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Striking differences (up to factors of several hundred} are predicted in the intensity of phonons

propagating ballistically along diNerent directions to the c axis in certain hexagonal crystals. The
predicted results arise from phonon focusing, due to the fact that in elastically anisotropic crystals the

phonon phase and group velocities are, in general, not collinear. Analytic expressions have been derived

for the amplification factor for phonons of each polarization along all directions where the phase and

group velocities are collinear. Calculations have been performed for a number of hexagonal crystals and

demonstrate that the phonon-focusing property can effect differences in the phonon transport in the

boundary-scattering regime by as much as 300%.

I. INTRODUCTION

In dielectric solids thermal energy is carried by
quantized elastic waves or phonons. At sufficiently
low temperatures the phonons propagate ballistical-
ly rather than diffusely, so that the phonon mean
free path becomes limited by geometrical-scatter-
ing processes. In the absence of impurity or
defect scattering, the phonon mean free path be-
comes limited by the linear dimensions of the sam-
ple. A theory of the thermal conductivity v applica-
ble to this temperature range was first developed
by Casimir, whose result may be expressed in the
following equivalent forms:

~ = (22&,'/15K)(s-')A, r',
~ =-3 C,((s ')/(s '})A„

(1)

(2)

where (s ) and (s ') are, respectively, averages
of the inverse square and inverse cube of the pho-
non phase velocity, T is the temperature, and C„
the specific heat per unit volume. The Casimir
length ~, may be regarded as the effective phonon
mean free path. For a circular cross-section rod,
A, is equal to the rod diameter and for a square
rod of side D

A, =1.115D.

Casimir assumed that the walls of the sample
acted as diffuse scatterers of phonons (i.e. , a
phonon striking the surface of the crystal would be
reradiated with random direction) and that the sam-
ple length is very much greater than its transverse
dimension. Corrections to Casimir's theory have
been derived by Herman and co-workers for sam-
ples with a finite ratio of length to width and for
samples in which a fraction of the phonons are
specularly reflected from the side and end sur-
faces.

Recent heat-pulse measurements ' have shown

that when phonons are excited in a given region of
an elastically anisotropic crystal, the energy flow
will be enhanced or focused in some directions and

decreased in others even if the angular distribution
of wave vectors is uniform. This enhancement or
decrease arises because the group velocity v is not
generally in the same direction as the wave vector
k or the phase velocity s. The amount of energy
received by a heat-pulse detector depends upon the
phonon polarization and the crystallographic direc-
tion between the generator and the detector. The
energy received varies for the different phonon
polarizations because the deviation between the
wave vector and corresponding group velocity is
different for each polarization.

Calculations to determine the relative intensities
of phonons for each polarization were previously
carried out for a number of cubic crystals and

the results are listed elsewhere. s'7 The phonon
densities were also calculated using an analytic ex-
pression derived for cubic crystals by Naris. The
same large differences (up to factors of 100) were
predicted by both methods and observed experi-
mentally in the intensity of phonons of different
polarizations propagating along different crystallo-
graphic directions. '

Subsequent measurements of the thermal con-
ductivity of silicon and calcium fluoride in the
boundary-scattering regime demonstrated a pro-
nounced anisotropy. The conductivity was found
to depend upon the orientation of the sample rod
axis, the variation being as much as 5(P/0 for silicon
and 4(Pg for calcium fluoride. This anisotropy was
explained in terms of phonon focusing arising from
elastic anisotropy. The thermal conduction was
found to be higher when the heat-flow axis was
parallel to a crystallographic direction in which the
energy flow was enhanced or focused.

At temperatures much less than the Debye tem-
perature most of the thermal energy of a solid is
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contained in the trar. sverse modes because of their
lower velocity. Since the thermal conductivity at
these low temperatures is approximately inversely
proportional to the square of the phonon velocity,
the transverse modes, because of their lower ve-
locity, will make the major contribution to the flow
of heat. Energy flow in such a solid was enhanced
along those crystallographic directions in which the
transverse modes were most strongly focused and
de-enhanced along those directions where these
modes were strongly defocused. Thermal conduc-
tion in the boundary-limited regime was thus larger
than the Casimir value when the sample rod axis
was parallel to a direction in which the energy flow
was enhanced, and smaller than the Casimir value
along those directions where the energy flow was
decreased.

Casimir's theory of thermal conduction in the
boundary-scattering regime was generalized to in-
clude the effects of phonon focusing. Corrections
to the thermal conductivity were derived for sam-
ples of finite length. The predictions of this gen-
eralized theory were in quantitative agreement with
experimental results.

In metals, however, most of the thermal energy
is carried by electrons so that the thermal con-
ductivity at low temperatures is dominated by elec-
trons and not phonons. In those metals which un-
dergo a superconducting transition, thermal trans-
port is dominated at the highest. temperatures
below the transition by normal-state electrons. As
the temperature is reduced electrons condense into
the superconducting state pairing with electrons of
opposite spin and wave vector. '0 The thermal en-
ergy carried by electrons thus decreases as more
normal-state electrons become Cooper pairs. Far
below the transition temperature T„ i.e. , T/T,
«1, the electronic scattering of phonons and the
thermal energy carried by normal-state electrons
decreases until thermal transport is completely

dominated by boundary-scattered phonons. Thus
for T/T, «1 the thermal conductivity of a pure de-
fect-free superconductor should approach the value
predicted from elastic anisotropy in a dielectric
crystal. These remarks appear substantiated by
recent measurements on the thermal conductivity
of pure niobium from 0. 04 to O'K which indicate
that the thermal conductivity at the lowest tempera-
tures is dominated by the boundary scattering of
phonons. ~~

In this paper analytic expressions are derived
for the phonon amplification resulting from phonon

focusing in hexagonal crystals. Conditions for
focusing are derived for phonons of each polariza-
tion along all directions where the phase and group
velocities are collinear. Conditions are also de-
rived for the existence of cuspidal edges in the
group-velocity surfaces about these same direc-
tions. Calculations of phonon focusing are given
for a number of hexagonal crystals, including a
number of superconductors. Strong phonon focus-
ing is predicted to have a dramatic effect upon the
phonon conductivity at very low temperatures. For
dielectric solids this should be observable at tem-
peratures that are a small fraction of the Debye
temperature, but for superconductors this will not
likely be observed until T/T, «1.

