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Vibronic Zeeman intensity ratios are predicted for circularly polarized light propagation parallel to an
externally applied magnetic field along [100] and f 111] directions. A unique relative-intensity pattern is
predicted for each type of site-symmetry vibration appearing in vibronic Zeeman patterns involving T, ~
or T2s electronic states. Experimental results in fields up to 62.8 kOe show semiquantitative agreement
in most cases with predicted results for the ideal case of a limiting approximation in which T,„and T~„, etc. ,
site-symmetry vibrations are not degenerate. Such degeneracy, rather than accidental, is typical of that
required by the space-group symmetry of the crystal, and leads to departures from the limiting intensity
ratios. Measurements of the departure from the limiting ratios can lead to the determination of the rela-
tive contribution of degenerate T,„,T~„, etc., site-symmetry vibrations. This information should provide
quantitative data beyond that of zero-field vibronic intensity profiles in testing models for lattice-dynamics
calculations applied to the vibronic interaction, or in evaluating necessary parameters of such models.
Ideal m/o vibronic intensity ratios for D3d distortion of a cubic crystal field in zero magnetic field are
also presented which explain certain observed polarizations not predicted by exact vibronic selection rules.

I. INTRODUCTION

Kith the advent of superconducting magnets it is
possible to economically and conveniently achieve
high fields which are sufficient to resolve the Zee-
man effect of vibronic lines and bands. High fields
are needed because vibronic lines often can be
much broader than the parent zero-phonon lines of
paramagnetic ions, such as rare earths and acti-
nides, in crystals.

The peaks in vibronic bands are associated with
peaks in the phonon density of states. Thus one
studies such vibronic Zeeman transitions not only
to infer g values of the parent electronic levels,
but to learn about the phonons and their coupling to
the bound electrons. However, the Zeeman split-
ting of vibronic bands gives no information about
the phonons unless the relative density of phonon
states is very large, as in the case of well-local-
ized vibrations. Thus, except for the latter, the
Zeeman splitting of vibronic peaks in crystals is
normally the same as the associated electronic
levels. On the other hand, the relative intensity
within a Zeeman pattern for a vibronic peak does
reflect information about the phonons even when
vibronic and parent electronic g values are equal.

In this paper we consider both theoretically and
experimentally the problem of interpreting the rel~
ative intensity of circularly polarized electric di-
pole vibronic transitions for light propagating along
the magnetic field [100]and [ill] directions in
cubic CszUBr8 and U ' doped in cubic CszZrC16.
The vibronic Zeeman spectrum in a cubic crystal
is anisotropic in intensity, although isotropic in
first-order level splitting; hence the understanding
of an observed spectrum is greatly facilitated by
an analysis of the theoretical intensities such as
presented here. Calculated relative intensities are

compared with experimental data for these crys
tais.

The calculated relative intensities @re obtainable
in a limiting approximation by group theory. The
breakdown of this approximation can in principle be
experimentally discovered by careful relative-in-
tensity measurements and lead to information about
lattice vibrations.

The theoretical intensity methods used here for
cubic crystals are also applicable with further
approximations to noncubic crystals in which there
are atomic groupings such as the UC16 complex
which have a symmetry distorted from octahedral.
In this connection we report here a possible ex-
planation for certain anomalous polarization re-
sults in the zero-field vibronic spectrum of trigo-
nal CszUC16. In this crystal the UCle complex is
at a site of Ds„symmetry. By treating the complex
as octahedral with a D3& dhstortion the latter plays
a similar (although incomplete) role to the magnetic
field in (partially) removing the degeneracies which
would occur in purely octahedral symmetry. Ear-
lier (unpublished) results showed that certain vi-
bronic lines relatively few in number had a polari-
zation which could not be accounted for by exact
vibronic selection rules involving phonons at any
point in the Brillouin zone. The relative-intensity
calculations presented here can account for such
results, ' hence the approximations made presum-
ably isolate the most important features of the prob-
lem. The missing o polarizations, allowed by the
exact selection rules in these cases, presumably
occur only weakly.

II. CUBIC CASE

A. Theoretical intensities

%e first examine what to expect theoretically for
the relative intensities when the vibrations belong
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to an irreducible representation of the site-sym-
metry group (0„) of the U

' site, a,s these relative
intensities are determined entirely group theoret-
ically. This involves an approximation which is
discussed later in the paper. The electronic
ground state is nondegenerate A& and the only
types of excited electronic states of Zeeman in-
terest are either T& or Ta, since other represen-
tations are either nondegenerate (A& and Az~) or
have no first-order Zeeman splitting (E,). Essen-
tially only 4n = 1 vibrational-quantum-number
changes appear in the vibronic spectrum and the
vibronic splitting is the same as the parent elec-
tronic splitting.

