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Relativistic contribution to the spin-lattice coupling coef5cients and to the linear elecu.ic
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The 5a&dars and Beck technique of effective Hnmi&tonians and the Dirac-Slater wave functions have
been used to calculate the sexedwrder relativistic contribution to the spin-lattice coupling coef6cients
(SLCC} of a ~S state ion in Td and in C,„symmetry. The relativistic eNect ~s calculated for Mn++
in ZnS and compend to other important mechenisms contributing to the SLCC's In this case the
relativistic contribution is due p6mnrily to the even crystal field of rank 2. The relativistic contribution
is as important as the Blume-Orbach process. The spin-spin mechanism and the contribution of the
equivalent even crystal field are an order of magnitude smaller. The linear electric field effect has aho
been treated in a relativistic scheme. We have defined an equivalent mixed-tensor operator acting in the
fundamental configuration and ~i~icking the second-order e6ect of the electric field $&~i&toiiian and
of the internal crystal field of odd parity. The relativistic electric field @feet, resulting from the
promotion of an electron from the 3d' shell to the empty 3d 4p shell has been calculated for Mn++
in cubic ZnS; it was found to be negligible with respect to the chssical efFect.

I. INTRODUCTION

Soon after Sandars and Beck' defined the effec-
tive operators acting on I 8-coupled relativistic
states and Liberman et al. and %aber and Cro-
mer calculated the Slater-Dirac wave functions
for atoms and ions, the importance of relativistic
crystal-field effects on the ground state off ' ions
was recognized by %ybourne, 4 who has also given
convenient methods to calculate some relativistic
effective operators and perturbation effective
operators. ' The 3d' ions were considered more
recently by Van Heuvelen, e who calculated the con-
tribution of the axial crystal-field splitting of Mn"
in various lattices.

Our first aim is to calculate the relativistic con-
tribution to the spin-lattice coupling coefficients
SLCC's of Mn" in T~ and in C~„symmetry. (This
contribution was not taken into account in a pre-
vious paper in which we studied experimentally
and theoretically the SLCC's of this ion in stack-
ing faults of Zns. ) Instead of calculating the C
tensor related to the stress-induced terms of the
spin Hamiltonian, we will evaluate the relativistic
contribution to the Q tensor related to the strain-
induced new terms of the spin Hamiltonian and
compare this contribution to the other' contribu-
tions to the tensor Q. This procedure will permit
us to avoid the hypotheses needed in the calcula-
tion of the stress-induced deformation in C3„sym-
metry. All three possible axial sites correspond-
ing to the axial field parameters D= 130& 10
cm ', D =+ 36.4&10 cm ' for Mn" in stacking
faults and D = —100' 10 cm ' for Mn ' in wurtzite,
will be considered.

%e will then study the electronic polarization of
a d ion due to an external uniform electric field,

using a relativistic scheme. Vfe will first calcu-
late an equivalent operator of rank E&s in spin space
and of rank k, a in orbital space, defined by

w"»'»"=Z x~y, )Q, ~sc,
1

and acting only on the fundamental configuration.
In the above expression b E is the separation be-
tween the fundamental configuration and the ex-
cited configurations of odd parity. The Hamilto-
nian X is the sum of the electronic polarization
and of the internal crystal field of odd parity. %e
will show that the main relativistic contribution
comes from the following perturbation:

(~ ) (4 )
( SM~ ~3C~~ I')

x&'I
~
w„"„",,'~'s~, , ) .

The relativistic effect will be evaluated for Mn
in cubic ZnS using the wave functions calculated
by Liberman.

In Sec. IIA we show that the effective operator
corresponding to the crystal-field potential of
rank 4 can be neglected and that only a mixed
tensor of rank 1 for the spin and for the orbital
angular momentum gives a non-negligible contri. bu-
tion to the "external" effects for Mn". General
relations are then derived which permit the cal-
culation of all needed matrix elements of the spin
Hamiltonian owing to the relativistic effect of the
crystal fields of rank 2 for a Cs„symmetry.