II. THEORY

A. Calculation of phonon phase and group velocities

The solutions for the phonon phase velocities in
the hexagonal elastic solid are well known~

5'g ——(C«lsn8~ + C«cos 8~)/p,

so ~
— l(C~( + C44) sm 8~ + (C~s+ C44) cos 8~

p l p ~ 2 2
t 2p

+[((C„—C44) slIl 8, —(C33 C«) cos 8~)

+(2(C„+C«) sin8» cos8, )~]'~'] . (5)

The displacement vector u, giving the direction of the deformation, is given by '

exn"' [1 —(e n}'1'~

[(C)) —C«}sin 8) —(Cgg —C«) cos 8)] + 2(Cg +C)4) cos 8~

2(C„+C44) cos8~

T ([(C« —C«}sm'8, - (C» —C«) cos'8, ]'+ [2(C$3+C44) sin8, cos8,]'j' '
k

2(Cps+ C44}cos8y

In these equations s is the phase velocity, C&& is
the second-order elastic constants, 8~ is the angle
of the wave vector relative to the C axis, n is a
unit vector in the direction of the wave vector, and
e is a unit vector parallel to the C axis. The sub-
scripts 0, 1, 2 on the phase velocity and the dis-

I

placement vector refer to the different modes of
propagation which will be designated as the fast,
transverse T„and slow modes, respectively. The
sign preceding the radical is positive for the fast
mode and negative for the slow mode in Eq. (5),
but is negative for the fast mode and positive for
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the slow mode in Eq. (7). From Eq. (7) it can be
seen that if C» & C44 the fast mode is quasilongi-
tudinal and the slow mode is quasitransverse near
the C axis, but if C«& C» the fast mode is quasi-
transverse and the slow mode is quasilongitudinal
along these same directions. Similarly, if C» & C«
the fast mode is quasilongitudinal and the slow
mode is quasitransverse along directions nearly
perpendicular to the C axis (C, directions); but if
C«& C« the fast mode is quasitransverse and the
slow mode is quasilongitudinal along these direc-
tions. Although there appears to be no known
hexagonal material for which either C» + C44 or
C» & C44, one should not rule-out either possibility.
The recent discovery that paratellurite, 68 ~ a
tetragonal piezoelectric crystal, has along the
(100) direction a shear wave phase velocity which
exceeds that of the longitudinal indicates that one of
the above possibilities could exist for a hexagonal
crystal. Furthermore, neither possibility is pro-
hibited by conditions for elastic stability, namely, '

C11' IC12I, C$$'0 C44'o C88'o

C$3(C11 C88) C 13 '

The components of group velocity parallel and
perpendicular to the C axis, respectively, can be
determined using the relations'

as Ss
S(cos8$} ' ' S(sin8$)

'

The direction of the group velocity, 8„, can then be
determined by the relation

(10)

tan8, = ($4/v)tan8$,

where

(12)

The results for each mode are

tan8„= (C88/C44)tan8$ or cot8„= (C44/C88)cot8»

(11)
for the T, mode and

(C11 C44) tan 82+[2(C1$+C44) (C11 C44)(C$$ C44)]

([(C11 C44) tan 8$ —(C33 —C44)] +[2(C1$+C44) tan8$] )
[2(C1$ + C44) —(C11 —C44)(C$$ —C44)] tan 82 + (C$$ —C44)

([(C11—C44) tan 8$ —(C$$ —C44)] +[2(C1$+C44} tan8$] j (14)

and the + sign is used for fast waves and the —sign
for slow waves. For directions nearly perpendicu-
lar to the C axis it is more convenient to use

cot8, = ($4'/v') cot8$1

where u' is m and v' is v, respectively, but with
cot8„replacing tan8„, C» replacing C», and C»
replacing C».

The se equations enable one to calculate the angle
between the phase and group velocities for each
mode along all wave -vector directions with respect
to the C axis. For elasticaHy anisotropic crystals
the phonon phase and group velocities are collinear
for only certain directions determined by the sym-
metry and the kind of anisotropy. This is discussed
!in more detail in Sec. H B.

For certain ratios between the elastic constants
IILt is possible to find values of 8„ for the slow mode
which permit more than one corresponding value of
8~. In these regions the values of 8~ can be double
or triple valued and the group-velocity surface is
said to have cuspidal edges (see Figs. 1-4). The
conditions for which cuspidal edges occur are dis-
cussed in Sec. II D.

B. Calculation of collinear and pure-mode points

A collinear point will be defined as one in which

I

the phase velocity or wave vector and the corre-
sponding group velocity are collinear. At these
points the Qow of energy is in the same direction
as the wave vector. A pure-mode point will be de-
fined as one in which the displacement or polariza-
tion vector and the wave vector are either collinear
(i.e. , a, pure longitudinal wave) or perpendicular
(i.e. , a pure transverse wave) ~ Pure modes
propagate in general only for wave vectors parallel
and perpendicular to the C axis. Along these di-
rections the wave vector and group velocity for all
modes are collinear. Although the transverse T,
wave is a pure mode for all directions of the wave
vector, the group velocity and wave vector for this
mode are collinear, in general, only for wave
vectors parallel and perpendicular to the C axis.
Solution for the collinear points for the fast and
slow modes yields the values 8~ = 0' and 90' re-
quired by symmetry, as well as a quadratic equa-
tion in tan 8~. The quadratic equation, which inci-
dentally is identical for both the fast and slow
modes, yields the roots

t~28 (C13+C3$) or
(C13+C11)

tan 8~ =2 (C13 + C44) (C33 —C44)
(C1$+C44) —(C 11 C44)
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FIG. 1. Relation between the direction of the wave
vector and the group-velocity vector for solid helium 4
using the elastic constants of Crepeau et a/. Angles are
measured with respect to the C axis. Note the cuspidal
edge in the transverse T2 mode about 82. In the vicinity
of the cusp the wave vector is double or triple valued.

The additional collinear point 8~ for the slow mode
is given by
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FIG. 3. Relation between the direction of the wave
vector and the group-velocity vector for apatite which
also has a cuspidal edge about C~. In the vicinity of the
cusp two or three wave vectors can give rise to the same
group-velocity vector.
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FIG. 2. Relation between the direction of the wave
vector and the group velocity vector for apatite which has
a cuspidal edge about the C axis. 8~ is the small angle
subtended by the phonon detector. In the vicinity 0 & 8z
& 8p, the wave vector and its corresponding group-velocity
vector differ in azimuthal angle P by 180 . The shaded
areas indicate the regions of integration for 8I,. The
half-width of the cusp is approximately 7.5'.
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FIG. 4. Relation between the direction of the wave
vector and the group-velocity vector for solid helium 4.
In the vicinity of the cusp about 82 two or three wave vec-
tors can give rise to the same group-velocity vector.
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tan86= (C13+C44) (C33 —C44)

(C13+C44) —(C« —C«) (17) dn, (8„[t,) d(cos8, ) dy,
dA„(8„(t,) d(cos8„) dct),

' (16)

A solution for the wave-vector directions along
which pure modes propagate can be obtained in a
similar manner. Results for a number of crystal
symmetries have been given by Brugger. ' Since
the wave vector and polarization vector for the
fast mode are in the same direction along 86, this
direction is commonly called the longitudinal axis.
Along this same direction the wave vector and po-
larization vector for the slow mode are perpendicu-
lar so this mode propagates as a pure transverse
wave. Equation (17) thus gives the additional
wave-vector direction along which the correspond-
ing phase and group velocity for the fast mode are
parallel and along which pure longitudinal and pure
transverse waves propagate.

