoughdatato give theA~ distor-
tion. The hydrostatic shift of the 'T,(I) band is
—9. 5 cm /kbar, but the effective cluster frequency
~„cannot be found. The value of co„should be
higher than co~ and lower than ~Lo„andwe have
chosen &u„=400cm ' as a reasonable estimate (see
the discussion in Sec. VG). From V„=—2. 23
&10 4 dyn, we then find E„=703 cm ', K„=1.79
x 10' dyn/cm, and Q„=-0. 125 A.

The values of K~, K„,v~, and v„justobtained
will be used for the analysis of the other 'T states.
The data for T,(I) are straightforward, so we con-
sider these values to be reliable.

V. LATnCE VIBRATIONS

The shape of the phonon sideband must contain
information about the kinds of local distortions
near the excited Mn ion and in this section we will
show how to extract some of this information. The
phonon sidebands up to about 500 cm ' from the
origins are shown and compared in Fig. 2. In Ref.
2, me gave an interpretation of the shape of the
T,~(I) sideband, but here this work will be modified

and extended so as to include more details of the
Brillouin zone of the phonon branches, and of the
way in which the three types of cluster distortions
excited these lattice vibrations. We are prevented
from carrying out a quantitative treatment of this
problem because of the incomplete knowledge of the
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phonon dispersion curves. Neutron inelastic scat-
tering data have not yet been obtained for RbMnF, .

Our procedure in this section will be first to
show the experimental evidence that the phonon
structure is associated entirely with the spin-wave
sidebands. Then we write the expressions for the
coupling of the cluster distortions to the lattice
modes. Next we obtain approximate expressions
for the lattice-mode displacements by fitting pres-
ently available data to the rigid-ion model of
Cowley ' for the perovskite-type lattice. This fit-
ting helps us to assign the lattice mode spectrum
and to obtain qualitatively the coupling strength be-
tween cluster distortions and lattice modes. At
this point, Fig. 2 can be explained fairly well, and
we can say what types of cluster distortions pre-
dominate for a given electronic excitation. The
rigid-ion model also gives values of the cluster
force constant K~ in reasonable agreement with the
experimental value given in Sec. IV and a value of
K~.

A. Spin-wave sideband as spectral origin

There are three experimental indications that the
phonons are built on the spin-wave sidebands as
their spectral origins: the phonon structure shifts
and splits under stress so far as can be seen in the
same way as the spin-wave bands, the polarization
of the phonon bands under stress follow those of the
spin-wave bands; and the temperature dependence
of the spectra shows that no odd-parity vibronic
origins are present. The first two of these points
are covered in Refs. 1 and 2 and will be discussed
for the other 4T states in Secs. VI and VII.

The effects of temperature on the vibrational

structure of these transitions are shown in Fig. 3.
The prominent structure has a temperature depen-
dence similar to that of the spin-wave origins,
that is, both intensity and bandwidth change in the
same way. These results are in agreement with
the lower-resolution studies of Fujiwara et al.
Odd-parity vibronic origins would cause a marked
increase of intensity with temperature, and this is
not observed. Furthermore, they would appear in
the spectrum at frequencies higher than the spin-
wave frequencies and have a temperature depen-
dence different from the spin waves. These results
are further evidence that we need only consider the
contributions of even-parity cluster-type distor-
tions A~~, E~, T~~ to the phonon band.

Furthermore, we expect that the regions of the
highest density of states in the phonon spectrum
will make the major contributions to the electronic
spectrum.

B. Lattice-coupling coefficients

In Sec. IV we derived formulas for the forces V„
along the normal modes of an octahedral cluster in
terms of parameters which are available from ex-
periment. We will now transform these cluster
forces into coupling constants V;

„

to crystal modes
k;„.The corresponding lattice mode distortions
are then

(5. 1)

where K~
„

is the force constant for the mode q, X.
An arbitrary lattice mode can have contributions
from three cluster-mode distortions, therefore,

0 500
I I I I I I

LA(X~'To &» I I I

) " ' LOR(X) T05(X) LO5(X, M, A)
TpU(X, M, R) TOp(X, M, R)

II

'T, (rr)-
(0=32459cm-~)

4T (rr)-
- 2g

(0=27947 cm-' )

FIG. 2. First 500 cm
of the three T transitions
of RbMnF3 which show
structure have been drawn
to the same energy scale.
Zone edge energies of im-
portant lattice modes as
discussed in the text have
been indicated along the top
of the figure. Ordinates
are in percent transmission.

(r)-
19

(0= I8285 cm-i)

I

0 I 00 200 500
Energy (cm-I)
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where

V, ~=~
~

2i —. V„[c-„"„,sin(-,' q, a)+ c„-",„sin(-,'q„a)+a~', ,sin(2 q,a}], (5.2b)

,and

&f ~=(
~ ~

2i ~ Vs[2&& & sin(2 q a) —tz "& &sin(q q„a)—e & sin(q q a)], (5. 2c}

VPa=l~Ng M &I2&3Vrag& [(a;*&„+of*„,) sin(&q a)+(f;"„,+e;"„,)sin(&q„a)+(e &„+a~'„„)sin(2q, }].

Here we assume that the forces act independently
of one another and that the electronic part of the
wave function can be separated out. The one-pho-
non sideband shape G~(ur) is formed by intensity
contributions of amount S+ gIp p from each crystal
mode q, & at an energy ~; „above the zero-phonon
line (the spin-wave sideband having intensity Io 0),
where

(5.3)

Equations (5.1)-(5.3) allow G'(&o} to be calculated
from the dispersion curves, eigenvectors, and

force constants of the lattice and from the cluster
forces obtained from the stress data. Lacking the
first three requisites, G'(ar) cannot be calculated
theoretically, nor have we taken the trouble to gen-
erate it from the multiphonon sideband by uncon-
voluting an assumed one-phonon spectrum. ' Rath-
er, we have taken a more qualitative approach
based on obtaining approximate dispersion curves
from the work of Cowley ' on SrTiO, for which
neutron scattering data has been analyzed.

C. Dispersion curves for the lattice modes

The dispersion curves were obtained for the

(q„0,0) wave vectors using a rigid-ion model
(Cowley's" model I), fitted at zone center to the
infrared data of Perry and Young. 4 Although the
model is unrealistic in implying a = 1, whereas
& =2. 5, we varied the charge so as to give agree-
ment with the Lydanne-Sachs-Teller splitting found
from experiment. This procedure has given rea-
sonable results for some simple lattices. "

The parameters were varied until a least-squares
best fit at q = 0 was obtained using the principal
oscillator frequencies derived by Perry and Young
from their 77' infrared data, 4 and the zone-center
LQ frequencies and the zone-edge LA and TA fre-
quencies of Young and Perry. Thus the eight pa-
rameters are fitted to eight pieces of data. The
largest deviation from the observed values was 18
cm '. The final parameter values are, in Cowley's
notation

At=7o, B~~ -12, Aq=3. 5, B2=2.0.

t

&3 ——0. 5 and BB= 0. 3 in units of e /v, where v is the
volume of the unit cell; and the charges are Z»
=0. 8, ZM, =1.6, and ZF= —0.8. These parameters
give the dispersion curves of Fig. 4. The curves
have been displaced so as to match the experimen-
tal zone-center energies.

The calculation also gives the polarization vector
coefficients necessary for expressions (5.2). The
values are listed in Table V, and will be used in
later sections.

The calculated dispersion curves lead to assign-
ments of zone edge energies somewhat different
from those of Young and Perry, because these
authors assumed an NaC1-type negative dispersion
of all optical modes in fitting their second-order
infrared absorption peaks. We find that the curves
calculated from the rigid-ion model show positive
dispersions for LO, and LO2 in the [100]directions.
This feature also appears in SrTiO, and is experi-
mentally verified there for LO, . ' The calculations
also place the T2„branch at 100 cm ' at zone center
and 120 cm ~ at zone edge. Although the position
of this branch is very sensitive to the values of the
parameters, it does appear in the low-frequency
region in SrTiO, and in the calculations of Naka-
gawa et al. ' The main results of the changes pro-
posed here are to bring the Tz„branch at [001] to
120 cm ~, and the 311-cm ~ energy previously as-
signed to Tm„is now assigned to LO2 at [001].

Some support for the reassignment is provided
by Table VI which shows the infrared combination
bands and some second-order Raman-scattering
data obtained by us using a 4880-A gas-laser line.
The two-magnon band was observed at 4. 2 'K,
and the weaker vibrational structure was observed
over a range of temperatures. The most prominent
peak is at 555 cm ~ at 300'K and increases to 590
cm ~ at 80'K. This same temperature shift was
found by Perry and Young~ for the LG3 469-cm ~

peak (at 85 'K) in the infrared; therefore the 590
peak probably is a combination containing the LO,
mode. Possible assignments are given for this
and other combination bands in Table VI, using the
[100]zone-edge energies shown in Fig. 4. Although
the assignment of combination bands is a risky
procedure, the results are not inconsistent with the
zone edge energies of Fig. 4.
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The density of states at the [100]point is sup-
posed to be high and to be a good approximation to
the energy of the highest density of states for a
given mode.

The results of the vibrational assignment are
given at the top of Fig. 2, as the possible energy
ranges of the different modes in the phono 'dp onon si e-
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LOy
TABLE U. (0, 0, qg polarization vector components

for axial fluorine.