In Sec. II8 the method is generalized to take
into account the configurational mixing by the in-
ternal crystal field of odd parity.

The theoretical results are applied. to Mn" in
Secs. IV and V.
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II. THEORY

A. Relativistic contribution of the even crystal field

The Hamiltonian governing the 3d ions will be
written

X=3Cp+ V, +X»+XV+,»+ Vodd+&V dd

+ being the free-ion Hamiltonian, V, the cubic
part of the crystal field, K„ the spin-orbit inter-
action. 6, V,„„is the even part of the crystal field
induced, for example, by an external perturbation.
This term will be studied in detail in this section.
V.«and & V~~ are, respectively, the odd part of
the crystal field and its variation under an exter-
nal perturbation. The effect of the odd fields will
be studied in Sec. IIB.

Using the method of Sandars and Beck, ' it can
be shown that the crystal-field operators of rank
2 and 4 acting on relativistic states can be replaced
by a linear combination of mixed-tensor opera-
tors W' 1 "1' of rank K, =O or 1 for spin and of
rank k, = 0, 1, 2, 3, or 4 for the orbital momentum.

For d" configurations, the relevant W' '"1'
operators have been determined by Van Heuvelen
by using a general formula for the b~(K, k, ) given
by Wybourne:

&~2& C(2) b (1 I)W(11)2~b (I 3)W(18)2

+b2(02) W'

&r ) C' ' - b4(1 3)W" 3' + b4(0 4) W' )

In this paper, the tensors C'"' are related to the
spherical harmonics F'" by

4& 1/2
C(~) = — Y'", [k]=2k+1 .

[k]

The b,(K, k, ) are given by'

b2(11)= ~ (-4R„+3R, +R ),25~3O

b2(13)= ~ (3R„+R, —VR=))

bg(02) = —
2

—(12R„+6R, +7R ),25'' 7

b4(13) = 3~35(R' -R'-)

b,(04)= ~(R.'.+4R,' ),
with

k /'" k
R&~. =

g F«»)r F«». , dr

k+ Jp G( ry) & G(»') d&

F and G being, respectively, the major and the
minor components of the wave functions. The
usual notation + corresponds to j= l+ & and —cor-
responds to j = l ——,'.

Given the smallness of the b~(K~ k, ) when K, )) 0,
the relativistic effect will be non-negligible only
if it can lower the order of the perturbation used
in the nonrelativistic theory of the external per-
turbation. The following calculations are per-
formed by a perturbation method in the case of a
C~„symmetry. Using the A2 and E representa-
tions of the C~„symmetry group, the ground state
'$ perturbed by X„is'

I'sM, )'= I'SM, &+~ ' &(P)'E'M. - Il~(-fl. is-'4~)l'SM, &I,'E'M, &

i=1

+«»'E M*+ II~(-4.~ah)I'sM. &I(4E M. + I)+((P)'A2M. I~I 0(„s~o,
I
'sM, &I,'A, M, &,

where p is the spin-orbit constant and the ~,'s are
the mixing parameters of the ~ (P) T~) levels by
Vc n( = E('A, ) —E(, T,). It can be easily shown
from the above perturbed ground state and from
the effective operators that a second-order per-
turbation will be sufficient to calculate the matrix
elements of the spin Hamiltonian. Our first aim
will be to show that the mixed tensors W" 'k with

I

k =2 or 4 give a negligible contribution with re-
spect to that of W"" .