C. Phonon-ampliTication factor for cusp-free velocity surfaces

Consider a phonon detector located in the direc-
tion (8„$,) relative to a point source of phonons.
The angles (8„, (]i,) are the spherical polar angles,
with 8„the angle with respect to the C axis. Let
the detector as viewed from the source subtend a
small solid angle I,A,. For a phonon to reach the
detector from the source the group velocity must
fall within the small solid angle AA„about the di-
rection (8„(t),). Since the group and phase veloci-
ties are, in general, not collinear for an aniso-
tropic solid, let the corresponding solid angle and
direction in wave vector or k space be denoted,
respectively, by hA» and (8», (t)»). The phonon-
amplification factor A is then the ratio of the solid
angle in wave vector or k space to the correspond-
ing solid angle in group-velocity space. ' If cuspi-
dal edges in the group-velocity surface are absent,
then the phonon-amplification factor in the direc-
tion (8„, (t,) for an infinitesimal detector is

Since hexagonal crystals are transversely isotro-
pic, i.e. , velocity surfaces are surfaces of revolu-
tion about the C axis, this reduces to

sin8» d8»
sin8„d8„' (19)

Along directions perpendicular to the C axis this
becomes

A(90') = „'
t3 Hg=&y=90

(20)

and along directions nearly parallel to the C axis

(21)

The results for each polarization mode are given
as follows: Along the C axis,

e

C C&(0') = C,e C«+ " ", (I. mode) (22)
33 44

A(0') =(C ) (T, mode) (23)

C,4 C«—,(T, mode}; (24)(C13+ C44)

33 44

g(900) ee

C44
(T1 mode) (26)

A(90') =C„(C„—" ", (T, ode). (22)
11 44

Along the collinear point 86 for the fast mode,

perpendicular to the C axis:

A(90') = C„(C„" ", (5 mode) (25)
11 44

~(8,) =""
d8y F8~6

5[(c c ) —(c, ,—c )][(c, c )-(c, —c )][(c —c )(c —,c ) —(c c )]) ',
( 13 + C44) —[(C11—C44) + (C33 —C44)]k (C13 + 44K 11 33 —( 13 + 2C44)']

and for the collinear point 8~ for the slow mode,

(26)

~(8,}=
d8y, '

, ~8~~
5(c,,.„c„)(c„c„)I(c„-c„)(c„-c„)-(c„~c„)'])-'1—

[(C13+C11)+(C13+C33)](C,3+ C44)(C11C33 —C13)
(29)

D. Conditions for cuspidal edges

If d8, /d8, & 0 a cuspidal edge exists because
more than one wave-vector direction with respect

to the C axis can give group-velocity vectors along
a given direction (see Figs. 1-4). It is readily
seen that d8, /d8„& 0 for the T, mode for all values
of H„and therefore cuspidal edges are always ab-
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sent for this mode.
In considering cuspidal edges in the transverse

T~ and I. modes, one must distinguish between
several distinct cases. Consider first the case
where C»&C«and C» &C«, i.e. , the fast mode is
longitudinal along both C and C,. Under these con-
ditions cuspidal edges about C and C, for the fast
mode are impossible. The T~ or slow mode, how-
ever, has a cuspidal edge about the C axis if

( 13 + 44) Cii(C33 C44) wher e C33 C44 (30)

or about C, if

( 13 + 44) 33( 11 44), where Cii & C44 . (31}
These conditions have previously been derived by
Musgrave by considering the inverse phase velocity
surf ace

Consider now the case C»& C44 for which the fast
mode is quasitransverse near the C axis. For this

condition no cusp can exist in the fast mode about
the C axis. The slow quasilongitudinal mode, how-
ever, has a cuspidal edge about the C axis if

(C13+C44) &C44(C44-C„), where C44 C33 (32)

Similarly, if C»& C«, the fast mode is quasi-
transverse near C,. Again, no cusp can exist in
the fast mode about the C, direction. The slow
quasilongitudinal mode, however, has a cuspidal
edge about the C, direction, provided

( 13 + 44) C44(C44 —C»), where C«& C».
Consider now the conditions for cuspidal edges

about the collinear points 82 and 88. For a collinear
point 8, to exist in the slow mode, Eq. (16) requires
(C„+C„)(C13+C33}&0, and since C„+C44&0, con-
dition (8) for elastic stability requires (C„+C„)
+ (C13 + C3$} 0. Thus from Eq. (29) a cuspidal edge
exists in the slow mode at 8, if

4(C13 + C11)( 13 + C$3)[(C11 C44}( $3 44) ( 13 + 44) ] [(C13 C11) ( 13 C33)]( 13 + C44}( 11 33 13) '

For a collinear point 83 to exist in the fast mode, Eq. (1V} requires

[(C1$+C44) —(C$$ —C44)][(C13+ C44) —(C„-C44)1 & 0

(34)

(35)

(2(CI$+ «) —[(Cii —C44)+ (C33 —C44)] j(CI4+ C44)[CIIC33 —(C1$+ 2C44) ] 0

in Eq. (28), then a cuspidal edge exists in the fast mode about 83 if

4[(CI$+ C44) —(Cii —C«)][(C13+C44) —(C$3 —C44)][(C11—C44)(C$3 —C44) —(C13+ C44) ]

&{2(CI$+C«) - [(Cii —C44) +(C33 —C44)1) (C13+C44)[C11C33 (C13+2C44)'1 .
This cannot be satisfied unless

(36)

(37)(Cii C44)(C33 — «) ( 13 44)

Furthermore, since a cuspidal edge at 83 requires defocusing of the fast mode about C and C~ (see Sec. IIE)
and this is inconsistent with inequality (3V), inequality (36) cannot be satisfied. If, however,

f2(CI3+ C«) —[(C» —C«) + (C33 C44)]) (C13+C44)[CIIC33 (C„+2C4,) ] 0, (38)

then a cuspidal edge exists in the fast mode about 86 if

4[(C13+C44) (Cii C44)][(C1$+C44) (C33 C44)][(C13+C44) (Cii C44)(C33 C44)]

& &2(C13+ C44) —[(Cii —C44}+(C33 —C44)] &(C13+C44)[(C13+2C44)' —CiiC33] (38)

Again, to satisfy this inequality

(C13+ C44) (C11 C44)(C33 —C44), (40)

and this is now consistent with the requirement that
defocusing of the fast mode occur about C and C,
(see Sec. IIE). Thus for C1$+C«&0, inequalities
(35) and (40) require

2(C13+ C44) [(Cii —C44) + (C33 C44)1 & 0.