Branch 0 O. 2x/a 0.Gm'/a O. 87'/a n /a

400 — TO~ TO3
TO2

T2g
TO 1

TA

0.389
l. 56
2. 28
l. 27
1.0

0.370
1.55
2. 17
l. 49
0.962

0. 315
l. 53
2. 46
1.08
0. 84

0.23
l.44
2. 80
0. 146
0.64

0, 12
1,08
3.01
0.06
0.38

0
0

3.22
0. 22
0. 00

300—
L02

l~

CQ

~~ 200 TQ2

loo =
T

.2w/a .4m/a .6~)b
[o,o,q z]

.87r/a
I

7T/a

FIG. 4. Calculated (0, 0, qg) dispersion curves for
RbMnF3 based on a rigid ion model (Ref. 21) fit at zone
center to 80'K ir data (Ref. 24). The broken lines cor-
respond to transverse modes, the solid lines to longitu-
dinal modes, and the pointed line to the ir inactive T» at
zone center.

D. Contributions of lattice modes to cluster distortions

In this section we want to estimatethe most im-
portant lattice-mode contributions to the coupling
coefficients V"„-„,V;„,V s„ofEti. (5.2}. Because
of the sin(2qa} factor in the V's, zone-edge con-
tributions are weighted more than interior points.
We know the atomic motions best at the points
X(110), M(110), and A(111) on the zone surface be-
cause of their high symmetry, and these motions
are given by Cowley, Appendix B, Ref. 21. This
information tells us how the lattice modes corre-
sponding to different directions of q space contribute
to the cluster modes. The contributions of these
lattice modes to the intensity of the single-phonon
sideband spectrum, G'(&a) is determined both by a
sin (& qa) factor and a density of states. Not having
detailed knowledge of the band structure, we as-
sume that there may be contributions from all q di-
rections of the zone to the sideband spectrum. In
Table VII we list the lattice modes at high-sym-
metry points which contribute to given cluster
modes. These entries were obtained by noting

LO3 2 ~ 65
LO2 1.41
LOI 0. 62T2„0
LA 1.0

2. 66
1.43
0. 62

0
0 ~ 94

2. 71
1.44
0 ~ 59

0
0.78

2. 82
l. 37
0.47

0
0.60

3.02
1.01
0 25

0
0.47

3.20
0
0
0

0 ~ 42

TABLE VI. Second-order infrared and Raman peaks.

Observed (cm ')

ir~ Raman
LN2 RT LN2

Possible
[100] assignments Calc. (cm ')

200

333

420
431

600
745

220

340 335

440
555b 590b

T2u+ TA
T&~+(LA or TO, )
(LO) or TO&)

+(LO, or TO, )

l
LO2+ TA
LO&+(LA or TO&)j
LO2+ T2II

LO&+ (LOq or TOt))
LO3+ LO2

200
210

390
400
430

580
730

~Reference 26.
"The energy shift on cooling is consistent with that ob-

served for LO3 in first-order (q = 0) ir.

which atomic motions at a given point in q space
contribute to a given cluster motion, and then find-
ing which branches contain that atomic motion.
This last step was accomplished by matching the
symmetry designations in Appendix B of Ref. 21,
with those on the dispersion curves in the figures
of Ref. 21. Finally, Cowley's dispersion curves
were correlated with ours. For example, at the
001 point for M2 symmetry there is z motion of the
0, atom corresponding to our E & . Since we find
from Cowley's dispersion curves that both LA and
LO3 have M~ symmetry at X, these branches have
been entered into the E~ column of Table VII.

Table VG shows that the A.,~ cluster mode con-
tributes to LO3 in three zone directions and it may
be assumed that it contributes to LO3 over a large
fraction of q space. Since LO3 occurs near 470
cm ~ we expect A,~ cluster modes to contribute sub-
stantial intensity at this energy. The E~ cluster
mode contributes to LO3 at two of the high-sym-
metry points X and M and will also make contribu-
tions near 470 cm . The E~ cluster mode begins
to disappear from LO3 and appear in TO~ as the di-
rection in q space goes away from [0, 0, qz], and
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TABLE VII. Zone-edge lattice modes contributing to
cluster forces. ~

A&c

Lo3 (X):M2s ~

LA(X') ' M2

LO2 (M):M4

Lo, (w): r,'

To, (~):r,',

Lo,+):M,'

LA(X):M2

TO2(M): M2

LO, (M):M4

To, (N: r,',

T2gT(X):Mg'

TO) (X):Ms

TO,'(M) + T,„T(M):M,

T2g(M):M,

T,„T(w)+Lo, (A): r»
LA(A) + T01(A):I »

~Based on SrTiOS as described in text.
~Branch (symmetry point): symmetry of mode at sym-

metry point,

at the A point it contributes only to TO&. At zone
center, TO& consists of the motion of the Rb cube
against the MnFs octahedron, but at A it becomes
similar to the E» cluster mode. At zone center,
TO& has an energy of 194 cm '. Although we do not
know the dispersion of TO& for RbMnFS in the [111]
and [110]directions, Cowley's calculations indicate
it to be positive for SrTiO, . From these arguments
alone we expect A«and E, cluster distortions to
contribute to G~(ar) in the vicinity of 200 cm '.

Table V samples an important low-symmetry
regio~ of the zone and shows how the modes mix
when the symmetry restrictions are lifted. It lists
the (0, 0, q ) components of the polarization vector
c & which contributes equally to A«. and E» cluster
modes [Eq. (5.2)]. These results should give a
good indication of the way A«contributes over the
entire zone, and only a fair indication of the con-
tributions of the E» mode. There is a significant
contribution to LO~, which has no contribution at
the high symmetry points of the zone. Therefore,
E» and A«cluster modes should cause spectral
intensity in the LOz region near 300 cm '. The LA
mode also has a contribution to the polarization
vector throughout the (0, 0, q,) line, and there
should be some intensity near 90 cm ~ from both
A«and E» cluster modes. Since LA involves the
heavier Rb motion more than the F motion, this
contribution will not be large, as shown by the
values in Table V when weighted by the sin(& qa)
factor.

To summarize, the A«and E» cluster modes
should contribute spectral intensity predominantly
at 470 cm ' and some at 300, -200, and 90 cm '.

The T2 cluster mode is seen from Table VII to
contribute at zone edge to the lower energy modes,
predominantly T2„which the calculations have in-
dicated to be near 120 cm at X and probably near
this energy for other directions (in SrTiO~ this
mode shows positive dispersion for [110]and
[111]~~). Table V shows that the most striking

mixing at interior points of the zone is with T~„,
TO2, and TO„decreasing in that order. The major
contributions to G'(u&) from a Tz~ cluster distortion
should then be expected in the region of 100-200
cm ~

E. Assignment of peaks in the phonon sidebands

It was seen in Ref. 2 for the 4T,~(I) state, and

will be shown for the other states that a progres-
sion of peaks at approximately 470 cm ' is the
dominant feature of the, sidebands. This frequency
corresponds to the LO, mode raised somewhat in
the excited states, probably because of changes in
the electron distributions compared to the ground
state. The predominance of LO, means that A,»
and E» cluster modes are strongly excited, accord-
ing to the analysis of Sec. VD.

Figure 2 shows the structure of the phonon side-
bands for ~T&(I), 4Tz (II), and 4T~~(II) up to about
500 cm ', the one-phonon region. The spectra
have been drawn to the same scale with the first
spin-wave sideband at zero on the wave number
scale. In Sec. VII, we show that 4T,~(II) has four
intense-spin-wave-sideband origins. Origins II,
III, and IV are indicated in Fig. 2 along with some
of their prominent phonon sideband structure.
Other structure belongs to origin I at zero, and
only this structure will be referred to in making
comparisons with the other spectra Both. 4T~(I)
and Tz~(II) have the 470-cm ' peak as their most
intense feature. The other prominant features in
both spectra are (a) the peak at 315 cm ', which is
at the correct energy to be LO2; (b) the peak at 90
cm ~, having an energy and shape identifying it as
the LA mode; (c) the weaker overlapping structure
between 130 and 230 cm ', which is probably com-
posed of contributions from many branches. TO&

could be-contributing near 200 cm ~. The similarity
between T,~(I) and 4TI~(11) in this region is made
very clear by the o'-polarized spectrum of Tz~(II)
under trigonal stress, shown at the top of Fig. 16,
where the sidebands of origin I make the only large
contributions to the spectrum, and III and IV origins
are suppressed. We note that all prominant struc-
ture in the phonon sidebands for T&(I) and Tz~(II)
is assignable to lattice modes predicted to contrib-
ute to G'(&u) when the cluster distorts along the A,~
and E» modes.

If we now look at 4T~(II) we see that the most
prominent structure is in the 100-180-cm ' region,
in contrast to what we have found for the other two
transitions, which show the least vibrational activi-
ty in this region. The 470-cm ~ peak still appears
but is no longer dominant. We will see in Sec. VI
that there are no origins other than the composite
broad one at 0 cm '. The 100-180-cm ' region is,
however, the energy region which contains the lat-
tice modes we expect to be excited in G'(&u) by a
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T,~ cluster distortion. [We also note the presence
of a much weaker peak at 408 cm ', close to the
value of TO, which should have (Table V) small
contributions from a Tz~ cluster mode. ] This prom-
inent structure is evidence that a Ta~ distortion oc-
curs in the 4T~(II) state along with A~+E~. The

T2 force does not have to be large relative to the
A.+E~ force to give comparable spectral intensity
as the intensity is inversely proportional to the
mode force constant and frequency, and these are
smaller for the T2~ mode than for the +,~ and Eg
modes.