A simple selection rule on the mixed tensor
shows that W' ' and W' 3'" can relate, respec-
tively, the (~s)SA, and (4P) T, states and the (8S)'A,
and (4F)4T, states. In fact, considering only the
component &r 3&A02CO(2) of the crystal field, we get

&(-'., —.')
I b, (11)A',W""'-b,(1 3)A'W""'I (-'., -'. ) ) ((-'., -'. ) I b,(11)A',W""'- b,(13)A,'W""'I (-'„-', ) )

2
=2K bm(11)Aq ' ~ +2K bq(13)Aq I)00.
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TABLE I. Matrix elements of the mixed-tensor operator W

~(i i)2 6g 5
P 2

1
76

4p

4p 3

6g 3

1
bio

2
Mis

~(1 i)2
i

Pi 2

6g 5
2

4p g, 6sp

1
:W2

~(i 1)2
2

6g 5
2

4p 3

P $ Sy

1
7io

The first term on the right-hand side is that con-
sidered by Van Heuvelen, the second term comes
from the ( F) T, states C.onsidering R a„s the
mean value of 8 ~, and R ~, and using the values
of Waber and Cromer, we obtain

bm(1 1) 21' 7
bm(1 2) 10'

for Mn in ZnS we get [g(~f/b, )]/[$(n, P,. /b, , )]
= —120; the second term is thus 720 times smaller
than the first term. Therefore only the tensors

will be considered below.
Using the matrix elements of W"" as given in

Table I and defining

K=K~ ' b~(11),

we get the following matrix elements of the spin
Hamiltonian due to the crystal field b, V„„

(&I &pc C( 2&.

((2y 2) I «, I (2t 2) & + ~ +2K&

((-„-,) I~v...l
(-„,) ) ——~ w, K,

((-. —.) I«...l(-. —.) &=-2& K

&(-', -') I~v...l(-. -') &=+~2&,K.
These matrix elements are all that is needed in
the case of a C~ symmetry. The A~'s must be
calculated in the axis system: z along the c axis
and x in a mirror plane. In the case of a T~ sym-
metry it is sometimes more convenient to per-
form the calculation with x, y, z along the [100],
[010], and [001]crystallographic axes. The above
relations are valid in this case since only 4P states
intervene.

B. Relativistic contribution of the odd crystal field

Since 1959, when Rohrlich' first considered
the influence of configuration interactions in
atomic spectroscopy by using Racah's formalism,
many authors have considered the problem using
more elaborate schemes. ' In 1967, Wybourne'4
studied configuration interactions and performed

perturbation summations involving spin-indepen-
dent and spin-dependent one-particle tensor op-
erators. A variant of the commutative properties
of the orbital operators which he used will be
relevant in the following relativistic treatment of
the effect of configurations interactions.

In the study of external effects, it is convenient
to separate the Hamiltonian corresponding to the
crystal field of odd parity X,« in two parts,

&.aa = V.aa+ & V.aa

V,«being the internal crystal field of odd parity
for the free crystal and 4 V,«being either the
pressure-induced crystal field of Odd parity or the
new term Rz = g, eE ~ r, which must be added to the
Hamiltonian of an ion subjected to a uniform elec-
tric field.

In order to calculate the equivalent operator

0

Q l(v,.+&v. )

we will assume that the fundamental configuration
is well separated from the excited configurations,
so that Eo —E, =hE for all states I $0) of the funda-
mental configuration and all states I g,. ) of the ex-
cited configuration. This is evidently a crude
approximation, however it does allow us to per-
form conveniently the summation on all I P, )'s.

In the second-quantization formalism, an oper-
ator such as v C'~' can be written

n, l, f n', l', f'

where the components q~(n, l, j, m) of the tensor
operator q of rank j are defined by

q(n, l j, m)IO)=ln, l j, m),

IO) being the vacuum state and In, l, j, m) the state
of a single relativistic electron defined by the quan-
tum numbers n, l,j and by the component m of j.
The tensor operator q is defined in terms of the
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adjoint of the creation operator by"

q(n', l', j, m ) =(-1)» [q (n, l, j, —m )]* .
In order to simplify the notation, we will repre-
sent the set of quantum numbers (n, l, j) by n, and
we will use primed letters for electrons belonging
to dif ferent configurations.