Circularly polarized light produces transitions
from the singlet ground state to vibronic states be-
longing to particular rows of Th„which also are
chosen to represent the reduced site symmetry in
the magnetic field. The intensity of a circularly
polarized vibronic transition from the A& ground
vibronic state g& to an excited vibronic state g2 is
proportional to the absolute value squared of ma-
trix elements of the form

where the a& and b& contain appropriate energy de-
nominators, and V„ is the electron-phonon inter-
action which arises from the modulation of the

crystalline field at the U
' ion due to relative mo-

tion of the U
' and surrounding ions. The circular

polarization corresponding to the operator
o, =g(x;+iy;) is either called left handed (plus sign)
or right handed (minus sign), using the convention
that one observes the rotation sense of the E vec-
tor as the light approaches the observer. -The
g„are first-order vibronic states and consist of
products of electronic and vibrational wave func-
tions, each of which and whose product belong to a
row of the O„site-symmetry irreducible represen-
tation, as well as forming one-dimensi. onal repre-
sentations of the lower symmetry group produced
by the magnetic field H. For H along [100]the
uranium-ion site symmetry is C4& and for H along
[111)the site symmetry is C3;. Suitable vibronic
basis functions for C4„symmetry were given in
Ref. 1 and, for C3, are given in the Appendix of
this paper.

In a strong magnetic field the Zeeman interaction
lowers the symmetry by producing appreciable
mixing of nondegenerate zero-field cubic wave
functions. For the magnetic field along [111)there
are no vibronic selection rules in a strong field in-
volving Tz„or T&„vibrations, assuming that the vi-
brational degeneracies are still not split by the
magnetic field. Although our field attained 62. 8

where Q, belong to the ith row of the a irreducible
representation of the O„site-symmetry group. The

Q; are normalized linear combinations of dis-
placements of symmetrically equivalent mth-near-
est-neighbor atoms (or complexes) centered about
a uranium site. The Q; in turn are proportional
to normal coordinates of the lattice. Higher-de-
gree terms in the Q are not needed for 4n = + 1 vi-
bronic intensities.

Because the ground vibronic state transforms as
A& and all cubic basis functions are uniquely de-
termined by symmetry, the relative intensities of
transitions to a particular vibronic Zeeman multi-
plet are given by symmetry-determined linear
combinations of generalized (O„group) Wigner co-
efficients which arise either in the square of a sin-
gle matrix element of (1), such as

(Pal ~svl 4g) (3)

where P& transforms as either x+ iy or x —iy, or,
in what gives the same result, the square of

(Al ~.,Z(» +iy&)l 6) (4)

The relations between matrix elements, such as
given in the Appendix of Ref. 1, which are a con-
sequence of the generalized Wigner-Eckhart theo-
rem for cubic symmetry, are useful in obtaining
the results. Since V„ is an invariant under 0„
operations, Pz must also transform as xaiy. It is
understood, of course, that x and y appearing in
(1), (3), or (4) are orthogonal to the propagation
direction, which is taken as the z axis. Although
closure is sometimes employed in intensity calcu-
lations, because of the lack of knowledge of energy
denominators, there is no need for the assumption
of closure in the use of (3) or (4) to obtain relative
intensities within a Zeeman multiplet; hence agree-
ment with experiment of the calculated results in
this paper is not a test of closure.

Interesting intensity-ratio patterns are predicted
theoretically for right and left circularly polarized
light in comparing propagation along [100] and [111]
directions for the limiting cases in which the vi-

kOe, this must be regarded as a weak magnetic
field for the purposes of intensity calculations,
since the ratio of Zeeman splitting to energy sepa-
ration between crystal-field levels is of the order
of 10 . Thus the intensities of the vibronic Zee-
man components are determined only by zero-or-
der cubic wave functions. Nevertheless, the field
is strong enoughin many cases to fully resolve and
separate these components.

The vibronic interaction V„ is expanded in terms
of site-symmetry coordinates Q,. and, keeping
only first-degree terms in Q, has the form

(2)
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Vibration

TQ 2g
electronic electronic

states. states.
Field Field

direction direction
Polarization [100] [111] [100] [111]

A(g and
zero phonon

110 110
011 011

022 114
220 411

103 022
301 220

100 100
001 001

022 114
220 411

110 110
011 011

103 022
301 220

100 100
001 001

brational displacements transform according to an
odd-parity irreducible representation of the site
group about the paramagnetic ion. The calculated
results summarized in Table I show that transi-
tions to each odd-parity vibrational site-group ir-
reducible representation coupled to a particular
electronic state yield a unique intensity pattern
when both propagation directions are considered.