G (~Los) =IOOS»

where

&V„+Ve}
SLo =& Lo I 2' ~

g+»
'&2&Lo, )

and (z»,) is the average value of

(M,/g, M, )(e',.„...}2

{5.4a)

(5. 4b)

over the entire zone. This is a number which be-
.comes less than unity as the A~~+E~ distortions
mix into the lower bxanches. It is found from Table
V to be about 0. 9, using the LO, row. The assump-
tion made here is that the [100]direction is repre-
sentative of the entire zone. From section d and

Table VII, this is seen to be a fairly good approxi-
mation for the A~~ cluster mode coupling, but not

as good for the E~ coupling.
In Ref. 2 we used a q weighting factor to extend

our one-dimensional rigid ion solutions to include
the whole zone. This was incorrect as it led to an

,
incomplete Fourier analysis of the distortion.

Since for T~(I), Vz is much larger than Ve, we
will not make much error in this state when apply-

, ing Eq. (5.4). Therefore, we use e „o,=0.9; we

F. Intensity of the LO3 mode

The description just given of the one-phonon
sideband intensity G'(&o) must remain qualitative
until the full dispersion curves and their associated
eigenvectors are found. For the LO3 mode, how-

ever, we feel it is justified to make an approximate
calculation of G'(e» ). The LO, branch is in an
isolated region of energy, so we do not expect
much mixing with other modes anywhere in the
zone. Cowley finds for SrTiO3 that the dispersion
in three directions in q space is negative, and not

large, and we will assume that these indications
. apply to RbMnF3. These conditions justify making
the Huang-Hhys approximation for the LOS branch.
We can then insert Eqs. (4. 2b} and (4. 2c} into Eq.
(4. 1) and then into Eq. (4. 3) and sum directly over
the entire zone, only making the approximation that
the magnitude of the polarization vector is a con-
stant. Then with ~L =470 cm for all q, we ob-
tain the intensity contribution to G~(u&) at 470 cm ~:

find KLo, from ~Lo, =470 cm ' and p, Lo = 3.1 10
(since almost the entire reduced mass throughout

the zone is that of the E atom) to give K», = 2. 46
X10 dyn/cm; and finally we use the values of V„
and V~ obtained from the stress experiments of
Ref. 2 (their values are given in Sec. IV). The
result is SLo =1.3. In Fig. 5, G'(LO~) is drawn

in, and it is seen to be consistent with the appear-
ance of the spectrum. The values of V„and V~

must be approximately correct for this level of
agreement. It is important to note V& and V~ de-
pend on the assumption of the cluster model con-
tained in Eq. (3.10}, but that Eqs. (5.4a) and(5. 4b)
do not depend on the cluster force constants or fre-
quencies of Sec. IV. Thus, the V's obtained

through (3. 10) are here shown to be approximately
correct because of the reasonable size of G'(ur», ),
independent of other assumptions. In the sections
on the 4T,~(II) and ~Tz~(II) states, we will demon-
strate this argument for these cases as well.

G. Theoretical estimates of cluster force constants

An estimate of the force constant Z~ or Rz can
be obtained from the force on a fluorine due to its
displacement along the Mn-F axis using the param-
eters of the rigid-ion model. This force is given

by (e'/~)(&rC~~+2B~+2, +2A, +2B,) and is 1.36
&&10' dyn/cm if we use —47 for Cr'z, a zone-center
Coulomb coefficient which omits the macroscopic
field. This value corresponds to a cluster frequen-
cy of 350 cm ~. In Sec. IV we obtained an experi-
mental value for the E~ cluster force constant of

0, 92x 10' dyn/cm and a corresponding effective fre-
quency of 287 cm '. This frequency is consistent

with the spread of energies we find for the lattice
modes onto which Ve projects (see Table Vil). The

Ai~ effective frequency will be higher as the major
contributions are from the LO, branch (Table VII).
A reasonable estimate is 400 cm ' with a corre-
sponding force constant of 1.79X10' dyn/cm. The

TB~ effective force constant can be similarly ap-
proximated by the force on a fluorine due to its dis-
placement perpendicular to the Mn-F bond. This
is given by (e /e)(SrzCr~+Am+B, +Ba+A, + 3B,). In
contrast to the axial case, thetransverse Coulombic
term is repulsive while the short-range terms are
attractive. Using C~~ = 17.2, gives K~ = 2 & 10
dyn/cm and an associated cluster frequency (using
a reduced mass equal to that of fluorine) of 135
cm '. The fair agreement between the calculated
and experimental values of K~ leads us to believe
that the calculated values of K~ must be reasonably
correct.

In Ref. 2 we used a value of 6.4 &&104 dyn/cm
taken from Ref. 27. This value is obtained using the.
%ilson F-6 matrix formalism to fit observed infra-
red frequencies. Such a model is unrealistic, as it
does not take into account the long-range Coulombic
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terms and therefore does not give the ionic splitting
of the longitudinal and transverse branches (see
dispersion curves in the Appendix of Ref. 30).

VI ~T1 (II)

A. Experimental observations

The complete spectrum of the 4T«(H) transition
starting near 3100 A is shown in Fig. 6. There
are two magnetic-dipole (MD) lines of about equal
intensity which act as origins to the spin-wave side-
bands. They have the energies 32 367 and 32380
cm ' (a 13 +2-cm ~ splitting) and are shown in Fig.

1.0-

7(a) for a 2-cm crystal. These MD lines are too
weak and broaden too quickly under stress for use
in the study of the effects of different perturbations.
This problem is overcome by using the more in-
tense composite spin-wave sideband shown in Fig.
7(b). However, the components of the sideband
have the disadvantage that they overlap because of
spin-wave dispersion, and this introduces some
error in determining their energies. Three spin-
wave sidebands are contained in the composite
sideband, each about 66 cm ' higher in energy than
its MD origin. The higher two sidebands are lo-
cated 12 and 29 cm ' above the first. The three
sidebands correspond to the three predominantly
M, = —2 exchange levels. They will be referred to
as I, II, and III in order of increasing energy.

Most of the changes brought about by uniaxial
stress occur in the relatively sharp spin-wave
sidebands, although for 1.5 kbar along [100] in m
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32439+478 ~ 329I7
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FIG. 6. Absorption spectrum of the T&~gI) transi-
tion. MD indicates the two observed magnetic dipole
lines. I, II, and III label spin-wave sidebands. The dot-
ted curve represents the composite spin-wave sideband
|I+II+III) reduced in intensity by a factor of 0.25 and in-
creased in energy by 478 cm ~.
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I32~62
32445
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FIG. 7. Microdensitometer tracing of (a) magnetic-
dipole lines using a 20-mm crystal and (b) the composite
sideband using a 2. 8-mm crystal for 4T~~61).
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0 25 50

FIG. 8. High-resolution microdensitometer tracings
of the effects of a [100] stress on the composite spin-
wave sideband of T«QI). Read~ ordinate from top of
peak.

polarization the 102-cm ' band is observed to split
slightly, reflecting the behavior of the composite
origin. We find no evidence for substantial inten-
sity associated with higher multiplet components
contained in the vibronic-sideband envelope. When
considered together with the temperature depen-
dence (Sec. V), these results show that only the
linear coupling terms of Eq. (3. la) are responsible
for the sideband structure.

We found in Sec. V that only for the transition
to 4T,~(II) does the vibrational sideband show prom-
inent structure in the 100-170-cm region, indi-
cating the excitation of a T2~ cluster distortion.
Further confirmation of the T2~ distortion will be
found in the interpretation of the response to stress.
An A,~ and an E~ distortion must also be excited
as shown by the appearance of the 478-cm ~ longi-
tudinal mode.

Figure 8 shows the [100] stress response of the
composite spin-wave sideband up to 3 kbar. The
results are summarized in Fig. 9 (the large error
is due to the difficulty in analyzing the overlapping
bands). We see that as the stress increases, the
lowest-energy sideband I remains present in both
polarizations and increases in energy with increas-

32470

32460

E 32450
O

C
ILj

32440

32430

I I I

I. I.5 2

(IOO] Stress ( kbar)

2.5

FIG. 9. Plot of the [100] stress response of the T«(II)
composite spin-wave sideband. The error bars indicate
the increase in difficulty in curve resolution of the over-
lapping bands. The curves are least-square fit to error
weighted points.

ing stress at a rate of 8. 7 +1.2 cm ~/kbar. Band
II becomes completely a' polarized and first in-
creases in energy by about 13 cm ' at & kbar, due
to the reorientation of spins toward the direction
of stress. As the stress increases, this band then
moves downward with a slope of —7 +1.5 cm '/kbar
and, at a stress of about 1.5 kbar, substantially
overlaps band I, which has been moving upward in
energy. These bands can, however, be resolved
since I also appears in w polarization and can there-
fore be approximately subtracted; but this proce-
dure leads to a somewhat inaccurate value for the
stress response. The 29-cm ~ shoulder III is seen
to shift downward by several wave numbers and to
become w polarized as the stress approaches 2

kbar. It then shifts upward with a slope of 6.2
+1.2 cm '/kbar. Thus two levels are moving up-
ward in energy in a somewhat less than parallel
manner with an average slope of 7.4 +1.2 cm '/
kbar; one is moving downward with a —7 +1.5
cm '/kbar slope. These results give a hydrostatic
shift upward in energy by 2. 7 + 1.3 cm '/kbar and
a tetragonal splitting of —14.2+2. 7 cm '/kbar, the
Z component decreasing in energy.