The general term S,

S=Z &y, l
r~c" &l g, &&y, l

r'ac" 'lq,'&,

will be evaluated in the jj coupling scheme using
the following commutative properties of the oper-
ators q q

{[qt(~)q(~ )](a&& [qt( )q( )]&aa&}(E& {( 1)a&+aa»[ qt( ) q( )](&&a& [ t( ) q( )](I&&&}(»&

= [k„ka]"as(a', a")(-1)"""».
' .' . [qt(n) q(ta")]I&»&

+P(ta, ta'")(-1)» '»""& "a .„, [q (o.")q(z')]o ', [k» ka]=(2k, +1)(2ka+1) .
jl'

$ can now be calculated by using the closure
theorem $1$, )&p; I

= 1 and by coupling the tensors
C'&' and C"~'. It can be easily shown that three
types of configuration interactions exist in the case
of a single open shell. They correspond to (i) the
promotion of an electron of the l" shell to an emp-
ty l shell, (ii) the promotion of an electron of the
closed l 4' 'a shells to the l" shell, and (iii) the

l

promotion of an electron from filled to empty
shells. This last interaction will not be considered,
since it shifts equally all levels of the ion.

Explicitly the equivalent operator

is given by

S„„„=-2(-1)&'»a' '~a
&«jzll r&C' &'ll n l j ) &n l j ll r aC a'

ll nlja&
fh q2 Q j2

x [q (nlj&)q(nfja)]I&

The mechanism (i) described above corresponds to C' = 0; 4 =1 corresponds to case (ii).
Now writing S„„„in terms of operators acting on relativistic (nl) states, &a'&t we get

1 1
2 a

kg kg K k'g kg K
( 1)»,+» &»+ o+t& l l k

qa —Q ja
K I

x&«j& II r "&c'"'
ll

&t'f'j'& &n'1'j'
ll r

"c'""
ll &tfja& [j& ja] [Kza, kta] [q'(ttl)q(ttl)]' » "&a'o

where the sum is over j»j~ n, l,j,K», k&3, K, Q.
The 3j, 6j, and 9j symbols are those defined by
Rotenberg et al.

III. SLCC'S OF Mn++ IN C3„SYMMETRY

When only second-order terms in $ are con-
sidered, the new terms of the spin Hamiltonian in-
duced by external stresses can be written

bX =Z S&5D&»S»+Z S&5gt»H» .
f,j f,j

Since 5g,z is generally negligible for d ions, only
the tensor D,&

will be considered below. This
symmetric rank-4 tensor can be expressed
either in terms of the internal stresses or in terms
of strains. In order to avoid calculating the strains
from the applied pressure, we will use the follow-
ing form of 4K:

stra&a ( gontractea

q is the strain tensor, and 8 is a rank-2 tensor in
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TABLE II. Contribution of the Blume-Orbach (BO) mechanism, and of the relativistic effect to
the SLCC's of Mn in sited AS and PN and in wurtzite. Numerical values are given in units of
cm per unit strain.

BO
mechanism

Sites AS
Relativistic

effect
BO

mechanism

Sites PN
Relativistic

effect
BO

mechanism

Wurtzite
Relativistic

effect

G«+G~2

G&3

Ggg

G44

G(5

+ 0.31544
+ 0.32221
—0.28949
+ 0.44154
—0.15345
+ 0.44940

+ 0.29300
+ 0.14643
—0.43670
+ 0.51796
—0.36528
+ 0. 51760

+ 0.31544
+ 0. 32221
—0.29547
+ 0.44154
—0.15105
+0.43963

+ 0.29300
+ 0. 14643
—0.29303
+ 0. 51796
—0.28976
+ 0.51760

+ 0. 31544
+ 0.26824
—0. 31088
+ 0.44802
—0. 09613
+0.39839

+ 0.29300
+ 0.14643
—0.43670
+ 0.69837
—0.36528
+ 0.69790

S. The evaluation of G will permit a direct com-
parison between the relativistic and classical con-
tributions.

For a 3d' ion in a C~„symmetry site the rela-
tivistic contribution to the G,&'s of the pressure-
induced crystal field Aeo(r 2)C,'@ is given by