Although most circularly polarized vibronic
Zeeman intensity patterns are seen from Table I

TABLE I. Helative intensities calculated for the three
components of the vibronic Zeeman circularly polarized
electric dipole transitions between an &~~ vibronic ground
state and various vibronic levels involving T~~ and T&~
electronic states. Light propagation parallel to magnetic
field directions along [100] and [111]are included. The
allowed magnetic dipole zero-phonon transitions to T~~
levels are also shown. Relative intensities apply only
within a vibronic multiplet, not between different multi-
plets. Different directions within a vibronic multiplet
are comparable per paramagnetic ion.

to be anisotropic, a simple argument demonstrates
that the intensity pattern can be isotropic if both
coupled electronic and vibrational states are angu-
lar momentum J= 1 states, which form a basis for
Th„since the Zeeman intensity pattern for coupled
J= I states does not depend on the direction of the
magnetic field in space. This argument also makes
it possible to conclude that for all propagation di-
rections obtainable by operations of 0~ acting on
the [100]direction, the intensity pattern is the
same if the excited electronic and vibrational states
are both T&„, even if not constructed of J= 1 states.
In particular, the pattern is the same for propaga-
tion along [110]for these states. However, the
isotropy of the pattern for directions other than
symmetry axes of the cube can only be expected to
hold for J= j. states.

It is rather striking that densitometer traces of
resolved vibronic Zeeman spectra, as shown in
Pigs. 1-3, exhibit relative-intensity patterns most
of which are quite close to the limiting cases of
Table I, but only T&„and T vibrations seem to
appear. The latter probably reflects the fact that
the nearest-neighbor interactions between the cen-
tral ion and surrounding ligands are the most im-
portant for vibronic spectra and Tq„and Ta,„are the
only types of odd-parity symmetry displacements
which an octahedral XF6 complex can have, and
possibly also the fact that the longest-range terms
in the vibronic interaction involve Th, modes.

However, we do not wish to imply that this paper
is concerned only vnth "internal" vibrations of the
XF6 complex, as much of our vibronic data comes
from the "external" lattice bands. Further dis-
cussion of the expected intensity patterns is pre-
sented in Sec. IV.

B. Experimental results

It is helpful in discussing the experimental re-
sults to keep in mind the number of phonon
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branches to expect for crystals such as Cs@UBrs
and Cs&ZrCl@ which have the O„point-group and
one molecule per primitive unit cell. Since we
are not presenting phonon dispersion curves we
shall for convenience enumerate only the phonons
at the I point, although by this we do not wish to
imply anything about the importance of k = 0 pho-
nons in the vibronic spectrum. The phonon
branches at A = 0 are I'g, I'g2, I'g5, 2I'2g, I'p5, 3I"gg.
The I'5 and the two highest-energy X'js phonons
have unit-ceQ vibrations concentrated largely in
the Tz„and 2Tq„, respectively, internal vibrations
of the UBre or UC16 complex.

The vibronic spectra of CsUBre and CszZrCls.
U crystals were obtained on photographic plates
using a 2. 5-m Ebert mounting spectrograph with a
4&& 5-in. grating having 600 lines/mm, and used in
the fourth order. The figures presented here are
densitometer traces of these plates. The Zeeman
spectra were photographed with the crystals at
4. 2 K using a superconducting magnet with field
strengths up to 62. 8 kOe. Circular polarization of
the light was accomplished by a Gian-Thompson
linear polarizer followed by a Fresnel rhomb.

Figure 1 shows a densitometex txace of a portion
of the absorption spectrum of U

'
doped in CsZrCle

in left (o,) and right (o ) circular polarization in
which the light propagation and field direction are
along [111]. The upper electronic level is 7& at
18866 cm . Only two magnetic dipole zero-pho-
non Zeeman components (marked e) appear, since
the middle line is forbidden. In the accompanying
vibronic transitions only the internal vibrations
appear. The crystal is too dilute with respect to
U

' ions to show the external vibrations in this as
well as other absox'ption groups. Only the Tz in-
ternal vibx'ations centered at 90 cm and the Tq„
internal vibrations at 115 cm are shown in the
Q,gure, and they each clearly Chsplay relative-in-
tensity patterns well approximated by the appropri-
ate entries in Table I. The vibronic peak in the
region 260-280 cm associated with the other Tq„
internal vibration of the UCle complex is not
shown because the Zeeman intensity pattern in the
broad band is not resolved. Accurate relative-in-
tensity measurements cannot be obtained from the
densitometer traces of our photographic plates, so
departures fx om the intensity ratios of Table I can-
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FIG. 3. (a) Densitometer trace of a portion of the vi-
bronic spectrum of Cs2UBre associated with a transition
to the T2+ electronic level at 15 383 cm in zero field.
(b) Densitometer traces for right (solid) and left (dotted)
circular polarization for the same region as (a) but with
H =62. 8 kOe along [100]. (c) Same as (b) but propagation
and field along [111].