Figure 10 shows the effects of increasing trigonal
stress on the composite sideband. The results are
summarized by the plot in Fig. 11. We find two
o-polarizec components moving upward in energy
with increasing stress with an average slope of
3.9 +1.5 cm '/kbar and a w-polarized sideband
which is almost unaffected by the [111]stress
(SE/SS =+0.25 +1 cm '/kbar). These give a hydro-
static shift upward by 2. 7+0.9 cm ~/kbar and give
a trigonal splitting of —3.6+1.5 cm '/kbar, the z
component moving downward.
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O
Illustrated in Fig. 12 is the axial spectrum in a

magnetic field applied in the [100]direction (the
same spectrum is observed in the [111]direction}.
There is a gradual shifting of the sidebands in
fields up to about 8 kG, with no dependence of en-
ergy on field above this value. This maximum
splitting is represented by the 15-ko plot, on which
II has moved up to 15.5 cm ' and now blurs out the
29-cm ' shoulder. The shoulder does not, how-
ever, seem affected much by field at the lower
fields where it is still resolvable.

We conclude this section by summarizing the
spin-reorientation effects. The [111]spin-orienta-
tion data were obtained from the unperturbed sys-
tem, ' the [011]orientation data from the spectrum
in a [100]magnetic field which flops the spine into
[011]directions perpendicular to the applied field;
and the [100] spin-orientation data from the stress
response data of Fig. 9 extrapolated to zero. The
spectral effects are illustrated by the low-stress
spectra of Figs. 8 and 10, and are collected in
Table VIII. We find that the energy of the second
level increases while that of the third sideband de-
creases upon changing the orientations of the spins
from [111]to [110]to [100].

I I

0 25 50 0 25 50

ENERGY (cm )

FIG. 10. Microdensitometer tracing of the effects of
a [111]stress on the composite sideband of T&~(II). Head
ordinate from top of peaks.
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32440

I

.5
I I

l 0 l.5
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I I

2.0 2.5

FIG. 11. Plot of fill] stress response of the T&(II)
composite spin-wave sideband.

0
(= 32433)

E nergy (cm-~ )

25 50

FIG. 12. Microdensitometer tracingof the effects of a
t111] axial magnetic field on the composite spin-wave
sideband of Tfg(II).
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TABLE VIII. Multiplet spacings in cm for different
spin directions for T~~QI).

III 29Experimental
values

Spin direction
[110]

29
15.4

0

[100)

22
31

0

Calculated~
values

III 29. 4 29. 2
II 13.8 15.1
I 0 0

28. 7
17.8

0

~Using Rz R& =e ' and the E —GQC) terms correspond-
2

ing to X=0.565.

B. Energy calcuhtions (including Jahn-Teller effects)

Using the spin-orbit-plus-exchange part of
Hamiltonian (3.1), with the parameters given in
Table III and with the exchange field in the [111]
direction, we calculate the spacing of the lowest
three substates (those which we expect to have the
most intense spin-wave sidebands based on their
predominantly M, = —

& character} to be 29 and 65
cm ' above the first. This separation is consider-
ably larger than that which was observed (Fig. 6).
Due to the spin-orbit mixing, our calculation also
predicts a spread of M, = —

& character over the
exchange levels of higher energy which have pre-
dominantly M, = —2 character. Sizable distribution
of intensity corresponding to this calculation is not
observed. Both the lower observed splitting and
the concentration of intensity in the lowest-three
spin-wave sidebands show that the spin-orbit cou-
pling has been reduced.

We therefore want to explain the observed split-
tings and the response to stress through the inclu-
sion of Jahn-Teller distortions, and here we outline
our procedure. We first attempt to explain the re-
sults using an E~ distortion only. The E~ Jahn-
Teller energy calculated from the experimental
[100] stress response turns out, however, to be
less than half of that calculated from the spin-orbit
quenching. This discrepancy indicates that the
[100) stress response has also been quenched and
therefore we include a T„distortion (the presence
of which has been indicated by the lattice modes
contributing to the phonon sideband (Sec. V E).
This result is in agreement with the crystal field
calculations discussed in Sec. X, and Table XII,
which predict the trigonal splitting to be largest
for T~(II). Values for both the Tz~ and E~ Jahn-
Teller reduction factors are then found which re-
produce the spin-orbit splitting and the observed
stress reponses.

Since both kinds of distortion are probably pres-
ent, we will analyze the experimental data with the
following formulas for the reduction factors R, and
static coupling constants V':

R~(expt} = Rz~R~~,

Vs(expt) =RrVs,

Vr(expt) =RsVr.

(6. 1)

(6.2)

(6. 3)

These formulas imply that the E and T2 quenching
effects can be treated as independent of each other,
as is the case when both reduction factors are not
much less than one. "

We begin by assuming that R~=1. Figure 13
shows the Ham E~-quenching calculation for the
lowest three levels with the exchange field in the
[111]direction. The observed spacings of 13 and
29 cm ' are fitted well by Es/R(as = 0. 72. This
gives R (expt) =e 'OB=O. 33. For these values the
spin-orbit mixing of the exchange levels is very
small, and the observed retention of intensity in
the lowest-three levels is explained. Using the
cluster frequency ~~ of Sec. IV gives E~ = 200 cm .

We can now use the tetragonal stress response
as in Ref. 2 to obtain another value of E~ through
Eqs. (3.9), (3. 10), (3.5b), and the cluster force
constant of Sec. IV. The response to [100] stress
is —14.2+2. 7 cm '/kbar, Fig. 9, leading to E~
=117cm"'. The disagreement with the value of 200
cm ' shows that R~& 1. The unquenched value of
the splitting would be 19 cm ~/kbar, much larger
than the observed splitting.

Since both R~ and R~ are less than 1, we need
the trigonal stress data so as to bring in Eq. (6. 3)
and to be able to solve for both reduction factors.
The [ill] stress splitting of —3.6 cm ~/kbar must
reflect a value of RE less than 1, according to Eq.
(6 3)

The manipulation of the data is done with the fol-
lowing definitions of the reduction factors:

—3E i~ ET o 9+2'—R@
—-exp, Rr =f( , Ap~ = exp —4g (Og

where ups and &or are th'e cluster frequencies and f
is a function graphed by Caner and Englman: and
with the relations Es- V~~/2K', Er 2Vr/3Kr. -
From Eqs. (3.9) and Table IV we obtain the V'
from the stress data:

—14.7 cm '/kbar= 2 Vs&&1. 17&&10 &&Rr,

—3.6 cm '/kbar=V'r&&3&&10 &&Rs

and from Eq. (3.10) we obtain the V's in terms of
the data and the reduction factors. Then we can ob-
tain E~ and E~ as functions of the reduction factors
and the K's. The'K~ is given in Sec. VG, and is
a partly theoretical value based on the rigid ion
model. The K~ is experimental, and is discussed
in Sec. IV, but is consistent with the rigid-ion
model. Finally, we must find the E and R values
consistent with the definitions of the R given above.

The values obtained are E~ = 143 cd ', E&= 21.6
R~ = 0.47, R ~ = 0.70. So far we have only used Eqs.
(6.2) and (6.3). Now we note that the value of Rs R'r'
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FIG. 13. Ham effect spin-orbit-plus-exchange calcu-
lation of the spacings of the lowest three sublevels of
Tq~(II) with the spins in the [111]directions. Error bars

indicate the experimentally observed spacings and cor-
respond to a value of E&/Suez = 0.72.

from these equations equals 0.33, which is inagree-
ment with the value of R (expt), and therefore Eq.
(6. 1) is also satisfied. Thus, we have obtained a
pair of Jahn-Teller energies consistent with all
the data.

Let us summarize the evidence for the presence
of the T~~ Jahn-Teller distortion. First there is
the reduction of the tetragonal stress splitting.
Second, the large trigonal splitting in the presence
of this E~ spin-orbit reduction factor means that
there is a large Ta~ force [Eq. (3.10)]. Third,
there is the presence of phonon modes which can
only be excited by T2~ cluster distortions. Fourth,
crystal-field theory predicted the largest T2~ stress
response of any state (see Sec. X, Table XII).

C. Verification of the multiplet assignments

The final calculation of the multiplet energies and

intensities, using the reduction factors just found,
give the positions of the first three sidebands cor-
rectly, and give the third sideband 5/o less intensity
than the first two. All of the missing intensity goes
to the sidebands of the next exchange triplet near
100 cm '. In fact, the third sideband is about 20%
weaker than the first two, in approximate agree-
ment with the calculations. This intensity should

appear in the 100-cm ' region, but the broad band
at 102 cm ~ seems far too strong to be due to the
higher sidebands, and we must retain its original
assignment as the T~, mode. This conclusion is in
further support of our entire analysis of the T,~(II)
band.