With inequality (38) this requires

(C13+2C44) —C»C33 & 0

This inequality can be rewritten as

4C„(C„+C„)& C„C„-C„2

and using the elastic stability condition (8) gives

(C13+ C44) C33C68 ~4C44
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TABLE I. Elastic constants of some hexagonal crystals. The elastic constants of helium
4 are multipl. ied by 108; all others are multiplied by 10~' for units of dyn/cm2. The values
listed at O'K have been extrapolated by the authors from measurements performed at liquid-
helium temperatures. For ice and D20, however, the values at O'K were obtained by eval-
uating curve-fitted polynomials to data measured down to —140'C.

Material
Elastic constants

C44 C66 Ci3

Apatite
Berylb
Beryllium'
Beryllium oxide~
Cadmium e

Cadmium selenide"
Cadmium sulfidef
Calcium magnesidel
Cobalt
Hafnium'
Helium 4j
Helium 4"
Helium 4~

Ice
lce (D2O)'
Magnesium'
Rhenium~
Thallium~
Titanium
Yttrium'
Zinc'
Zinct
Zinc oxide"
Zinc sulfide
Zinc sulfide
Zinc sulfide
Zirconium

16.67
28.73
29.94
46. 06
13.08
7.490
8.76
6.124

30.Vl
19.01
4.66
5.50
4.04
1.2904
1.6992
6.348

63.44
4.44

17.61
8.34

17.696
17.909
20. 97
13.12
12.42
12.40
15.54

13.96
24. 18
34.22
49.16
5.737
8.451
9.58
6.552

35.81
20.44
6.05
7.10
5.53
1.4075
2. 0247
6.645

70.16
6.02

19.05
8.01
6.848
6.880

21.09
14.08
14.00
14.04
17.25

6.63
7.02

16.62
14.77
2.449
1.315
l.48
1.927
V. 55
6.00
1.84
1.40
1.21
0.2819
Q. 4276
1.842

16.91
0.880
5.QS

2.715
4.589
4. 595
4. 247
2. 86
2. 864
2, 85
3.63

7.68
9.41

13.59
16.70
4.516
1.441
l.65
2.183
7.105
5.78
1.02
l.30
0.963
0.32085
0.4134
1.875

18.41
0.341
4.46
2.690
7.108
V. 080
4.429
3.245
3.203
3.20
4.41

6.55
V. 29
1.1
8.848
4.145
3.926
4.825
1.5

10.27
6.55
0.23
1.31
1.05
0.5622
0.5904
2.17

20. 2

3.0
6.83
1.9
5.279
5.54

10.51
5.09
4.554
4. 5
6.46

R.T.
R.T.

0
298

0
298

0
100
298

0
0
0
4.2

4.2

0
0
4.2

298
R.T.
298
R.T.

J. Bhimasenachar, Proc. Indian Acad. Sci. A 22 209 (1945).
B. Ramachandra Rao, Proc. Indian Acad. Sci. A 22, 194 (1945).

'J. F. Smith and C. L. Arbogast, J. Appl. Phys. 31, S9 (1960).
C. F. Cline, H. L. Dunegan, and G. W. Henderson, J. Appl. Phys. 38, 1944 (1967).

'C. %'. Garland and J. Silverman, Phys. Rev. 119, 1218 (1960).
fD. Gerlich, J. Phys. Chem. Solids ~28 2575 (1967).
~Ali Sumer and J. F. Smith, J. Appl. Phys. ~33 2283 {1962).
H. J. McSkimin, J. Appl. Phys. ~26 406 (1955).

~E. S. Fisher and C. J. Renken, Phys. Rev. 135, A482 {1964).
~D. S. Greywall, Phys. Rev. A ~3 2106 (1971). These constants were measured at a mo-

lar volume of 20. 5 cm3.
"J. P. Franck and R. %'armer, Phys. Rev. Lett. 25, 345 (1SVO). These constants were

measured at a molar volume of 20. 32 cm .
~R. H. Crepeau, O. Heybey, D. M. Lee, and S. A. Strauss, Phys. Rev. A 3, 1162 (1971).

These constants were measured at a molar volume of 20. 97 cm .'3

G. Dantl, Phys. Kondens. Mater. 7, 3SO (1968).
'U. Mitzdorf and D. Helmreich, J. Acoust. Soc. Am. ~49 723 (1971).
L. J. Slutsky and C. W. Garland, Phys. Rev. 107, 972 (1957).
M. L. Shepard and J. F. Smith, J. Appl. Phys. ~36 1447 (1965).
R. W, Ferris, M. L. Shepard and J. F. Smith, J. Appl. Phys. 34, 768 (1963).

'J. F. Smith and J. A. Gjevre, J. Appl. Phys. 31, 645 (1960). Shepard and Smith (foot-
note p) report that the elastic constants C44 and C66 for yttrium were mistakenly interchanged.

'C. W. Garland and R. Dalven, Phys. Rev. 111, 1232 (1958).
'G. A. Alers and J. R. Neighbours, J. Phys. Chem. Solids 7, 58 (1958).
"T. B. Bateman, J. Appl. Phys. 33, 3309 {1962).
~J. DeKlerk, J. Phys. Chem. Solids 28, 1S31 (1967).
~V. G. Zubov, L. A. Sysoev, and M. M. Firsova, Kristallografiya ~12 84 (1967) ISov.

Phys. -Crystallogr. 12, 67 {1967)].



PHONON FOCUSING AND PHQNQN CQNDUCTIQN IN. ~ ~

A cusp, if it exists, w01 most likely occur when

(C13+C44)" I C11 C—« I) (C13+ C44) -" IC33 —«41.
This is equivalent to the conditions

C11 C44y C33 C44) C13 C44 '

On expanding inequality (39}in powers of (C„+C4,)
it is readily seen that there are no conditions con-
sistent with elastic stability for which this inequal-
ity can be satisfied. As a result cuspidal edges
cannot occur in the fast mode about the collinear
point Bs. Since cuspidal edges in the group-velocity
surface for the fast mode and the T, mode are not
possible, they can occur only for the slow mode.

If a cuspidal edge occurs in the slow mode about
C axis then wave vectors at angle 80 give group-
velocity vectors parallel to the C axis where 80 is
given by

2(c„~c„) —(c„C)(c-„—c
))0 (C,I-C4 }

(C11+C44)(C„+C«)
+

{C11—C44}

(c„+c„)' (c„-c„)(c„-c„))'"
CstC

(4&}
Similarly a cuspidal edge about C, gives wave vec-
tors at angle 8, with group-velocity vectors along
C„where cot 8, replaces tan 83, C„replaces C33,
Blld C33 I'eplaces C11 111 Eq. (41).