not be determined from our data.
The same T& electronic level in CszUBr6 is

shifted to 18 258 cm, and the vibrational fre-
quencies are reduced largely owing to the increased
mass from chlorine to bromine. Figure 2 shows
the vibronic transitions associated with this elec-
tronic level. The difference in relative-intensity
patterns between Tz„and Tz„vibrations in going
from [100]to [111]directions is clearly shown by

comparing Fig. 2(a) with Fig. 2(b). The lines cen-
tered at 47 and 61 cm from the zero-phonon line
are both clearly identifiable as Tz„vibrations, al-
though there is only one I'» phonon. The line at
76 cm follows a Th, pattern and is due predomi-
nantly to the Tq„vibration of the UBre complex
corresponding to the 115-cm vibration of UC16

Although the Zeeman effect of the absorption bands

centered at 186 and 210 cm cannot be completely
resolved, they are consistent with Tz„character.
These bands correspond to the 260-280-cm T~„
vibration of the UC16 complex split probably into

TO and LO bands, the latter at the higher energy.
Figure 3(a) displays the considerable structure

in the zero-field vibronic spectrum of Cs&UBr6
associated with the T2~ electronic level at 15383
cm in the region 35-65 cm . The only predomi-
nantly internal vibration of the UBrs complex ex-
pected in this region is a T~„, presumably the one
at 61 cm . The Zeeman effect of the four stron-
gest vibronic lines in this region of the spectrum is
presented in Figs. 3(b) and 3(c). In studying these
figures one should realize that, owing to the small
separation between some of the zero-field vibronic
lines, some overlap of Zeeman patterns occurs.
In particular, one component of the pattern cen-
tered at 56 cm is located at the same energy as
one of the components of the pattern centered at 61
cm . The latter Zeeman pattern is that of a Tz„
vibration just as in the case of the previously dis-
cussed electronic level. The peaks at 56 and 43
cm follow reasonably well the pattern of a T&„

vibration. Although the vibration at 47 cm exhib-
ited a Tz„pattern in the vibronic spectrum coupled
to the previously discussed T& electronic level,
the pattern is not as clearly pure Tz„ in the strong-
er absorption associated with the Tz electronic
level of Fig. 3. This pattern seems to be some
combination of Tz„and T2„and perhaps other vi-
bration patterns, as is more clearly shown in the
vibronic spectrum coupled to the Tz electronic
level at 12612 cm (Fig. 4), where the complica-
tion of overlapping Zeeman patterns is not present.

The presence of both Tz„and Tz„ intensity con-
tributions at a particular vibrational frequency can
be confirmed by observing transitions from the
ground A& to excited vibronic states involving Aj~
and A+ electronic levels. Selection rules permit
transitions to A,~ electronic states coupled only to
Tz„vibrations and transitions to A2~ electronic
states coupled only to T~„vibrations. To verify the
existence of the same vibrational frequency appear-
ing with more than one electronic level the energy
of the upper electronic levels must be determined
rather accurately indirectly, since both electric
and magnetic dipole zero-phonon transitions are
forbidden between Aq~ and either Az~ or A2 states.
These energies can be determined by averaging the
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acy, which accounts for departures from the inten-
sity ratios of Table I is taken up in See. IV.

III. DISTORTED CUBIC CASK: TRIGONAL IN ZERO
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In trigonal crystals such as Cs&UClq the uranium
atom is at a site of D3~ symmetry. The XF6 com-
plex is distorted from octahedral symmetry by
compression along the [ill] direction. We shall
assume that the electronic and vibrational energy-
level splittings appx opriate to the reduction from
octahedral to D3~ symmetry can be spectroscopical-
ly resolved. %e lower the symmetry of the vi-
bronic Hamiltonian but evaluate intensities with
zero-order (cubic) electronic and vibrational wave
functions.

The vibronic Hamiltonian for T,„(octahedral)
vibrations is then written

V.,= Af)qf+@faq)'+f)q))

I I I

40 50 40 50
Energy (c~')

FIG. 4. Densitometer traces for right (solid) and left
(dotted) circular polarization showering a portion of the vi-
bronic Zeeman spectrum in the region 40-50 cm ~ above
the T2~ level at 12612 cm ~ in Cs2UBre. &he magnetic field
0=62.8 kOe. (a) Propagation and field along [1111. (b)

Propagation and field along [100]. In zero magnetic field
the bracketed lines appear as a single line at the center
of the bracket.

frequencies of corresponding hot and cold bands at
liquid-nitrogen temperature. Our field-f ree
vibronic data for CsUBre involving previously
identified A& and Az~ electronic states have been
particularly examined for the appearance of vibron-
ic peaks corresponding to vibrational frequencies
of 43, 4V, 56, 61, and V6 cm". The A& level at
14692 em and the Ap level at 11VS6 cm were
used to form the following conclusions. The 43-
cm and V6-cm" lines appear coupled only to the