So far we have only used the multiplet pattern
when the exchange field is oriented along [111].
The spin reorientation effects in this state are
somewhat unusual and had to be investigated to
show that the analysis in Sec. VIB was correct.
In the crystal-field energy region near Dq = 780
cm ', a E state (I',) lies very close to 'T, (II), and

perturbs its two I'8 sublevels. " Thus the spin-
orbit splitting is very sensitive to the values of B,
C, Dq, and (3~. A second complication is that the
in-state second-order vibronic terms can be large
for the small values of E» in this case. These
arise from the interaction of X„band —&L S.
Ham ' gives a closed form for the E~ vibronic in-
teraction, but not for the T2~ interaction, and the
only thing we know about the latter is that it has
octahedral symmetry. Thus there are three terms
contributing to the coefficient of L,S„+L',S, +L/,
the two in-state vibronic terms and the second-
order out-of-state spin-orbit term.

Using only the p value of Table III (for Dq = 800
cm, because we could not interpolate for Dq = 780
cm ' (in Ref. 15), and the combined reduction factor
of 0. 33 of Sec. VIB, we get the multiplet splittings
for different spin directions shown in Table VIII.
The calculation for the [100] direction does not
agree well with the experimental multiplet spacing.
To take account of the contributions from the other
factors which cannot be obtained a Priori, we in-
creased p from —2. 1 to —8. 1. With the new p
value, the calculation reproduces the multiplet
spacings within experimental error. This result
shows that the reduction factor obtained earlier
for the [111]spin direction is practically unaffected
by the increase of p. The calculated splittings for
the [111]spin direction are I-II= 12.4 and I-III
=30.2 cm ', and so are practically unaffected by
the use of the new p value. For the [100]direction
in particular, the calculations using the new p
value agree with the experimental values of Table
VIII.

D. Distortions and Franck-Condon factors

Using V~ = —0.88x10 dyn, which corresponds
to the unquenched tetragonal splitting of —19 cm ~/

kbar, we calculate the displacement in the Q~ mode
to be —0.095 A, a contraction along the z axis,
and an expansion by half as much along the x and y
axes. The A~ force is similarly found to be 0. 70
x 10 ' dyn. The corresponding displacement in the
Q~ mode is 0. 039 A (using k+„=400cm ), an axial
expansion outward. This corresponds to the energy
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E„=70 cm '. From these forces and Eq. (5.4d) we
find the Franck-Condon factor of the LO, lattice
mode to be 0. 25. The composite spin-wave side-
band reduced in intensity by this factor is included
in Fig. 6 at 470 cm . Since a significant portion
of V„+Vz is due to the E~ mode, this is probably
an overestimate as discussed in Sec. V.

The —6.0-cm '/kbar unquenched trigonal splitting
gives a T~~ force of V~= -0.122X10 dyn. Although
this force is small, the T,~ force constant (2 X 104

dyn/cm) is significantly less than for the A& or E
modes, so we obtain T,~ distortions of 0.04 A (Q&,

Q„,Q~) from Eq. (3.6a). We do not attempt to cal-
culate contributions to G'(ra) from individual lattice
modes because 100-170 cm ~ is a very complex
region of the phonon spectrum and the T~~ cluster
mode projects onto many crystal modes of different
energy. However, since this energy distribution
is not large, we can approximate the overall inten-
sity contribution in this region by the cluster T~,
Franck-Condon factor Sr Er/h--mr= 0. 19. We find
the over-all intensity to be between 0.4IO 0 and

0. 7IO 0 depending on how the regions are divided,
which is in reasonable agreement with the appear-
ance of the spectrum shown in Fig. 6.

VII. 4T~f(II)

A. Experimental observations

A medium resolution spectrum of the A,~- Tzgil) transition at 2'K is shown in Fig. 14, and
a higher resolution tracing of the first 100 cm ' in
Fig. 15. Figure 15 shows one sharp, weak mag-
netic dipole line at 27877. 3 cm, with a charac-
teristically shaped spin-wave sideband (I) having a

sharp cutoff at 69.3 cm ~ above the -magnetic-dipole
line built onto it. Another probable spin-wave
sideband (II) with a, more symmetrical shape and a
peak 28. 2 cm ' above the cutoff of the first is also
shown in Fig. 15. The polarized [100]and [111]
stress response of the complete transition is shown
in Fig. 16 (the structure is calibrated in Fig. 17).
This response clearly confirms II as a new electric
dipole origin, because while the lowest sideband
appears in both polarizations, II is only o polarized
and has shifted upwards by about 20 cm '. The po-
larized-stress data also reveals a third sideband
(III) at 102 cm ~ appearing only in v polarization
with a large downward shift of about 40 cm under
[100] stress. The shift and polarization of III allow
it to be separated from the other two prominent
peaks in the 80-to-125-cm ~ region. The 87- and
122-cm ~ peaks (Ia and II a) then remain. They
show the same behavior as the first two origins
under stress and are thus the totally symmetric LA
(90 cm ~ at zone edge) built upon the two spin-wave
sideband origins.

It is hard to interpret all the stress effects that
occur in the region of the bands overlapping between
150 and 250 cm . However, the most intense
peak, IV, which lies at 248 cm ~, is unchanged in
energy but under both directions of stress appears
strongly only in the m polarization. It cannot be
caused by totally symmetric vibrations built onto
any of the aforementioned three origins since it
does not show the same polarization and energy
shift as any of these three. It has the same polar-
izations under stress as III but does not undergo
the large shift to lower energy which this third
origin exhibits. Also the fact that it is a dominant
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FIG. 14. Absorption
spectrum of the T&~(II)
transition. The bars at
the bottom indicate the cal-
culated energies and rela-
tive intensities of the spin-
wave sidebands for each
of the twelve sublevels
(only five have intensity)
without the inclusion of a
Jahn- Teller effect. The
dotted band reproduces
spin-wave sidebands I, II,
and III, increased in energy
by approximately 470 cm
and decreased in intensity
by a factor of 0.2.
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the same energies as the peaks found for the 'T, (I)
state. The only remaining differences between the
spectra can be attributed to the bands built on the

second origin of T2~(II). This is further evidence
that T, cluster contributions are not strong, and
that our vibrational analyses shown in Figs. 2 and
17 are correct even in the cases where several
spin-wave sideband origins are present.

The effect of tetragonal stress on the first three
spin-wave sidebands of T2~(II) is shown in Fig. 18
and plotted in Fig. 19. The lowest level increases
in energy by 0. 2 cm '/kbar, and the 28. 2-cm I

level shifts during spin reorientation and then de-
creases by 7. 5 cm I/kbar. The sideband at 102
cm undergoes a large spin-reorientation shift to
lower energy so that it is now overlapped by the
vibrations. The energy then decreases with in-
creasing stress by about 4 cm '/kbar

The three spin-wave-sideband origins also show
three different responses to trigonal stress. These
effects are illustrated in Fig. 20 and plotted in
Fig. 21. The observed slopes are —3. 8 cm '/kbar
(for origin I), — 1.3 cm /kbar (for origin II), and
—3 cm '/kbar (for origin III).

The axial spectrum in a magnetic field along the
I100] or rill] direction is illustrated in Fig. 22
and the results are tabulated in the [110]spin-di-
rection column of Table IX.

The spin-reorientation effects are collected in
Table IX along with calculations of their magnitude
to be discussed later. The stress response values
are collected in Table XI along with other data, and
a comparison of all the T states shown there will
be discussed later.

The 'T2~(II) transition is the only one for which
we find very different stress response among the
first three origins (+0.2, —7. 5, and —4. 0 cm /
kbar). For 4T«(I) and T«(II) two levels had very
similar slopes on the stress response diagrams.
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FIG. 18. Microdensitometer tracings of the effects of
a [100] stress on the first 120-cm region of the T2~(II)
transition.
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FIG. 19. Plot of the [100] stress response of the first
three spin-wave sidebands of T2~(II).
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TABLE IX. Multiplet spacings in cm ' for different
spin directions for &2~(D).

gxperimen. tal
values

III
II
I

102
28. 2b

0

Spin direction
[110]

90~
34. 6b

0

[100)

-70
55b

0

C alculated'
values

III 109 106 96.5
II 38. 5 42 65. 5
I 0 0 0

Overlap with the vibrational sidebands makes accurate
energy determination difficult.

"Measured from peak; zone edge should be 10+ 3 cm '

higher in energy.
'Calculated using one E~ quantum in Eqs. (7.1)-(7.3)

with p=-6. 5 cm, v=0. 0, H,~=1100 kG, Ez=40 cm

Increasing the exchange field from 890 to 1100
kG has practically no effect on the spin reorienta-
tion response, although it increases the separation
of the levels. We must therefore investigate the
possibility that there is a small Jahn-Teller effect.

As mentioned earlier, the first three sidebands
of Tzgil) have different stress response, while for
'T„(I)and 'T~(II), two levels have the same re-
sponse, and the other has minus twice this re-
sponse. The latter behavior reflects the equiv-
alence of the I x) and ly) partners with respect to a
distortion along the z axis and it results from the
reduction of the (x ILrl z) angular momentum matrix
elements by the Jahn-Teller effect, and the I'x),

I'y), and I'z) designation of the substates becomes
appropriate.