If, however, a cuspidal edge occurs about the
collinear point 8„=8„=8&, for example, solving for
the other values of 8» giving 8,= 82 results in a
sixth-degree equation in tan8». This equation is
identical for the fast and slow modes. Although one
root, tan8&, can be extracted, the resulting equa-
tion —being of fifth degree-has no general algebraic
solution and one of the remaining roots must be de-
termined numerically. It is most convenient to de-
termine numerically a root, tan85, corresponding
to 8„=82 for the fast mode. The resulting quartic
equation can be factored using the method of
Descartes or Ferrari, giving a pair of positive
real roots tan83, tan84, respectively, and a pair of
complex conjugate roots. Such a solution has been
performed for a number of hexagonal crystals and
the results are listed in Table II.

E. Conditions for phonon focusing at collinear cusp-free points

Phonon focusing is said to occur if A(8„) &1. For collinear cusp-free points this is equivalent to

Thus for cusp-free focusing to occur along the C axis

(C33 C44} {C13+C44) i + C33 C44

but

(fast I, mode) (42)

(C«C33) & (CI3+ C44) & C«(C44 C33) if C«C33 (slow I. mode);

C44 Ces, (T, mode)

C„(C„—C„) (C„+C,4)' (C„—C,4)(C33 C44) if C33 & C«(slow T3 mode)

(43)

(44)

(45)

(C13+C44) { 11 C44)(C33 C44} I C44 C33 (fast T3 mode) . (46)

Inequality (46) is valid only if C«&C„and C44&C».
Similarly, for cusp-free phonon focusing to occur along C,

but

{C11—C44}' '(C13+ C«} lf Cu '«4 (fast L mode)

(C44 —C11) & (C13+C«) & C44(C44 —C«) lf C«C„ (slow L mode};

Cee C4 (T, mode}

C„(C„-C44) &(C13+C44) &{C»—C44)(C33 —C«) If C„C«(slow T3 mode}

{48)

(49)

(5o}

(C13+ C44) ( 11
— 44)( 33 44) (fast T, mode) .
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Again, inequality (51) is valid only if C,4&C» and C,4&C„.
For focusing of the slow mode along the collinear point 8~,

(C13+ C44) (C11 —C44)(C33 — 44) 1f (C11 —C44)(C33 — 44) 0.

and no cusp is present about 8~.
Finally, for focusing of the fast mode along the collinear point 86,

(C13+ C44) ( 11 C44)(C33 C44)

(52)

(53)

F. Phonon-amphfication factor in the presence of cuspidal edges

The presence of cuspidal edges increases the

amplification factor because more than one wave

vector contributes to a given group-velocity vector.
For a cusp about the C axis it is necessary to con-
sider a finite angle 8~ subtending the C axis, and

integrate over all phonon wave vectors that give
rise to phonon group velocities within this solid
angle. Because of the finite size of phonon bolom-
eters, 8~ can be expected to be of the order of 1'.
The angle 8~ must be small compared to the half-
width of the cusp for the following approximations
to be valid. 4 The contribution to the integral over
wave vectors from region A (see Fig. 2) is given by

ll83 (g6 )3
d G~ = —2m sin8„d8~ = —2m

0

where 8~ replaces sin8~ for small angles.

Since

d8q d8q68~= b 8„= 8~,
o ~ v

thus

The contribution from region 8 is
~@a ~op

AA3= —2w J sin63d63 ——211 f 2sin63d63

TABLE II. Collinear points and cuspidal edges in some hexagonal crystals. Symbols are
defined in the text. The angles 8 are measured in degrees. Entries under 80 and 8~ indicate
cuspidal edges about directions paral. lel to and perpendicular to the C axis, respectively.
Entries under 83 and 84 indicate cuspidal edges about directions having an angle 82 with re-
spect to the C axis.

Material

Apatite
Beryl
Beryllium
Beryllium oxide
Cadmium
Cadmium selenide
Cadmium sulfide
Calcium magneside
Cobalt
Hafnium
Helium 4
Helium 4
Helium 4
Ice (H20)
Ice (D,O)
Magnesium
Rhenium
Thallium
Titanium
Yttrium
Zinc
Zinc
Zinc oxide
Zinc sulfide
Zinc sulfide
Zinc sulfide
Zirconium

8()

23.16

4.87

24. 52
25. 06

68.41

71.23
67. 94

43.22
43.07
46. 85
45.79
37.14
46. 16
45. 84
45. 78
46. 68
45. 78
48. 59
48. 02
48. 66
45. 88
46. 90
45. 49
46. 11
47. 75
45. 82
44. 53
36.00
36.05
45, 05
45. 74
46.27
46. 33
46. 07

27. 10

35.96

24. 00
26. 29

25. 48

34.66
21, 46
30.57
30.28
27. 38

31.51

24. 97
25. 10
24. 53
32.76

55.51

69.76
66.70

69.84

67.36
76. 03
Vl. 24
63.07
68. 92

62. 66

67.47
69.01
69.66
61.46

39 44

47. 15

48. 79
47. 87

49.69

53.22
52. 07
54. 48
47. 80
50.42

48. 24

47. 20
4S.69
48. 80
4S.39

53.77
31.82
9.38

49.84

54. 93
53.61
51,28
54. 43
63.74
59.27
55. 71
63.21
52. 61
56. 51
51.68
52. 62

61.25
39.37

45. S5
49. 95
52. S3
52. 88
54. 32
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or
= —2s(2 sintII)}66s

d8~4Q„= -4w sin8 8„,

The integral over the group velocities is just
8& 82

AA„= —2m sin8„d8„= —2m ~ .

where

8
8k1+ 802

0 2

8&2 —8~1 ™d8"=d8 '
v 0

The total contribution from regions A and B is

d8@ ~8 . d8q 8
v 8g --8v& v

The phonon amplification for the solid angle 8~

about the C axis is

d8~ 4 sin80 d8~

tf d8v 8 -8 8 -0

(y/s)d8„2tan 8

, )c„+c„)'-)c„-c„))c„-c„))'"
33+ 44)k 13+ 447 C C11 44

-[(c„-c„)'+t~'e, [2(c„+c„)'—(c„-c„)(c„-c„}]},
'=2(Cts+C«)' —(Ctt —C«)«» —C«+ Css —C«)

+ (C»+ C«)[2(cts+ Css) —(Css —C«)(cts —C44+ C„—C«) —(I))tan 6, ]
ts+ Cs&)][(Css+ C«) (C11 C44)(Css C«)]/Cstc4s}

TABLE III. The phonon-amplification factor in hexagonal crystals at collinear points. For elastically isotropic solids
the amplification factor