A~ electronic level, indicating Th, vibrational
character, and the line at 61 cm appears coupled
only to the A+,, indicating a T~ vibration. The vi-
brations at 47 and 56 em appear strongly in the
vibronic spectrum coupled to both A~ and A& elec-
tronic levels, indicating both Tz„and Tz„vibrations
contribute at this frequency. However, in the
Zeeman spectrum the 56-cm line seems to fit the
T~ intensity pattern, although the departure from
pure T& might have been masked by the proximity
of the Zeeman pattern of the 61-cm ' line.

The explanation, aside from accidental degener-

where both the primed functions qf and f,' are
chosen so as to span both TI„(octahedral) and one-
dimensional Cs representations as defined for q& in
the Appendix. When A = B in EIl. (5) then the latter
becomes invariant under all operations of O~, and
can also then be written in the unprimed basis rel-
ative to fourfold axes as V„=A[f)q) —f)q) —f)q)],
in which both the f, and q, transform as the q, de-
fined in the Appendix.

Similarly, the vibronic Hamiltonian for Tz„
(octahedral) vibrations is written

V„=aEIQf+ b(EP'Q)'+EgQg'),

where both the primed functions Q& and E,' are
chosen to span both T)„(octahedral) and one-dimen-
sional C3 representations as defined for Q„' in the
Appendix. When a= b in EIl. (6) then the latter be-
comes invariant under all operations of Or, and can
also be written in the unprimed basis relative to
fourfold axes as V„=s(E,QI+E)Q) +E)Q))t in which
both the E, and Q, transform as the Q~ defined in
the Appendix.

The relative intensities in zero magnetic field of
v and o (E vector parallel and perpendicular, re-
spectively, to the threefold axis) electric dipole
transitions connecting the A~ ground state with the
various possible vibronic states formed from all
possible electronic states coupled with the split
components of Tz„vibrational states are shown in
Table II. In reading Table II only intensity ratios
should be formed from entries which refer to elec-
tronic and vibrational states respectively degen-
erate in octahedral symmetry. The various ratios
thereby obtained are independent of electronic state
since the electronic matrix elements cancel out.
Note that when A= 8 the ratio of g to o intensities
equals unity if all contributions split from a partic-
ular octahedral electronic and vibrational level are
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Electronic
states

Oz DM

Aig Aig

Octahedral Ti„vibrational
states in DM field

Polarization A2g+34)

7r A2

A2g

E

Tig

A2g

A

A2
2B2

B2

B2

2B2

TABLE II. Relative intensities of vibronic transitions
for D3& distortion of cubic symmetry. [Ratios are to be
formed involving electronic and vibrational states re-
spectively degenerate in octahedral symmetry. The var-
ious ratios thereby obtained are independent of electronic
state since the electronic matrix elements cancel out.
The A/B ratio is the same as for V«of Eq. (5).]

relative intensities in zero magnetic field of g and
e electric dipole transitions connecting the Aj
ground state with the various possible vibronic
states formed from all possible electronic states
coupled with the split components of T~„vibration-
al states. As in Table II, only intensity ratios
should be formed which refer to electronic and
vibrational states respectively degenerate in octa-
hedral symmetry. Similar comments concerning
Table IO can be made as for Table II.

It should be emphasized that the intensity ratios
obtainable from Tables II and III depend not only on
the use of zero-order cubic wave functions for D3~

symmetry, but are also subject to the limiting
approximation of this paper, which also holds for
cubic crystals, and which is discussed in Sec. IV
on lattice -dynamics considerations.

IV. LATTICE-DYNAMICS CONSIDERATIONS:
LIMITING APPROXIMATION

T2g Aig

E

B2

2B2
4B2

added together for each polarization, in agreement
with what is expected for the strictly octahedral
case.

Table II also shows the possibility of a pure-s-
only transition from the Ai ground state to a vi-
bronic levelinwhichthe electronic state is E~(DM)
arising from T&(O„). Although such lines have
been observed experimentally, they could not be
understood on the basis of exact selection rules for
vibronic transitions involving phonons at various
points in the Brillouin zone. In particular, there
are no predicted z-only transitions from a ground
A& state to an excited E~(DS~) electronic level
coupled to a phonon, according to exact selection
rules, '~'8 regardless of where in the Brillouin
zone the phonon comes from. Although exact
selection rules should be obeyed in predictions
about forbidden transitions, it is well known that
transitions not forbidden by exact selection rules
may have other reasons for appearing only weakly
or not at all. Such is the situation here in exact
analogy to the difference between the strong- (mag-
netic) field and weak-field case discussed earlier
for cubic symmetry. The Ds„symmetry compo-
nent of the crystal field is small compared to the
octahedral component, as judged by its relative
effect in splitting the energy levels. The ratio of
D3& to octahedral splitting is of the order of 10
so only small mixing of octahedral wave functions
results.