For the 4Tzgll) state, however, there is large
spin-orbit mixing of the tx), ly), and I z) partners.
Since the lowest level contains only Ix+iy) inde-
pendent of the magnitude of the Jahn-Teller effect,
we can substitute the experimental value of the
stress response for this level 0. 2 cm '/kbar for
[100] stress to obtain the matrix element for the
Ix) (or ly)) stress response, . This matrix element
can then be used in conjunction with the observed
stress response and wave function of the higher
levels to extract the I'z) stress response (for, say,
the [100] spin direction). This quantity (zlH(100)l z)
should be the same in any level if we have the cor-
rect wave functions for each level. We find, how-
ever, that for level II, (zlH(100) I z) = —12. 5 and
for III it is —6. 7 cm ~/kbar. Therefore, the wave
functions must not be strictly correct. Variation
of the exchange field does not improve matters so
we have another reason to consider a nonzero Jahn-
Teller effect.

2. Inclusion of the Jahn-Teller effect

Although the theoretical explanation of the spec-
trum is fairly good, several discrepancies noted in

Sec. VII B 1 suggest that the inclusion of vibronic
effects should be investigated.

The results of a Ham-type calculation for an E~
Jahn-Teller distortion with H„=890 kG in the [111]
direction are shown in Fig. 23. In this calculation,
second-order vibronic terms are found to be im-
portant and so it may be necessary to include high-
er-order corrections for more accuracy. There-
fore, a more complete calculation was done whose
results are also shown in the low-energy region of
Fig. 23.

In this calculation we have attempted to solve the
electronic and vibronic Hamiltonians simultaneous-
ly. Due to the complexity of the spin-orbit-plus-
exchange wave functions, however, we only include
one E~ vibrational quantum explicitly in a 72~ 72
spin-orbit-plus-exchange matrix [formulated in
terms of a real orbital basis (i, j= $, '6, l)]. Ham

et al. found three quanta to give fairly good con-
vergence up to E~ = 0.6 Sar~. It is a reasonable ex-
pectation for our case that one quantum will repro-
duce the dominant effects.

The Jahn-Teller distortion was therefore ex-
pressed by including a vibrational overlap integral
between displaced doubly degenerate (m„n,) har-

100—

90

80

70

60

50

40

30

20

10

0 .33 .66 I 1.33 1.66 2 2.33 2.66

E~ /%~E

FIG. 23. [111)Ham effect diagram for 4Tz (II) using
H~=890 kG. The dotted lines at low energies give the
results of a calculation which explicitly includes one
quantum of a 328-cm vibration. The arrows on the or-
dinate give the observed energy spacings.
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monic-oscillator wave functions belonging to dif-
ferent electronic partners i, j. The terms of
Hamiltonian (3. 1) which were included are

&i, M„m„n,lX '„~
l j, M,', mz, n&)

= I&us(m+ n)5(ij)5(mm'}5(nn')5(M, M,'), (7. 1)

&i, M„m„n,lX~ lg, M,', m&, n&&

=&i M. IX Ij M'&&m~ 1m'&&n» ln~&, (7 2)

and

&i, M„m;,n~ IXaxl j, M,', m'„n~&

= (M, lX„lM,')5(ij}5(mm')5(nn'), (7.3)

with X'„»(=X„~if V„=Vs = Vr=O and r=8, e) being
the undistorted nuclear Hamiltonian for an E~ vi-
brational mode. The overlap integrals appearing
in Eq. (7. 2) have previously been calculated by
Sturge and Guggenheim.

The results of the calculations show that the 38-
cm ' interval is fitted by E~=0, but that no value
of EE will fit the 102-cm ' interval. Therefore,
we increased the exchange field to 1100 kG and re-

I IO

IOO— III

90— 0

E~ 60~

~~ 50-
0

40

LLJ

30-
Ca Ic. Exp.

II I I]——[IIO] e—-- IIOO] HIO—

20-

I

50
EE (cm ')

I

IOO

I

150

FIG. 24. Results of using Hex=1100 kG and including
one vibrational quantum explicitly in the Jahn- Teller cal-
culation for 4T2~(H) for three directions of H~. The points
show the intervals between the three sidebands for the
three orientations of H, , and are plotted at the value of
E& (using Iiv@=328 cm ), which best fits the calculation.

peated the more elaborate calculation for three
spin directions. The results are shown in Fig. 24.
The most significant result is that the spin-reori-
entation energies are increased by including a
small Jahn-Teller effect. A value of E~ =40 cm
gives the best fit to the spin-reorientation changes
of the first interval. The calculated spin-reori-
entation effect for the interval I-III also increases
with E~, but not by nearly enough. We will return
to this problem later.

The physical reason for the Jahn-Teller enhance-
ment of the spin-reorientation effect can be seen
in the second-order in-state vibronic terms in
Ham's equation (2.24) of Ref. 11. For small Jahn-
Teller energies and large spin-orbit parameters,
the term Kz(L,Sz+ L,S, +L~P,) becomes important,
and since it does not commute with H„,it gives
rise to spin anisotropy.

The small Jahn-Teller distortion has very little
effect on the intensities, but lowers the upper levels
(at 288 and 316 cm ~ for H,„=890 kG referred to in
Sec. VII B 1) to 245 and 255 cm '. These agree
more closely with band IV at 248 cm

We now show how the inclusion of a small Jahn-
Teller effect can resolve the problem described in
Sec. VII B 1 of the different values of (z I H(100) I'z&

in the three lowest sublevels. We use the facts
that &xl'H(100) I x& =&y tH(100) 1 y& = 0.2 cm '/kbar and
that the wave functions of the three states are a
function of Ez. The change of &zlH(100) tz) with Ez
is shown for levels II and III in Fig. 25. The
curves cross at EE =165 cm '. Thus, we find a
value (z tH(100) I z) = —9. 8 cm ~/kbar, which is the
same in levels II and III.

The value of E~ = 165 cm ' just obtained is four
times the value obtained from the spin reorienta-
tion, but the difference between the two calculations
is that the wave function of level III must be used
here, and not in the first calculation. In the first
calculation the spin-reorientation shift of level III
could not be accounted for. Both calculations show
that we do not know the wave function of level III,
and that variations of the exchange field and Jahn-
Teller energy have not helped enough. A possible
explanation for the difficulty'is that level III over-
laps the first phonon sideband of levels I and II (see
Fig. 2) and therefore may be vibronically coupled
to those levels. As shown in Sec. V and Table VII,
the LA(X) phonons have E character at the Mn
site. Levels I and III are of the proper symmetry
to be coupled by a cluster vibration of EE type.
Therefore we cannot expect a Jahn-Teller calcula-
tion based on a single cluster mode at 328 cm ~ to
do justice to level III, since this level sees the
distinct phonon nature of the lattice. Sturge has
considered a similar case. " For the above reasons
we feel that the value of 40 cm ~ for E~ is more
realistic, as further investigation will show.
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FIG. 25. (Z ) partner stress response calculated from
the wavefunctions modified by the Jahn- Teller effect of
sublevels II and III. A consistent value of -9.8 cm '

kbar is obtained with Ez=165 cm

3. Jahn-Teller energy from the stress data

In Sec. VII B 1 we showed how to find the matrix
elements of the stress response from the experi-
mental stress response, and in part 2 we showed
that a Jahn-Teller energy had to be present in order
to obtain a consistent value of (z I H(100) I z) for
levels II and III. The tetragonal splitting,
(z I H(100) I z) —(zl'H(100) I z), was found to be —10
cm '/kbar.

This value corresponds to a force [using Eqs.
(3.9), (3.10) and (3.5)] V = —0.46x10 4 dyn, a
displacement Q, = —0.05 E and an E~ Jahn-Teller
energy of 58 cm, in fair agreement with the
value obtained from the one-quantum calculation,
Fig. 24.

The average, or hydrostatic shift of the bands is
—3.8 cm )/kbar. This value corresponds [using
Eqs. (3.9), (3. 10), and (3.4)] to V„=—0.89X10'
dyn, Q, = —0. 05 A, and E„=110 cm '. Then using
Eq. (4. 4b), these values of V„and Vz can be com-
bined to give SL =0.2. Sidebands I, II, and III re-
duced by this factor are plotted in the 470-cm ' re-
gion of Fig. 15. Their magnitude is in good agree-
ment with the appearance of the spectrum in this
region.

A value of the hydrostatic shift can also be ob-
tained by averaging the I z), I'y), and I z) tetragonal
stress matrix elements derived in Sec. VII B2.
This treatment of the experimental data gives near-
ly the same value as above, —3.3 cm )/kbar.

Treated in a similar fashion, the trigonal-stress
data, Fig. 22, give a hydrostatic shift of —2. 7
cm '/kbar and a trigonal splitting of 3. 3 cm '/kbar,
the Z partner going up in energy. This is close to
the magnitude we found experimentally for 4T,/II).
However, the trigonal splitting of 4T,~(II}had been

Cb)

~ ~ ~ ~
~ ~ ~

I~ ~

O
~e

(a)
5-

~ ~

~ ~ ~

~50 3eO ) 360 '

~ ~

~ ~ ~ ~ ~
~ ~ ~ ~ ~ ~

E

Cl

0 430 ' BIO ' 390 ' -390
22200

Energy (cm-) )

FIG. 26. (a) Absorption spectrum of the Tfg(I) transi-
tion. (b) A curve synthesized from a normalized sum of
three T&~(1) curves (Fig. 5) separated as calculated using
E&/Sfd = 0. 5. Approximate peak separations for both
curves are indicated.

quenched by a sizable E~ Jahn-Teller effect. The
small Ez = 58 cm ' found for 'Tz, (II) produces only

a small quenching of the [111]stress response.
Using only the first-order quenching factor
exp(- & @)= 0.74, we obtain an unquenched trigonal
splitting of about 4. 5 cm /kbar. This value corre-
sponds to a T~~ Jahn-Teller energy of 8. 3 cm ~

which is too small to have a noticeable effect on the
spectrum.