Aisle

is unity. The angle es subtended by a detector along the C axis was chosen to be 1' for soi-
ids having cuspidal edges about the C axis. The calculations for all other cases correspond to those for an infinitesimal
detector

Material

Apatite
Beryl
Beryllium
Beryllium oxide
Cadmium
Cadmium selenide
Cadmium sulfide
Calcium magneside
Cobalt
Hafnium
Helium 4
Helium 4
Helium 4
Ice (H, O)
Ice (D2O)
Magnesium
Rhenium
Thallium
Titanium
Yttrium
Zinc
Zinc
Zinc oxide
Zinc sulfide
Zinc sulfide
Zinc sulfide
Zirconium

0.212
l.628
0.986
2.516
0.134
2. 678
2.249
2.152
3.633
l.462

494
6.975
5.025
2.367
3.538
l.637
2.6S1
2.498
1.564
1.413
0.021
0.019
l.508
2.748
3.217
3.344
2.413

A (Op)

Tf

0.745
0.557
l.496
0.782
0.294
0.833
0.805
0.779
1.129
1,078
3.213
1.160
1.667
0.772
1, 070
0, 965
0, 834
6.660
1.297
1.019
0.417
0.421
0.920
0.777
0.800
0.793
0.678

73.60
0.175
1.887
0.245

76. 30
0.130
0.148
0.28S
0. 150
0.548
0.254
0.111
0.195
0.184
0. 166
0.378
0.202
0.339
0.464
0.395

37.10
36.28
0.279
0.146
0.147
0.142
0.203

0. 697
1.746
0.745
1.413
2. 000
1.300
1.262
1.296
l.444
l.050
1.391
l.723
1.297
l.306
l.367
l. 172
1.364
0.869
l.074
1.283
l.472
l.455
1.214
1.455
l.440
l.458
l.276

A(90')
Tf

1.158
1,340
0.818
1.131
l. 844
1.096
1.115
l.133
0, 941
0.963
0. 558
0.929
0.775
1.138
0.967
l.018
l. 089
0.388
0.878
0.991
1.549
l.541
1.043
1.135
l.118
1.123
1,215

4.419
0.476
l. 561
0.471
l.487
0.329
0.359
0.513
0.342
0.720
0.405
0.264
0.340
0.402
0.353
0.599
0.417
0.491
0.657
0.643

15.62
10.83
0.526
0.361
0.348
0.340
0.417

A(e, )

l.636
0.713
1.014
0.668

0.719
0.752
0.732
0.631
0.925
0. 611
0.497
0.673
0.725
0. 662
0.825
0, 685

0.898
0.814

0, 822
0.657
0.644
0.635
0.735

0, 365
9.428
0.775

15.71
0.640
3.741
5. 182

13.38
3, 466
l. 581
5.228
l.815
3.834
7.657
4. 075
2. 772
7.762
4. 331
1.943
2.416
0.300
0.285
5.656
4. 106
3.684
3.432

10.05
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3(C18+C44) (C11 C44)( 11 C44+ C$3 44) t

sin84 d8~
+

sin82 d8„e (62)

and d8, /d8„1~, , ~, is given by Eg. (29). The value
of d8~ /d8„at impure-mode points 8~ = 8„84 can be
determined numerically. Calculation of the phonon-
amplification factor at all collinear points are
listed in Table III.

To determine the phonon-amplification factor at
other directions it is most convenient to use nu-
merical integration to count the number of group-
velocity vectors faHing within a small solid angle
for a uniform angular density of k vectors. This
has been done for a number of hexagonal crystals.
The results are tabulated in Table IV for helium 4.

G. Effect of phonon focusing on phonon conduction

Since in hexagonal crystals the phonon phase
velocity for each mode along directions parallel
and perpendicular to the C axis are different, the
thermal conductivity is expected to be anisotropic
at all temperatures. In the boundary-scattering
regime (i.e. , ballistic phonon propagation), how-
ever, focusing can be responsible for anisotropic
heat conduction even when the phonon phase veloci-
ties along directions parallel and perpendicular to
the C axis are equal. Focusing will always be
present whenever a solid is elastically anisotropic
and occurs even in cubic crystals.

To illustrate the effects of focusing, therefore,
calculations were performed to determine the pho-
non-conduction-enhancement factor A„, defined as

A„=«g»„ (63)

where I(:„ is the thermal conductivity calculated by
correctly including the effects of phonon focusing
and x, is the thermal conductivity calculated using
phase -velocity vectors instead of group-velocity

and tan'80 is given by Eq. (41).
For a cusp about C, the phonon-amplification

factor is straightforward to derive. The result is

+ 3 sin8,„', (6l)d8a

v +=el, e~ =90

where

d8~

d8. e~=el, e~ao'

is given by Eqs. (67)-(60) but with cot 8, replacing
tan 80 C 33 repl acing C» and C» replacing C33 ~

For a cusp about the collinear point 82 the deriva-
tion is quite similar. The result is

d8~ sin83 d8~
+

d8„e~ e ~, sin8, d8„e~=e3,e

vectors in each mode. Calculations of v, thus dis-
regard the angular deviation between the group-
velocity vectors and their corresponding wave vec-
tors for elastically anisotropic solids. Values of
x, will depend upon the orientation of the rod axis
and will be largest for directions coinciding with
the largest inverse-square phase velocity averaged
over the three modes.

Calculations of x„and ~, were performed for
samples of circular cross section with a length-to-
diameter ratio of 10. It must be emphasized that
this length is not the geometric length of the crystal
but a thermal length and is measured along the
sample rod axis between the centers of the heat
source and heat sink, respectively. ' Calculations
of the Casimir velocity v, and the lattice specific
heat C„/T' for five solids are listed in Table V.
The Casimir velocity is defined as

n, = (s ')/(s '), (64)

TABLE IV. Calculated intensities of phonons in solid
helium 4 as a function of the angle 8 with respect to the
C axis. A uniform density of wave vectors is assumed.
The corresponding intensities for an elastically isotropic
solid are unity. Calculations were performed using the
elastic constants of H. H. Crepeau, O. Heybey, D. M.
Lee, and S. A. Strauss I.Phys. Rev. A 3, 1162 (1971)] at
a molar volume of 20. 97 cm .

e (deg)

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44

4.9
4. 8
4.8
4.3
4.0
3.4
3.1
2.8
2.3
1.9
1.8
1,6
1.4
1.2
1.1
1.0
0 ~ 9
0.9
0.7
0.7
0.7
0.6
0.7

1.4
1.6
1.7
1.7
1.7
1.5
1.6
1.5
1.6
1.5
1.5
1.5
1.3
1.5
1.3
1.3
1.3
1.3
1 ~ 2
1.2
1.1
1.1
1.1