(Gll + G12) 11 0 3~5 (A2) 11 0 K

4
(G11 —

G12)e11eo ~40 (A2)e1,eo K e

1
(G12) 22 Q ~gP (A2) 1 Q K

1
( 51)e„eO= —~~( 2)e„.OKe

(G44),,r 0
= —

10 (A2)e12eo K

W2
15)e12 0 +

~40 (A2)e12eo K ~

The indices &,&«mean that the pressure-induced
crystal field must be calculated by taking into ac-
count only the strain &,z. The calculation of the
crystal field must be performed in the axis sys-
tem —z along the optical axis, x in a mirror plane.

The calculation of the relativistic contribution to
the G&&'s has been performed for Mn" in Zn5 wurtz-
ite and for Mn in two stacking faults, denoted by
AS and PN. 22 (The sites denoted AS possess six
second neighbors forming a trigonal antiprism and
one third neighbor on the [111]axis, the sites de-
noted PN possess six second neighbors forming a
trigonal prism without a third neighbor on the [111]
axis. ) The parameter K= —(56.22&&10 0)ao (ao is
the first Bohr radius) has been calculated from p
= 300 cm ', g, (er12/b, , ) = 44.09 & 10 0 cm, b2(1 1)
= —0.0465ao2 (see Ref. 6). The results are given
in Table II. The relativistic effect is compared to
the classical Blume-Orbach effect. The results
show clearly that the relativistic effect is as im-
portant as the Blume-Orbach effect which gives

the preponderant contribution when only classical
effects are considered. (The spin-spin mechanism,
the contribution of the equivalent even crystal fields,
the Sharma-Das-Orbach effect, and higher-order
effects have been studied in great detail in Ref. 7.)

IV. LINEAR ELECTRIC FIELD EFFECT IN EPR FOR Mn++

IN Td SYMMETRY

The spin Hamiltonian of an ion subjected to an
external uniform electric field is given by~3 ~'

Ks = Z RoeeE1S~SQ+ Z TqyeE1H~S2
$, y, a f,j, A

+higher-order terms.

The tensor R describing the linear electric field
effect is nonzero only if the ion is located in non-
centrosymmetric sites. The tensor T and the
tensors corresponding to the higher-order terms
in E, H, or S will not be studied here. In fact their
contributions to the displacements of the absorp-
tion lines are generally negligible when compared
to that of the linear effect.~

The Hamiltonian is obtained simply by adding
Xs=g, eE ~ r, to the Hamiltonian of Sec. IIA. The
terms b, V«~ and 4 V„„ofthe Hamiltonian of Sec.
IIA must now be interpreted as being due to the
ionic polarization. We will consider calculating
only the linear effect in E caused by the electronic
polarization of the ion. Neglecting the piezoelec-
tric effect is a correct approximation for Mn+' in
EnS, since its effect is only $ of the electronic
effect. ~7 We will also neglect all ionic displace-
ments not described by the piezoelectric tensor.
Using the theory developed by Kiel and Mims for
loose ions~ 3 and, in particular, for Mn" in
various scheelites, it can be easily demonstrated
that this last approximation is certainly valid for
Mn" substituted for Zn

The equivalent operator corresponding to the
composition of V,~ and X~ can be easily obtained
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from the last relation in Sec. IIIB. Expanding the tensor operators W &2~&'K, we get the following
reduced matrix elements and introducing the mixed- general expression for W„„„:

I

w„„„=Z Z
&ps&g n, l,f ' K32, kgI, K, Q, kg, kp

(- I)~"s'""~'b~ ~e ~ ]Xi~ bi ]'"

kg kg E '

kg kg E jg kg j l j k~ j~l l kgb
A

R(j„j',js)

where

R(jq, j,js) = f [F(nljq)r&F(n'I j )+G(nlj&)r&G(n I j )]dr f [F(n'l'j')rssF(nljs) .