In a like manner Table III shows results for the

TABLE III. Relative intensities of vibronic transitions
for D3& distortion of cubic symmetry. [Ratios are to be
formed involving only electronic and vibrational states
respectively degenerate in octahedral symmetry. The
various ratios thereby obtained are independent of elec-
tronic state since the electronic matrix elements cancel
out. The a/b ratio is the same as for V~ of Eq. (6).]

Electronic
states

DsuOz

Ai Ai

Octahedral T» vibrational
states in D3& fields

Polarization Ai„(DM) E.+M)

A2g A2g

Tfg A2g

2b2
b2

T2g Ai

2b2

4b2

a 2

2b2

It is well known that the vibrational modes of a
molecule belong to an irreducible representation
of the point group of the molecule. Barring acci-
dental degeneracies each eigenfrequency is associ-
ated with its own irreducible representation.

If a crystal is treated as a very large molecule,
the vibrational modes can also be classified
according to irreducible representations of the
point group appropriate to a particular site. It
seems to be not always appreciated that in such a
description, except for k=0 and a few special
cases, normal modes belonging to various diffet'-
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ent irreducible representations of the site group
must be degenerate. This is a consequence of the

space-group symmetry of the crystal. The occur-
rence of such a degeneracy is clearly important for
the calculation of vibronic intensities, as the in-
tensity ratios of Table I depend on the existence
of only one dominant site-symmetry vibrational
irreducible representation for a given vibronic
peak.

Although there is more than one way to demon-
strate the above degeneracy, one general proof is
as follows: In the conventional description normal
coordinates of a crystal are described in terms of
plane waves. Those modes having a particular
wave vector k and transforming according to some
irreducible representation of the group of the k
vector, will, together with all other degenerate
modes belonging to the remaining symmetrically
equivalent k vectors of the star, form a basis for
an irreducible representation of the space group.
The latter is reducible as a representation of a site
group. The site-group irreducible representations
contained in the space-group irreducible represen-
tation provide alternate descriptions of degenerate
normal modes of the crystal. The various site-
group modes (not to be confused with local modes)
thus contained, although belonging to different ir-
reducible representations of the site group, are
clearly degenerate as they are linear combinations
of the degenerate wave modes which were bases for
the original space -group representation. Such de-
compositions have been presented for the space
group 0„' by Loudon and for Ce„by Satten. For
example, from the table given by Loudon for 0„'
it is evident that for all but a few exceptional points
in the Brillouin zone there will be degenerate T&„
and Tz„modes in a site-group description for 0„
symmetry sites. For a general point in the Bril-
louin zone, in which the point group of the k vector
consists of the identity alone, the space-group
representation contains each O„site-group repre-
sentation as often as its dimensionality.

These considerations lead us to expect depar-
tures from the intensity ratios of Table I, particu-
larly for the external lattice vibrations, and we
have cited some examples occurring in the spec-
trum of CszUBre. Such departures are accounted
for by abandoning the limiting approximation of a
single dominant site-symmetry vibrational irreduc-
ible representation, and instead including all those
which are contained in the space-group representa-
tion and allowed by selection rules. Since only
odd-parity vibrations affect the intensity it follows
that the intensity of each vibronic peak can be ex-
pressed as a linear combination of at most four pa-
rameters, one parameter for each allowed odd-
parity irreducible representation of 0„. This re-
duces to three parameters if one neglects the

necessarily small Az„vibrational contribution,
which in principle appears for vibronic transitions
to T~ electronic levels. A&„site-symmetry vibra-
tions are unlikely to appear in the f" configuration
vibronic spectrum because they would involve
spherical harmonics F, , of degree l= 9 or higher
in electron coordinates in V„, and besides cannot
occur except for atoms beyond second nearest
neighbors to the uranium atom.