0.2
0.2
0.2
0.2
0.2
0.2

0.2

0.2
0.2

0.2
0.2
0.2
0.2

0.2

0.3
0.3
0.3
0.4
0.4
0.4
0 ~ 5
0, 5
8.5

e (deg)

46
48
50
52
54
56
58
60
62
64
66
68
70
72
74
76
78
80
82
84
86
88
90

0.7
0.5
0.6
0.6
0.5
0.6
0.6
0.7
0.6
0.7
0.7
0 ~ 8
0 ~ 8
0.9
0.9
1.0
1.0
1.1
1.2
1.2
1.3
1,3
1.2

1 ~ 1
1.0
1.1
1.0
1.0
0.9
1.0
0.9
0.8
0.9
0.8
0.8
0.8
0.8
0.8
0 ~ 8
0.8
0.8
0.8
0.8
0.7
0.8
0.8

T2

4. 0
4. 0
4. 5
4. 1
0. 8
0. 6
0.7
0.6
0.4
0.5
0.4
0.4
0.4
0.4
0, 4
0.3
0.4
0.4
0. 3
0. 3
0. 4
0. 3
0.4

where (s ) and (s ) are, respectively, averages
of the inverse square and inverse cube of the pho-
non phase velocity for the three modes over all
directions. Calculations of the thermal conductivity
v/T, the effective phonon mean free path A„
and the thermal-conduction-enhancement factor
A.„, as a function of the heat-flow direction with
respect to the C ax'is are given in Table VI. The
thermal conductivity x was calculated using the
theory of McCurdy, Naris, and Elbaum. ' The
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TABLE V. Casimir velocity v, and lattice specific heat CJT for selected hexagonal crystals st very low tempera-

tures. All densities and elastic constants are low-temperature values. Elastic constants of helium 4 are multiplied by
10; all others are multiplied by 10 for units of dyn/cm . The density of cadmium was calculated from the value of
8.7491 gm/cm3 at 25'C obtained from x-ray data" and the linear coefficients of thermal expansion. ' For thallium, the
density was calculated from the room temperature value~ of 11.56 gm/cm derived from x-ray data and the fractional
change in volume. The room temperature value of 7.134 grn/cm obtained from x-ray data and the fractional change

f

in volume were used to calculate the low-temperature density of zinc. The density of zirconium, however, was calcu-
lated directly from the measured lattice parametersh at 4.2'K.

Material
Density

(gm cm+)
Elastic constants

C33 C44 C(3
Vc

(km sec ')
Cgr'

(erg deg cm )

Cadmium
Helium 4
Thallium
Zinc
Zirconium

8.9078
4.0/20. 97

11.81
7.275
6.5202

130.8
4.04'

44. 4c
176.96~

155.4'

57.37
5.53

60.2
68.48

172.5

24. 49
1.21
8.80

45. 89
36.3

45. 16
0.963
3.41

71.08
44. 1

41.45
1.05

30.0
52.79
64. 6

l.844
0.2670
0.7193
2.529
2.686

158.0
53730
2221

60.79
53.45

C. W. Garland and J. Silverman, Phys. Rev. 119, 1218 (1960).
"E. R. Jette and F. Foote, J. Chem. Phys. 3, 605 (1935}.
"R. D. McCammon and G. K. White, Philos. 1VIag. ~11 1125 (1965}.
R. W. Ferris, M. L. Shepard and J. F. Smith, J. Appl. Phys. 34, 768 (1963).

'R. W. Meyerhoff and J. F. Smith, J. Appl. Phys. ~33 219 (1962).
~G. A. Alers and J. R. Neighbours, J. Phys. Chem. Solids ~7 58 {1958).
H. E. Swanson and E. Tatge, Circ. U. S. Natl. Bur. Stand. 1, 16 {1953).

"J. Goldak, L. T. Lloyd, and C. S. Barrett, Phys. Rev. 144, 478 (1966).
'R. H. Crepeau, O. Heybey, D. M. Lee, and S. A. Strauss, Phys. Rev. A 3, 1162 {1971).
~C. W. Garland and R. Dalven, Phys. Rev. 111, 1232 (1958).
"E. S. Fisher and C. J. Renken, Phys. Rev. 135, A482 (1964).

diameter of the solid-helium-4 sample was 1.773
mm, the value used in the thermal-conductivity
experiments of Hogan, Guyer, and Fairbank. ~~

The remaining samples had a diameter of 3 mm.
The effective phonon mean free path A, was cal-
culated using the relation

K 3 CyvcA (65)

For elastically isotropic solids the thermal-con-
duction-enhancement factor A„ is unity and the ef-
fective phonon mean free path is equal to the Casi-
mir length ~,. The Casimir length end corrected
for samples with a thermal length 10 times the rod
diameter D is

A, =O. 926D.

For dielectric solids (helium 4) these results
should be applicable at temperatures which are a
small fraction of the Debye temperature. For
superconductors, however, (cadmium, thallium,
zinc, and zirconium) these results will not be ap-
plicable until the temperature becomes a small
fraction of the superconducting transition ternpera-
ture.

III. DISCUSSION

The presence of cuspidal edges has been pre-
viously reported in beryl and zinc' and more re-
cently in zinc sulfide. 6 It is interesting to note
that cusps about directions paraQel and perpendicu-

lar to the C axis are relatively rare, but cusps
about the collinear point 83 are common, occurring
in approximately half of the solids listed. Since
all solids listed have a C&3 &0, they have a collinear
point 82 and as a result focusing occurring in the
T2 mode about this point must be accompanied by
defocusing for this mode both parallel and perpen-
dicular to the C axis. Furthermore, a cuspidal
edge about either C or C„or the presence of focus-
ing about these directions must be accompanied by
defocusing of the T, mode about 8,. Three solids
listed do not have a collinear point 8~ because
focusing (defocusing) does not occur for the I, mode
both parallel and perpendicular to the C axis. If,
however, focusing occurs in the I. mode about 86,
it must be accompanied by defocusing in the Ta
mode about 8&. Similarly, if defocusing occurs in
the I. mode about 86, it must be accompanied by
focusing about 82 or the presence of a cuspidal edge
about 82 in the T~ mode. It is also evident that
focusing (defocusing) occurring in the T, mode
about the C axis must result in defocusing (focusing)
for this mode about C,.

