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Contribution of two-phonon processes to the spin-lattice re&a~ation rate of Kramers ious
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We consider the contribution of two-phonon processes to the spin-lattice relaxation rate of Kramers
ions. In particular, we study the interference between nonresonant and resonant processes when the
lowest excited doublet lies well below the Debye limit. In this case, to a good approximation, the
relaxation rate is the sum of a term proportional to (e '" —1) ' and a more complex term which at
low temperatures is proportional to T9. We also consider the case of the lowest excited doublet above
the Debye limit.

I. INTRODUCTION

In this paper, we shall study the contribution of
two-phonon processes to the spin-lattice relaxation
rate of Kramers ions and concentrate on the inter-
ference between nonresonant and resonant processes
when the lowest excited doublet lies well below the
Debye limit.

To first order in the phonon operators, the in-
teraction between the orbital motion of the elec-
trons of a paramagnetic ion and the surrounding
ions may be expressed as

X = E V(I',. l) C(I', , l, m)e(I', , m),
l=2s 4y ~ ~ ~

where C(I'«, l, m) are linear combinations of the
operator equivalents 0, which transform as the mth
subvector of the representation I'«, V(I'«, l) are
coefficients independent of m, and e(I'; m) are
linear combinations of the strain tensor which
transform as the mth subvector of the F;~ repre-
sentation and may be written '

1/2
e(I'(, m) = Z i (bg, —bp )Rg,(I'(~ m) .

lf.t s

Here M is the mass of the whole crystal, ~g, is the
frequency of a, phonon of wave vector k and polar-
ization s, bg, and b„; are phonon destruction and
creation operators, and Rr, (I',~ m) are coefficients
(some of which are listed by Orbach and Stapleton')
which in the long-wavelength limit become equal to
Ik IRI,(I';~, m), where R4(I'«, m) is independent of
the size of k.

We will not concern ourselves with second-order
terms in phonon operators because, for Kramers
ions, neglecting the effects of the Zeeman inter-
action, such terms have zero matrix elements be-
tween the components of one doublet.

Derivations of the relaxation rate for two-phonon
processes can be found in the literature' ' and will
not be reproduced here.

When there is only one excited doublet c, d at an
energy 4 above the ground doublet a, b, in the long
wavelength limit, assuming a Debye model for the
phonon spectrum, we have

,(2, , dn, dn, . 2 V(r,.„l)V(r, .„I')(h ~C(r„, I, m) ~c)(c ~C(I', I', m') ~a)
Ty 2w 2p (& & ~ v&v&r

$e~ ges m

2)
X[RE,(1'(, m)Rg...(I'.. . m') -R~;(I';, , m')Rf, ...(I';, m)]

)
tdmax 1 1 2

cu dv n(~)[n(&u) + 1]

where n(&a) = (e""+r—1) ', p is the density of the
crystal, v, and v, , represent the velocity of pho-
nons of polarization s and s', I' is the width of each
component of the excited doublet involved in the
relaxation and the integration over dQ~dQ~.
is a double angular integration in k space.

After the following change of variables

x = k&u/a, y = I'/2a,

the integral I over ur can be rewritten

~5 ~me~/a

~R J~ sinh'(x&/2M')

dx
[(1+x)'+ y '][(1—x)'+ya] '

Stoneham and more recently Lyo' have studied
similar integrals.
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k80»h, case 5 Also, one may notice the weak dependence of the
Raman rate on the width of the components of the
excited doublet, provided that this doublet is not
too close to the Debye limit. Figure 2(a) shows the
dependence of the integral in Eq. (1) on tempera-

------- k80)h case 2

cTCI

k80&Q cose 1

PIG. 1. Energy-level diagram showing the three
different cases studied.

II. NONRESONANT RAMAN PROCESS

%hen the excited doublet is above the Debye limit
(Fig. 1, case 1), expanding ([(I+x) +y ][(1—x)
+y ]) ' in powers of x, the above integral can be
rewrittenv

4k'T' g 1 sin(2m+2)e kT
&~

gvg4 &2n+4 ~

n28 g ~
s+gn D

where

(1+y 2)~i2

e = sin '[y/(I+y')'~],
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More explicitly, letting e, = e,, = e, we find

1 knk9 T 9 Z(8 /T)
'~"k,4 a (1 y')'

1 y' /kTI' Z„(8~/T)
(1+y')' ~&~ i ~8(8n/T)

3-10y'+3y' kT 'Z„(8+T)
(1+y')' & ~8(8n/T)

This reduces to the well-known T Raman result at
low temperatures. Only if the excited doublet is
well above the Debye limit is the temperature de-
pendence of the relaxation rate described by the
"usual" T Z,(8n/T). If this condition is not met,
the temperature dependence of the Raman process
may be described locally by T", where n first goes
from 9 to a maximum and then decreases to 2 in
the high-temperature limit. This corresponds to
the fact that more terms are needed in the series
expansion in order to approximate the integral.