For a vibronic peak associated with a T& elec-
tronic level, suppose the intensity of the Tj„, T~„,

E„, A~„site-symmetry vibrations each acting alone
without the others would have produced, respec-
tively, the intensities a, b, c, d times the corre-
sponding intensities in Table I. Then the actual in-
tensity ratio R& of one outer line to the central line
of a three-line Zeeman pattern for propagation
along [100] is given by

2g+ 3c
2a+ b

(7)

The appropriate one of the two outer spectral lines
must be used for Eq. (7) to apply. For the other
outer line in the same circular polarization the
similar ratio to the central line is

b+c+d
2a+b '

Along [111]we obtain the corresponding intensity
ratios of an outer to the central Zeeman com-
ponent:

(8)

4c+ 2c
a+ b+2c

and

0+ b+d
4 a+ b+2c

(10)

B 3 —3Rg+R~
A 2(1+3Rg —Rm)

' (12)

Three' of the equations (7)-(10) can be solved for
three parameter ratios b/a, c/a, d/a if ao0. In

the latter case the parameter ratios a/b, c/b, d/b

can be solved for. The fourth equation leads to a
connection between the intensity ratios R» Rz, R3,

R4. From the way in which the intensity ratios R,
are constructed they obviously reduce to the ratios
of simple integers given by Table I when all but one

of the a, b, c, d are zero.
For vibronic transitions involving a T& electron-

ic level, if one ignores the A&„vibrations and intro-
duces the analogous intensity parameters A, B, C,
one obtains in an analogous way after solving the
equations the result

C Rg+RB —1
A 1+3Rg -Rg

and
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where R& and Rz are similarly defined ratios for the
[100] propagation direction. The [111]direction
introduces a ratio Q which connects R& and Ra.

The experimental determination of these vibron-
ic-intensity-parameter ratios should provide addi-
tional quantitative information for lattice-dynamics
calculations based on optical data, and for the
vibronic interaction not thus far obtained from vi-
bronic spectra. This information goes beyond that
obtainable from intensity profiles of zero-field vi-
bronic bands by separating the contributions to each
vibronic peak into significant parts. It is hoped
that the experimentally determined intensity-pa-
rameter ratios will, together with other optical
data, assist in the determination of the large num-
ber of parameters required by the more sophisti-
cated lattice-dynamics models. '

Having accounted in principle for departures
from the limiting ratios of Table I, the question be-
comes why are the intensity ratios of Table I so
nearly followed in many vibronic peaks. There is
probably no single reason applicable to all vibronic
peaks. In the following we discuss the situation.

We do not expect departures from the intensity
ratios of Table I to be due to phonons near k = 0.
The reason can be most simply understood in terms
of an example. Consider degenerate I'z~ phonons.
The vibrations of the XY~ complex transform"m as Tz„.
For degenerate phonons from the same branch
having k vectors very close to k=0, a symmetri-
cally equivalent "shell" of XY6 complexes under
operations relative to the central-cell origin will
have vibrational amplitudes which are much larger
for T&„ than any other type of vibration, as long as
the distance to the shell from the origin is much
smaller than the phonon wavelength. When k is
small one must go so far from the central cell to
build up other amplitudes than T2„ for the shell that
the vibronic interaction between shell and central
ion would be negligible.

For phonon branches which involve mainly the in-
ternal vibrations of the XYz complex the relative-
intensity pattern is easiest to understand. These
peaks seem to involve fairly pure T~ or T&„vibra-
tions. Owing in part to the relatively large amplitude
of vibration concentrated in the complex for such
modes, the nearest-neighbor vibronic interactions
no doubt dominate the vibronic intensity mecha-
nisms. The entire complex is within a primitive
unit cell and the only odd-parity O„symmetry co-
ordinates of an XY6 complex which can be formed
transform as Tq„or Tz„. Even though unit-cell
eigenvectors of the dynamical matrix' for k 4 0 are
linear combinations of those at k= 0, it is reasona-
ble to expect that for phonon branches in which in-
ternal vibrations predominate, the amplitude of the
Th, or Tz„symmetry coordinates in the unit-cell
motion will not both be relatively large in a partic-

ular optical branch, but at most only one or the
other type dominate throughout most of the Bril-
louin zone. For example, the phonon branch which
is I'z& at k = 0 will have a unit-cell eigenvector with
the largest amplitude concentrated in the Tz„mo-
tion of the XY6 complex throughout most of the
Brillouin zone. This was found to be the case in
the lattice-dynamics calculation for Cs&UBr& of
Chodos