+G(n I j )reG(nljs)]dr .

The relativistic effect corresponding to the
promotion of an electron of the 3d' shell to an
empty 4p shell will now be calculated explicitly.
This interaction corresponds to Fig. 1(a). In the
axis system xII[100], y 11[010], and z 11[001], the
odd crystal field is given by

V, =( '&A'(C,'s-C',") .
1

For an applied electric field parallel to the z axis,
X~ can be written

Xs = (r &A,'C(')",

1

Using the general relations of Sec. IIA, we get

R=
5
~ . bs(1 l)~siva, cfAsA~ &&Z5 ~z

where &,« is the effective dielectric constant. The

odd parity

configurations

"odd'~"~

with A& = eE. Having shown in Sec. IIA that the
equivalent operator W,",', gives a negligible con-
tribution to the relativistic effect, we will calcu-
late only the equivalent operator W"„",„thus get-
ting

4

6S 6

with

bs(11),pygmy 8q8~8~8 [48R(,& s, s ) —18R(sp s~ s)

+ 88R(-'., -'. , -'. ) —12R(-'., -'., -'. )

—80R(-,', —,', —,')]A~,' .

'4d'~"o

4

odd parity

conf igurations

4

In T„symmetry, the tensor R has only one inde-
pendent component ' so that in the axis system
defined above, the spin Hamiltonian takes the form

Xs=iRZ ~ (ops" —0,',"),
the 0,'s" s are /he tensor operators defined by
Thornley and Smith. ~ R is given by

6S s ~so

FIG. 1. Representation of one type of interaction in-
tervening in the relativistic effect of odd crystal field.
The scheme (a) shows the equivalent operator W~&
coupling the fundamental configuration to the excited con-
figurations d 4p, cF 4f, etc. ; (b) represents the graph
describing the promotion of an electron from the funda-
mental configuration to an empty configuration, rep-
resents the crystal-field operator; and (c) gives the
classical configuration interaction described in Refs. 7
and 27.
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introduction of &,«relating the internal and applied
electric field permits us to obtain R directly in
terms of the applied electric field.

The Slater-Dirac wave functions for Mn" de-
termined by Liberman et al. were used to calcu-
late the needed radial integrals. Taking only into
account the major components of the radial wave
functions (the contribution of the minor components
of the wave functions is at least three orders of
magnitude inferior to that of the major components)
we get b2(11)„„„/AS~A~0=0.00041a04. For Mn" in
cubic ZnS we have g„,= 3.9 (this value being given
by the Clausius-Mosotti formula) and As
= -0 021.93'e /2ao T.hese values give R = 0.0013
G/kV mm ' which is ~+~ of the experimental value

I R,t I
= 0.09 G/kV mm ~. ~~ The relativistic con-

tribution to the linear electric field effect on Mn"
in ZnS is thus negligible when compared to the
classical contribution: R„~,= 0.038 G/kV mm ~. ~

V. CONCLUSION

The calculations performed for the SLCC's of
Mn" in Cs„symmetry show that the relativistic
contribution enhances considerably the importance
of crystal potentials of rank 2. This confirms the
previous results obtained by Wybourne4 and Van
Heuvelen. ' The study of the linear electric field
effect has shown that for Mn" the relativistic part
of the electronic polarization gives a negligible
contribution to the tensor R. This result is in
disagreement with previous semiquantitative stud-
ies of this effect. 33 Finally, the relativistic effect
most likely could be of importance in evaluating
the ionic contribution to the linear electric field
effect of loose ions.
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