2
-1.80 -1.40 -1.00

Log, (kris)

FIG. 2. (a) Temperature dependence of the integral
in Eq. (1) when the excited doublet lies above the Debye
limit (Fig. 1, case 1), for various values of the param-
eter k~/&. In the temperature range studied, changes
of the reduced width p of the excited doublet, provided it
is kept below 10, do not produce visible changes in the
figure. The function 4QT/E) Js ( ), whe~e J8 is the trans-
port integral defined in the text, is also plotted for com-
parison. (b) Temperature dependence of the exponent of
T" (locally determined) for various values of the parameter
kOp/A. As the excited doublet gets closer to the Debye
limit, a small dependence of the relaxation rate upon the
reduced width p of the excited doublet appears and is dis-
played for kz/4= 0.98.
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1.00 2a „ ia-@Ref" ——+O(y,},r (2)

0.75—

0- 0.50-

where O(yo) represents terms of order 1 and higher
in yo, which we will discuss later, and where we
have used the equality

0.25—

0=2.5

a=10

g' and g" being the well known trigamma and tetra-
gamma functions. This expression has the follow-
ing asymptotic expansion when a tends to infinity
(T goes to zero}:

0.00
0.00 0.40 0.80 1.20 1.60 2.00

FIG. 3. Integrand y of Eq. (1) properly scaled (see
text) for various values of the parameter a.

1 a' w/y,
T o sok7 o~ —1+ (-1)

1 p ~ -e d4

7r
2d

x „„a„(2—j)+O(y ),

ture, 4 and ez&. In Fig. 2(b), the dependence of n

upon the same parameters is given, and the extra
dependence on y which appears when the doublet
approaches the Debye limit is also shown.

III. RESONANT RAMAN PROCESS

When the excited doublet is below the Debye

limit, the situation is much more complex. For
convenience in doing the algebra, let a = 6/2kT.
Figure 3 shows the x dependence of the integrand
of Eq. (1) multiplied by the scaling factor
4y (a) sinh a, for various values of a (this scaling
factor is used only to allow the display of many
curves on the same graph and has no immediate
physical meaning); we have written the tempera-
ture-dependent reduced width of each component of
the excited doublet

y=yoeo'/(e ' —1) with yo=5gn /v pg,
where % is a quantity involving matrix elements of
the crystal-field Hamiltonian given in detail by
Orbach and yo is known to be, usually, on the order
of 10 or lower from the experimentally determined
coefficient of the resonant Raman process and was
taken equal to 10 ~ for Fig. 3.

If keD/& & 1.25, then to a good approximation it
can be seen from Fig. 3 that the upper limit of the
integral in Eq. (1) can be taken to be infinity for
temperatures lower than &/5k, and the larger
ke~/4 happens to be, the higher the temperature
at which this approximation breaks down.

Using the results given in the Appendix and ex-
panding in powers of y, we find

1 4o 4w/yo 2 w 4w

4p 8 jg „e ' —1 15 a~ 3as

——+—Img' ——

0240&10P11T 11
+ ~ ~ ~ + O(yo)

The first term within the brackets is the usual
resonant Raman term, the next one is the nonreso-
nant T9 Raman term, and the sum of the following
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FIG. 4. Plot of the three leading term@ in the relaxa-
tion integral when the excited doublet is below the Debye
limit (Fig. 1, case 2). Curve number 1 is the term in
1/&p within the square brackets of Eq. (2), curve number
2 is the absolute value of the term in (&p) within the
square brackets in Eq. (2), and curve number 3 is the
absolute value of the term in &p given in Eq. (3). The
signs of the terms in (&p) and pp are indicated on the
figure. The curves were computed with &p=10

where we have used Abramowitz and Stegun's con-
vention for the Bernoulli numbers. It is remark-
able that, in spite of the apparent complexity of the
problem, there is no power of T lower than 9. Ex-
plicitly, the first few terms read

1 Z' m 1 256m'O'T'

T "p2vioj-7 yo
e~/'T-1' 15859
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terms is the low-temperature asymptotic expansion
of the interference between resonant and nonreso-
nant processes.