For phonon branches which involve mainly ex-
ternal vibrations the relative amplitudes in the
unit-cell eigenvectors cannot be expected to have
a dominant symmetry coordinate throughout the
Brillouin zone; hence the unit-cell eigenvectors
and the density of states must be determined from
a lattice-dynamics calculation. Fox' crystals such
as Cs&UBr6 and Cs&ZrC1~ having 0~ space groups,
site -symmetry vibrations involving the cesium
atoms in particular can be expected to be of im-
portance since they are second nearest neighbors
to the central X atom of the XY6 complex. There
are two cesium atoms per primitive unit cell, but
eight symmetrically equivalent cesium atoms com-
prising the second-nearest-neighbor shell. The
three Cartesian components for each of the eight
cesium atnms form the basis of a reducible repre-
sentation which factors into A&+A&„+E~+E„+T&
+ 2T& + 2T+ Tz„site -symmetry irreducible repre-
sentations. Which of these types of site-symmetry
motions occurs for degenerate phonons of any par-
ticular type in the conventional wave description is
obtainable from the decomposition table of Loudon.
Their amplitudes for such phonons are obtainable
from the unit-cell eigenvectors. Tz or Tz„site-
symmetry vibrations of the eight nearest cesiums
to the central uranium atom will be accompanied by
T&„or Tz„motions respectively of the XY6 complex.
Unless the latter amplitudes are very small rela-
tive to the cesiums they may also contribute to the
vibronic intensity owing to their greater proximity to
the central atom. If E„vibrations contribute to
vibronic transitions to T~ or Tz, electronic states
they must be due to cesium vibrations or beyond.
The E„vibrations ark forbidden by selection rules
to be observable in vibronic transitions to A~, A&,
or E, electronic states from the ground A&. The
presence of E„site-symmetry vibrations in the vi-
bronic spectrum can only be determined experimen-
tally by measuring the departure of the vibronic in-
tensity ratios from the limiting ratios of Table I
and solving for c/a or c/b intensity ratios, as dis-
cussed above, since no intensity pattern resem-
bling the pure-E„case of Table I was observed in
the spectrum.

Departures from the intensity ratios of Table I
will not occur for certain phonon peaks for group-
theoretic reasons. Thus there are phonons in the
Brillouin zone for which Th, site-symmetry vibra-
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tions occur without any other odd-parity vibrations,
and similarly for T~„. Besides the obvious I'-point
phonons, it can be seen from Loudon's table of
site-group representations contained in the 0„
space-group representations that the following
special types of phonons (together with those de-
generate in the star) have Ts„site-symmetry vibra-
tions surrounding the uranium site without any other
odd-parity vibrations: X3, 8'z, &z. To this list
should be added LqandAzphonons, whichyield Az

'vibrations as well, and Zz phonons, which produce
both A& and E„vibrations in addition to T, but no
IT,„. However, A,„site-symmetry vibrations are
unlikely to appear in the vibronic spectrum, as
already mentioned. Similarly, the phonons in the
star of X4 W2 &g have T,„site-symmetry vibra-
tions without any other odd-parity vibrations, L~
and ~, have T» and A», and Z3 yields T«, A2„,
and E„, but all have T&„without T&„.

It is, of course, understood that a single phonon
would not be observed in the vibronic spectrum.
However, it is reasonable to expect phonons con-
tributing to a vibronic peak to have eigenvectors

' which do not vary much over the peak. Hence, if
one of the above special phonons were included in
the peak, one would expect all the phonons contri-
buting to the peak to produce site-symmetry vi-
brations in which T,„and T2„vibrations are
negligible.

Although such special phonons exist, which do
not produce both T&„and T2„site-symmetry vibra-
tions, we are not suggesting this as a universal
explanation for those cases in which there is
agreement with the relative intensities of Table I.
We can be fairly certain that what is forbidden by
group theory will not appear. But, as we have
seen, we cannot always expect that what is allowed
will appear.

APPENDIX

The following define basis functions for the octa-
hedral group 0 which are also bases for one-
dimensional representations for C3. It is worth
noting that these C3 basis functions are also bases
for D3, which accounts for some of the zeros in
Tables I, II, and III.
T,„(0}:

As(Cs): q(= (3} '"[qi-qs(1-i)/V 2

+ q, (1+i)/W2],

Eg(Cs): qs = (3) [qs+ qs(W3+ 1)(1—i)/

2W2+ qs(W3 —1)(1+i)/2v 2 ],

Es(Cs): qs = (3) '
[q, —qs(WS —1)(l —i)/

2W2 —qs(WS+ 1)(1+i)/2W2],
where qq, qs, qs transform like z, —(z+sy}//W2,
(z —iy)/&2, respectively, under operations of 0
with x, y, s along four-fold axes. Then q~, iq&, iq3
transform like z', —(z'+iy'}/W2, (z' —iy'}/v2, re-
spectively, where z'= F (i+]+k}/W3, z'=r (s. -j)/
&2, y'=r (i+j —2k}/W6, inwhich i, j, k are unit
vectors along the four-fold axes.

T,„(0):

A~{Cs): Q( = (3) [Q~ —Qs(1+ i)/

W2 —Q, (1 —i)/W2],

Ei(Cs): Qs = (3} [Qg —Qs(v 3 —1)(1+i)/2V 2

+ Qs (v 3 + 1)(1- i)/2v 2 ],
Es(Cs): Qs = (3) I [Qg+ Qs(WS+ 1)(1+i)/

2v 2 —Qs(WS —1)(1—i)/2v 2 ],
where Qs, Qs, Qs transform like 2 (Ys s —Ys ~),
~p

~ f +p f respectively.
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