Note that the presence of cuspidal edges give
rise to a large phonon-amplification factor. The
amount of enhancement is related to the width of
the cusp (the narrower the cusp the higher the pho-
non intensity) and to the angle the cusp of revolu-
tion makes with the C axis. It is easy to see that
since the velocity surfaces are surfaces of revolu-
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tion about the C axis, the presence of phonon focus-
ing or of cuspidal edges about this axis gives rise
to the highest intensities. A very narrow cusp
about C„however, can still give a large phonon-
amplification factor, as illustrated by zine, but the
highest intensities mill occur for cuspidal edges
about the C axis (e.g. , zinc, apatite, and cadmi-
um). In the case of cadmium the width of the cusp
is less than O. 25', giving an extremely high-in-
tensity small-diameter beam of phonons along the
C axis. One can also have a large phonon-amplifi-
cation factor in the absence of a cusp provided the
group-velocity vector varies very slowly with wave
vector. A case in point is calcium magneside
(CaMg2) about the point 82, where conditions for a
cuspidal edge are nearly satisfied.

Heat-pulse experiments were recently reported 7

in solid helium 4. Listed in Table IV are calcula-
tions of the phonon intensity as a function of the
angle to the C axis in helium 4 for a uniform den-
sity of wave vectors. The results were calculated

using numerical integration to count the number of
group-velocity vectors falling within 2 intervals
for a uniform density of k vectors. For a suffi-
ciently fine mesh in k space, the results should
agree along collinear points with the results in
Table GI. Note that along directions parallel and
perpendicular to the C axis the intensities of longi-
tudinal and transverse-T, waves are much stronger
than the T2 wave, To observe strong T, waves one
should look in the vicinity of the cusp center, ap-
proximately 48' to the C axis. Still-higher intensi-
ties occur along the cusp's edges.

Since the phonon conductivity at very low tem-
peratures is approximately inversely proportional
to the square of the phonon velocity, the transverse
modes, because of their lower velocity, contribute
most to the flow of heat. Energy flow in such a
solid should be enhanced along those crystallo-
graphic directions where these modes are strongly
focused. Cuspidal edges associated with strong
focusing are almays absent for the transverse T,

TABLE VI. Summary of theoretical results for selected hexagonal crystals at very low temperatures. Calculations
were performed for samples in tne form of circular cross-section rods with a thermal length of ten rod diameters.
Symbols are defined in the text.

Material Diameter 30

Angle to C axis {deg)

45 60 90

Cadmium

{Wcm ' deg )

A, ,/D
0.279

0.959

0.905

0.234

0.803

0.768

0.224

0.769

0.761

0.241

0.828

0.863

0.274

0.940

1.04

0.308

1.06

1.21 1.29

Helium 4 1.773 mm

{Wcm deg )

Cv~r/L'

A„

8.98

1.06 1.03

l. 18

9.24

1.09

1.22

0. 939

1 ~ 01

0.831

0.864

6.81

0. 803

0.821

Thallium 3 mm

{Wcm~deg )

,ja
2. 50

2, 14

1.47

1.98

2. 05 1.78

l.31

1.44

0.902

0. 959

0.744

0.728

0.692

0, 655

Zinc

{Wcm'deg )

/D

Ax

0.167

1.09

l.01

0.135

0.880

0.824

0.116

0.753

0.719

0.121

0.785

0.795

0.140

0.913

1.01

0.168

l.10

l.30

0.203

1,60

Zirconium

{Wcm'deg )

,/D
0.119

0, 828

0.867

0.121

0.844

0.892

0. 131

0, 916

0.987

0. 152

l. 16

0.137

0.960

l. 05

0. 128

0.895

0.965

0.126

0.880

0.941
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and the fast (normally f.) mode, and thus can only
occur in the slow (normally Tz) mode. For condi-
tions in which the slow mode is quasilongitudinal
and the fast mode is quasitransverse T» the slow
longitudinal mode may have cuspidal edges. In
this case the quasilongitudinal and the transverse
T, mode, because of their lower velocity, will
make the major contribution to the flow of heat.
When cuspidal edges are present one should expect
an enhanced phonon conductivity along those direc-
tions.

Listed in Table VI are the results of calculations
to determine the phonon conductivity and the pho-
non-conduction-enhancement factor for five solids
having strong focusing properties. Four of these
solids have cuspidal edges, and one has two sets
of cuspidal edges. The phonon conductivity of
zirconium and helium 4, each having a cuspidal
edge in the T, mode about 8„do indeed reach maxi-
mum in the vicinity of the cusp, the phonon-conduc-
tion-enhancement factors being 1.16 and 1.22, re-
spectively. However, for helium 4, focusing of the
T, mode about the C axis gives an enhancement
factor as large as that near the cusp. In the case
of cadmium and zinc, however, the phonon-conduc-
tion-enhancement factor along the C axis where
high focusing is predicted is only 0. 905 and 1.01,
respectively, whereas along C, is 1.29 and 1.60,
respectively. This is a direct result of the finite
length-to-diameter ratio used in the calculations.
For a sample length of only 10 rod diameters, pho-
nons deviating as much as 6' from the sample rod
axis can still travel nearly the entire length of the
sample. But if the high-intensity portion of the
phonon beam is confined to deviations of say 0. 5'
from the rod axis, the average phonon flux per unit
area will be of the order of (0. 5) j(6) = 0. 7% of the
average high-density portion of the beam. Under
these conditions the average phonon flux per unit
cross section could be comparable to that in an
isotropic solid even though the high-intensity region
be 150 times the isotropic intensity. Calculations
for cadmium and zinc using longer samples yielded
a sharp increase in the phonon-conduction-enhance-
ment factor along the C axis. Except for the cusp

in the T~ mode for zinc about C„cadmium and
zinc exhibit more modest focusing along C~, but
over a wide angle so that the total phonon flux along
a rod axis parallel to C, actually exceeds the total
flux along a rod axis parallel to the C axis. A
more vivid example of modest wide-angle focusing
is the case of thallium. The large phonon-enhance-
ment factor along the C axis is due to focusing in
the T, mode which is always cusp-free. In this
case the phonon-enhancement factor along the C
axis is more than three times the value along C,.

The predictions of thermal conductivity for solid
helium 4 appear in reasonable agreement with mea-
surements of Hogan, Guyer, and Fairbank. Care-
ful comparison is difficult because the elastic con-
stants vary significantly with molar volume and no
measurements of the elastic constants have been
reported for the molar volumes used in the thermal-
conductivity experiments. Furthermore, the
thermal-conductivity data. do not follow a Ts law
above approximately 0. 4 'K and few measurements
were performed below this temperature. Finally,
the thermal length of the crystals used in the ex-
periments are not known. In view of these diffi-
culties any reasonable agreement is encouraging.

Finally, note that focusing calculations already
performed for crystals of lower symmetries indi-
cate that phonon focusing is a general property of
elastically anisotropic solids. Strong focusing is
predicted to have a dramatic effect upon the phonon
conductivity at very low temperatures. For dielec-
tric solids this should be observable at tempera-
tures which are a small fraction of the Debye tem-
perature, but for superconductors this will not
likely be observed until T/T, «1. These results,
on completion, will be presented for publication at
a later date.
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