As shown by direct computer calculation, the
asymptotic expansion for the trigamma and tetra-
gamma functions becomes useless around T = d, /15k.
In fact, the coefficient of the term in (yo)0 in Eq.
(2), which is positive as expected at low tempera-
tures, vanishes around T=d/11 24k .and remains
negative until T = d./3. 90k, after which it becomes
positive again. The rapid change of this coefficient
over two rather narrow temperature ranges (see
Figs. 4 and 5) should be difficult to observe be-
cause it produces only (and roughly) 100yo% change
to the total relaxation unless, of course, there are
systems for which yo is larger.

Since at very low temperatures the term in (yo)o

becomes larger than that in (yo)
' [i.e. , the re-

laxation rate varies as T instead of (e+"r —1) ' at
higher temperatures], one may wonder whether
such a behavior is to be expected from the next
term, in yo. Still expanding the results derived in
the Appendix, we find

Raman term) and a somewhat more complicated
term which, at low temperatures, is proportional
to T (the nonresonant Raman term)
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APPENDIX

In this appendix, we will evaluate the following
integral:

J= x' dx
sinh ax [(1+x)~ +y~][(1 —x)3+y'] ' 2kTz z z z

Making use of the equality

1 1 1
4x (1 —x) +y (1+x)'+y'

e' i& cosha 21 w
O(yo) =yo —

j 14am . 4 3sinh a sinh a

2a~w 3a w

sinh a sinh a
(3)

we obtain

1 '" x dx
4 „sinhsax (1 —x)~+y~

We also have

where O(yo) represents terms of order 2 and higher
in yo. At most, the term in yo is (see Figs. 4 and
5) 10yo times the term in (yo) and, for usual
values of yo it can be neglected, its biggest effects
being to slightly shift the two zeros of the nonreso-
nant term.

Therefore, for values of yo smaller than 10,
Eq. (2) is a good approximation of the relaxation
integral over a temperature range determined by
the position of the excited state with respect to the
Debye limit, as briefly discussed earlier.

If kOQE is large (Fig. 1, case 3), Eq. (1) can
be approximated by Eq. (2) even for small values
of a; then, the high-temperature relaxation rate
is given by

1/T, ~ T',

the well-known result for systems having a low-
lying excited state.

e "' cos[(1 —x) y] dJ,
1 1

1 —x +y y

which yields
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IV. CONCLUSION

We have studied the two-phonon relaxation pro-
cesses for Kramers systems for which the lowest
excited doublet is far removed from the others,
with the assumption that the phonon spectrum fol-
lows a Debye model. When the lowest doublet is
below the Debye limit, we showed that, to a good
approximation, the relaxation rate is the sum of a
term proportional to (e~+r —1) ~ (the resonant

1010
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FIG. 5. The same terms as in Fig. 4 are plotted at
lower temperatures and the curve 10247' (kT)9/(15 bs) is
also plotted to display the low-temperature behavior of
the relaxation. The same value of po was used as in Fig.
4.
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1 X sl~J=— e ~ sinydy . , dx,
4y p „sinh ax

or, equivalently,

sled vl( .~a
1 " „. d ( '" 1 —cosxy

4y p dyv ( „sinh~ax ]

Fortunately, the innermost integral can be ex-
pressed in terms of simple functions ~:

r
'" 1 —cos xy sin (xy/2) dx

Ch=4
sinh ax p sinh ax

2 wy/a wy 2
as~~' —1 a a '

After integrating by parts, the given integral can
be written

1 w4 s w 1 dJ'=—~+(1-y ),+—,(e sing)
30 a 3a' 4y p dy

i2x y 7Ty 2
x'l(P syf 1+ P ]I%' ~

It can easily be seen that

dyv (e ~ siny) =(-1+2ly —35y4+ Vys) cosy e~"

e'yf' -1 4p dp

The last two of these integrals are trivial~ the
first one is

where g (z) is the trigamma function. The final
result is then

m
4 2J=,+(1-yz) s+—(-1+21y —35y +7y)r 1 2 4 8

30a 3a 4y

x —Re& ((y- i)a/w)+~
2 f 1-y~ 2y

a (1+ ) a 1+ )

+ -'(7 —35y'+ 21y'- y') &mt —((y f) a/w—)r

2w y 2 ]
a (1+Qs a 1+y

+y(7 —35y +2ly -y ) sinye ~.
Therefore, all that is to be computed are integrals
of the form
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