To summarize, for this transition only we have
found evidence for a significant spin-orbit interac-
tion. This evidence includes the large separation
of unperturbed origins, the large intensity differ-
ences among these origins and their very different
stress responses. We did, however, need to in-
clude some Jahn-Teller effect in order quantita-
tively to fit the origins and their stress responses,
and to increase the calculated spin reorientation
effects to agree with the observed large shifts.
Since the results are in a region of a larger spin-
orbit interaction and smaller Jahn-Teller effect,
diagonalization of the complete electronic plus
vibronic Hamiltonian is necessary for an accurate
treatment. This still fails for the electronic level
contained in the vibrational region, since the clus-
ter-mode approximation is no longer valid for this
level.

VIII. 4 Tag(I)

The spectrum of the 4T2$I) transition is presented
in Fig. 26(a). The only structure observable even
under high resolution is a broad nonharmonic pro-
gression with intervals between maxima of about

430, 410, and 390 cm '. The lack of sharp struc-
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TABLE X. Calculated spin-orbit-plus-exchange split-
tings for T2~6).

Energy
(cm ') Intensity

EE/KuE
0. 33

Energy
(cm ') Intensity

Energy
(cm ')

l. 0

' Intensity

III 110.6 1 66.3 1

II 47. 1 0. 89 33.3 0. 94
I 0 0. 91 0 0.95

23. 4
12. 7

0

ture precludes the approaches used in the studies
of the other transitions. We can, however, use
the insights which we have obtained from the studies
of the other states to get a general idea of what
must be occurring in this transition. We should
thus be able to account for the lack of sharp struc-
ture, the overall band shape of Fig. 26(a), and the
less than 470-cm ~ intervals of the prominent vi-
bration.

The logical conditions which would both eliminate
the sharp structure and account for the over-all
line shape are to have several electric-dipole ori-
gins, spaced fairly far apart as in 4T,/II) (Fig. 17),
each having a phonon sideband with a large Franck-
Condon factor built onto it, as in Fig. 5 for T~(I).

The combination of distortions which can produce
these conditions is a fairly small E~ (and Tz~) dis-
tortion, which causes only a small quenching of the
spin-orbit splitting, and a large A. & distortion the
major factor in producing the large phonon side-
band.

Table X gives the calculated spin-orbit-plus-
exchange energies of the sublevels having spin-
wave intensity for different values of the Jahn-
Teller quenching. The E~ = 0 value shows these
lowest three levels to have an over-all separation
of 110 cm ' without a Jahn-Teller quenching, about
twice the 58-cm ' calculated for 'T,QI). Even
though these multiplet levels have almost the same
spin-orbit parameter, the change in sign of & for
T~JI) is significant (see Table III). Changing the

sign inverts the first-order spin-orbit splitting in
Fig. 1, leaving the sixfold degenerate level (which
contains one pure M, = ——, sublevel) highest in en-
ergy. When coupled with the exchange field, this
leads to the large energy splitting. Table X also
shows that the spin-orbit splitting of the M, = —

&

multiplet is sizable for Jahn-Teller energies of
Es/kurs —1.0 and below. The range of Es/ku&s
= 0. 2-0. 8 would produce the magnitude of splitting
needed to give overlap of the sidebands without al-
lowing them to converge into one origin, as hap-
pened in 'T,~(I). Using an intermediate value of
E&/&vs =0. 5, we obtain Vs = —7. 2X10 ' dyn and

0

Qz = —0.079 A. The inward direction of distortion
along the z axis would be obtained from the crystal-
field stress expression in Table XQ for any rea-

sonable values of the second- and fourth-power
terms.

We have also included in Fig. 26(b) a band shape
which has been derived from a superposition of
three complete T,~(I) transitions. Each transition
originates from single sideband origins which are
now separated by the energies calculated on the
basis of a 164-cm ' E~ Jahn-Teller quenching en-
ergy.

It is reasonable to use a superposition of 4T~(I)
band shapes in the present case because in each
case, the A.« force is dominant. The separation
of the sidebands is comparable to their width so
that only a single broad origin is observed. The
superposition also accounts for the effective de-
crease in vibrational spacings. (The derived curve
gives 450, 380, and 360 cm '. ) The small differ-
ences between the calculated and experimental
curves could have been removed had we varied the
parameters.

Using SLo, =1.3, the T«(I) Franck-Condon fac-
tor, the approximate V~= —8. 9&10 dyn and the
fact that the A«distortion direction is necessarily
inward (from the stress expression in Table XII)
we calculate, from Eq. (5.4b), V„=—2. 4&&10 4

dyn/cm, Q„=—0. 134 A, and E„=815 cm '.
IX. COMPARISON OF THE JAHN-TELLER EFFECTS IN THE

FOUR T STATES

Table XI summarizes the properties we have
found for the four T states. The Jahn-Teller en-
ergy E~ and the energy of the symmetric displace-
ment Ez change by an order of magnitude within
this group of states as shown in columns 5 and 10
of Table XI. Similarly, the displacements which
are illustrated in Fig. 27 and recorded in columns
4, 9, and 16 differ greatly from one state to an-
other.

One obvious spectral consequence of the Jahn-
Teller effect is the decrease of the spin-orbit mul-
tiplet width with increasing E~. By comparing the
spectra of the states in the order shown in Table
XI [omitting 'T2~(I)], we have found that the splitting
increases from 6 to 29 to 102 cm ' for the lowest
exchange triplet, while E~ goes from 458 to 143 to
58. Associated with this change is an increase in
the spread of spin-wave sideband intensity over
higher multiplet components. In T,(I) only the low-
est three sidebands are observable, and all have
the same intensity; in T,(II) the third sideband is
weakened but higher ones cannot be seen, and in
Tz(II) the first three have different intensities and
higher ones are fairly strong.

The change of energy vs stress in the lowest ex-
change triplet shows two equal slopes and one dif-
ferent one for T,(I) having large Es, three very
different slopes for 4T2(II) having the smallest Es,
and two with similar but unequal slopes, and one
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very different for ~T,(II}with intermediate Es.
Also, the magnitude of the stress response in-
creases with the Jahn-Teller energy.

The spin-reorientation effects are largest when
the Jahn-Teller effects are small but not zero.
When E~ is large, only out-of-state second-order
spin-orbit terms are left to produce a small resid-
ual spin reorientation effect, as seen in ~T,(I}.
With zero E», there would again be only these
small reorientation energies, as is found for the
'A, 4E states, as mentioned in Ref. 2.

Finally, the phonon sideband was found useful in
signalling the presence of the T~~ type of Jahn-
Teller effect, but for the Et type it was not as use-
ful because of the difficulty of separating A&- and
E~-type contributions.

The directions of the distortions shown in Fig.
27 were obtained entirely from the sense of the
stress effects. We now show that these directions
can be explained qualitatively by using the wave

functions given in Table I and the configurational
coefficients in Table II. First, the change in aver-
age bond length, caused by the hydrostatic shifts,
is determined by z -y of Table II, since this
quantity tells whether the amount of antibonding e
orbital has increased or decreased upon electronic
excitation. Thus the signs of n -y in Table II
are opposite from those of Q„in Table XI. Second,
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FIG. 27. Geometries of the orbital triplet excited
states of Mn" in RbMnF3. The numbers give the magni-
tudes of the distortions in A in the directions indicated
by the arrows.
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V'=+V =Q 6) fq(r, R(,}gq(8~),
b b

(10.1)

where b sums over the nearest-neighbor bonds, f
depends only on bond length R(, and electron radius
vector r, and g,(8,) is a function only of the angle
eb made by the radius vector of the electron with
the bonds b. The index 1 results from the expan-
sion in spherical harmonics. The strain potentials
are

BQ„(, BX))
' (10.2)

where the C~ describe the relative displacements
of the ligands in normal coordinate Q„[fromEq.
(2.2)] and the X~ are the displacements in Q, .

Now we make further assumptions by introducing
the point charge model for V» and obtain formulas
such as

I'3e
=i —f (2z' —x'-y')

+——6 (* ~ Sd'6 ——,))(S,—S, )S. (10.6)

A matrix element of this potential can be written

(10.4)
where the first factor depends on the 3d wave func-
tions, the second on the type of strain, the third on
the details of the point charge model and the fourth
on the type of stress. The third factor is the one
most difficult to evaluate a priori and it must be
obtained from experiment. In Refs. 1 and 2, we
used

the sign of the tetragonal distortion is determined
by whether the occupation of a or of 8 is increased
by the transition. For 4T,(I), the transition is
principally E- f, which increases the antibonding
effect in the f direction resulting in Q~ &0. For
Tz(II), since n &y, 8- t; predominates and the

oPPosite change in Qe results. For 'T, (II), yz & az

and f - e predominates and again Q~& 0. All of
these results agree with those of Table XI.

X. APPLICABILITY OF THE CRYSTAL-FIELD MODEL

Since we have a cubic, highly ionic system con-
taining 3d electrons, we should investigate the ap-
plicability of the crystal field model to our data,
and then see if it can be used to make predictions
about the Jahn-Teller effect in other systems. To
do this, we first define the static coupling constants
V„'in terms of the model.

We depend on only two properties of the crystal-
field model: the independence of the bonds (addi-
tivity) and the separability of radial and angular
factors. Thus the form of the crystal-field poten-
tial is

e(r )/R'=6Dq, (10.5)

where u= 5e (r4)/Rs and v =3e (r )/R'.
By the use of Eqs. (3.9), Eqs. (10.6) can be

used to give the various types of stress response
and these are shown in Table XII, where they are
expressed in terms of the parameters u and v. The
values of u and v can then be found by equating the
appropriate expression of Table XII to the experi-
mental stress response in Table XI. The values of
u and v so obtained are collected in Table XI. For
comparison, the value of u obtained from the spec-
troscopic Dq is u(spect) = 30Dq = 23. 4 X 10' cm '.

The u values in columns 6 and 11 of Table XI
are not constant as they should be for a crystal-
field model, and are larger than 23. 4&&10 cm ' as
the point-charge assumption requires. For the T,
states whose stress response depends mostly on u,
the values average about 30x10' cm '.

The great variability of the u values taken from
the hydrostatic shifts (column 6, Table XI) is
probably caused by the fact that the measured shift
is a small change in an excitation energy of (20-30)
&&10 cm, and these energies depend on the elec-
trostatic parameters B and C of the crystal-field
model as well as on u. We assumed that only the
crystal field parameter changed with stress in
writing the formulas (10.6} and Table XII, but this
is not strictly correct.

An experimental correction can be introduced by
using the stress dependence of A~ or 4E(I) at about
25000 cm '. The energies of these states are inde-
pendent of Dq, and their dependence on B and C is
similar to that of most of the states we are dealing

where Dq was obtained by fitting the six lowest
bands of the electronic spectrum. The factor 5,
the exponent of R, is specified by the point-charge
model. The measured stress response should be
proportional to the product of all factors in Eq.
(10.4). If we believe the two major premises of
the crystal-field model, the stress response data
may be used to evaluate the third factor, and the
results may be compared to the value obtained
from Eq. (10.5).

To carry out this program we write the expres-
sions for the static coupling constants V„'of Eq.
(3. 1d} as follows:

V'„(T,and Tz)=10(a -y )+() u,

V,'(T, ) =v(~' r')~4v-,

V' (Tz}= —6(a -y )v+ ~(n -y )~ u,

V r (T~) =$~[( —c( +yz) +(2&2)(c(P+Py)]2v,(10.6)

+~M[(~' r')+(3/-~2)(nP —Pr)l z u,

Vr (Tz)=$&[( —n +y )+(2)(2/v 3)(aP+Py)]2v

+ i4 [((r' r') +(~~-/~~)(c(p+ pr)] 'u, -
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TABLE XII. Crystal-field expressions for stress re-
sponse (I, e in units of 103 cm ).

Hydrostatic shift Tetragonal splitting Trigonal splitting

4T, (I)
4 T, (II)
4T, (I)
4T, (u)

—0. 24u
0. 1GGQ

—0. 134Q
—0. 062Q

0. 912Q
—0. GGQ

0. 074Q —l. 07v
0. 035Q —0. iv

0. 18iu —0. 193v
—0. 2;32u —0. 26:3v

0. 041u —0. 40;3v

0. 095Q+ 0. 13v

with. The hydrostatic shift of A„4Eis about —1.5
cm '/kbar 34 and when this is subtracted from 9. 5

cm '/kbar, the hydrostatic shift of 'T, (I), the value
of u obtained is 34x10 cm ' within error limits of
the value 33.5x10 cm obtained from the tetrago-
nal splitting of 4T,(I). The 4T,(II) state also has al-
most the same B, C dependence as A„and when
—1.5 cm '/kbar is subtracted from 2. 7 cm '/kbar,
a value u = 25 && 10 cm ' is obtained, again in the
same region as the value obtained from the tetrago-
nal stress response. For 'Tz(II) the B, C depen-
dence is somewhat less than for 4A. ~, but the same
correction should be reasonable, and in fact
gives a corrected hydrostatic shift of —2. 3 cm '/
kbar and a value u=37x10' cm '. The u parameter
cannot be obtained from the tetragonal splitting of
T,(II), but the value 37&& 10 cm ' is close to the

corrected values for the other states. The average
of the three corrected u values from hydrostatic
shift is 32&10 cm, while the average of the two
tetragonal values is 31.5&&10 cm '. These num-
bers suggest that within the error bounds of the
stress measurements, a single value of u applies
to all states for either hydrostatic or tetragonal
stress.

The values of v, not usually obtainable in ex-
periments with transition metal ions, are not very
different from the u values. The two values ob-
tained from trigonal splitting are considerably
smaller than the value obtained from tetragonal
splitting, but only the latter comes from a formula
in which the splitting depends almost entirely on v.
The other v values are very sensitive to the u value
chosen.

The crystal-field model does give the correct
signs of the trigonal splitting of the T,(II) and T2(II)
states. In the formulas of Table XII the coefficients
of u and v for the trigonal splitting have the same
sign, and as u and v are necessarily positive, the
sign of the splitting is unambiguously predicted.
These signs could not be predicted by the qualita-
tive arguments at the end of Sec. IX.

From the comparisons of the u and v parameters
we have made, we see that the crystal-field model
is crude, but not badly wrong. It is not good enough
to be used to analyze our data, but could be used to
estimate Jahn-Teller effects in new systems where
measurements have not been made. Our data sug-
gest that a simple and reasonable approximation is
to take

XI. CONCLUSIONS

RbMnF3 is a nearly ideal system for a study in
depth of its properties, as the abundance of re-
search papers on this material indicates. Our re-
search on the Jahn-Teller effect has depended on
these other studies. More than anything else, we
depended on the accurate compliance constants of
Melcher and Bolef." In a pure cubic material the
compliance constants give the actual displacements
of the atoms of interest, enabling us to eliminate
the uncertainty which arises in the case of impurity
systems. All other systems in which the Jahn-
Teller effect in excited states has been studied
were defect or impurity systems. We have there-
fore been able to obtain values of the Jahn-Teller
energy and the associated atomic displacements.

Although the magnetic order could have been a
complication, the low anisotropy and well-studied
spin-reorientation behavior~ became an advantage
when we understood their spectral consequences.
Although we used the ground-state exchange field
for most of the analysis, in the 4T,(II) state there
was evidence that a higher value was more appro-
priate. There is evidence in this state for different
amounts of exciton-magnon binding in different
exciton states, as shown by differences in spin-
wave sideband shapes.

Our knowledge of the distortions in the excited
states has led to fairly complete interpretation of
the spectral structure. We have found that even
small values of E~ have appreciable spectral ef-
fects. Therefore we believe that multiplet inter-
pretations on other systems must include such ef-
fects before they can be considered accurate. We
found the T2 type of Jahn-Teller distortion in a

TABLE XIII. Comparison of' approximate cry~'„al-field
calculations [Eq. (10.7)] to observed stress response (in
cm /kbar).

Ti (I)
4T, (11)
'T, (l)
4T2(11)

l-iydro.
calc

—6. 6
3.92

—3.14
—l. 46

Shift
ohs

—:3.8

Te tra& .
calc

21. :3

—15.1
—13.2

6 2

Spl1 t
obs

—19

—10

1.62

split
obs

e (r 2) /R' = e (r )/R = 6Dq,

where Dq is obtained by fitting spectra in the usual
way. The stress responses using this approxima-
tion are compared with the observed ones in Table
XIII. All the signs are correct, and the magnitudes
are within 50%%uo except for the hydrostatic shifts (but
the corrected shifts agree well). In many cases,
Eq. (10.7) will be an acceptable approximation.
Note that the observed splittings quoted in Table
XIII are the same as those of Table XI, and have
been corrected for Jahn-Teller quenching in sev-
eral cases.
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case where the E type was small, and showed that
it had a significant effect on the phonon sideband.

Our results should be directly apphcable to other
Mn compounds, as well as to other transition metal
compounds. For example, MnF~ might now be
treated accurately with the help of the reduction
factors of RbMnF„and the static distortions could
be studied independently of the dynamic ones. The
semiquantitative description of the Jahn-Teller ef-
fect obtained through the crystal-field model should
be useful for understanding systems where accurate
measurements have not been made.

It would be interesting to have neutron-inelastic-
scattering data for RbMnF3 from which the phonon
frequency distribution and wave functions could be

obtained, and compared to our phonon sideband
data. These results could be used to give accurate
lattice force constants and coupling constants and
finally an effective reduction factor independent of
the cluster approximation.

Note added in Proof. A slight numerical error
in the value of the E-cluster frequency was dis-
covered in reading the proof. This has been cor-
rected in text and tables, but Fig. 27 contains the
error and is not consistent with Table XI. The
differences, however, are less than the experi-
mental error of perhaps 20% arising from the ex-
perimental measurements, and indeterminate er-
rors arising from the approximations used in the
interpretation.
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