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A set of kinetic equations for the correlation functions describing the simultaneous propagation of
two-spin fluctuations in an amsotropic Heisenberg param~~et [H = —(1/2) Za„. S,. S,.—(1/2) X b&S; S„g is obtained that reduces to earlier results in the case of vanishing anisotropy. The
equations conserve the total spin and energy, and have for their equilibrium solution the
spherical-model static correlation functions. A prescription for obtaining a diagrammatic expansion of
the moments of the spectral density of a single-spin fluctuation mode, &oP &„ for any n, to lowest
order in 1/C, where C is the number of spins in the range of the interaction is given. The kinetic
equation can be used to calculate this spectral density by providing a partial summation of terms in
the diagrimimatic representation of the moment expansion. The spectral density obtained by solving the
kinetic equation mH have the correct second and fourth moments to lowest order in 1/C. An
approximate solution for the response of the q =0 mode in a dipole lattice in a strong magnetic field
is obtained using a constant-relaxation-time approximation, and show to be in good agreement mth
the measurements in CaF, . A comparison of the theory mth other attempts to calculate the free
Induction decay 18 given.

INTRODUCTION

In this paper we present a kinetic theory for the
anisotropie Heisenberg Hamiltonian,

H= —28Z(a, ~S, .S~+ b, ~ S;Sq)
ij

which is capable of describing most of the mea-
surable dynamical properties of the system. The
Hamiltonian describes, with particular choices of
coefficients, the Heisenberg, Ising, x-y models as
well as a system of interacting magnetic dipoles in
a strong magnetic field.

The explicit calculation will be restricted to the
truncated dipolar Hamiltonian, where the existence
of precise data on the free induction decay,
[Z;(S&(t)S&(0))] in an essentially ideal dipole lattice
makes possible a strong test of the accuracy of the
theory.

The theory to be presented is an extension of
earlier work done on the isotropic system' (b,~

= 0).
The principal results obtained for the isotropic
case can all be extended to the anisotropic system,
and the difficulties connected with the lack of any
suitable expansion parameter for the calculation
of the dynamical properties of the system can be
overcome in the same way.

Two distinct but complementary approaches are
used: (i) diagrammatic expansion of the matrix
elements of the resolvent of the Liouville operator
for the system; (ii) a kinetic theory for the time
evolution of the spin correlation functions.

The first method provides a diagrammatic way
to calculate the moments of the spectral density.
The second and fourth moments are calculated

explicitly and it is shown that (~ "),~ [ —,
' S(S+1)]"

to lowest order in l/C, where C is the number of
spins in the range of the interaction. The dia-
grams for the moments may be summed to obtain
the time-dependent correlation function, and the
usual resummation procedure employed to express
the series more compactly in terms of renormal-
ized propagators. (The lowest-order diagram ob-
tained in this way corresponds to the mode-mode
coupling equations. ) However the nonexistence of
a small parameter prevents the selection of a
dominant set of diagrams. To overcome this dif-
ficulty a set of kinetic equations for the two-spin
[(S'(q„ t)S (qz, t))] correlation function is obtained.
The derivation is based on a cluster expansion of
the equations of motion and on an intuitively plausi-
ble renormalization. The kinetic equations so ob-
tained are shown to conserve total spin and energy
and provide a self-consistent nonlinear equation
for the time-dependent vertex function governing
the decay of a fluctuation mode of wave vector q
into two modes of wave vectors q, and qs. The
equation, when iterated, generates a series ex-
pansion whose individual terms can be put into
correspondence with a subset of graphs appearing
in the moment expansion of the spectral density.
Thus its solution provides a partial resummation
of the diagrams.

To obtain concrete results, an approximate solu-
tion for the vertex function at infinite temperatures
is obtained using a constant-relaxation-time ap-
proximation. Improvements can be obtained by
iteration. The kinetic equations are valid at any
temperature T» 7, .
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Underlying the diagrammatic expansion is a
physical picture in which the states of the system
are taken to be one-, tmo-, . . ., many-spin-fluc-
tuations modes superimposed on a background de-
termined by thermal equilibrium. The dynamics
is then determined by the decay rates of these
modes into one another. This picture is consistent
in an operational sense, mith the exact equations
of motion, in the lowest order of the expansion of
the dynamical matrix elements in 1/C. In this
approximation the only decay process possible is
the decay of one mode into tmo others.

(1.1la)

&AIB&=« f,'e'"A'e Bd7»,

(&0)) = Trp„o,
e+x/Tre-zx

and ~ = z,+. Z is the Liouville operator for the
system defined as 20 = (1/K)[0, 3C], and &ZA I B)
= &AISB), &ZAI B) =(& [BA~]))

It can be shown3 that

I. MATHEMATICAL PRELIMINARIES
Z (q, z) =i&t"(q, o)[z —P'(q, z)] ', (l. 12)

The system under study is composed of N iden-
tical particles with spin 8 localized at lattice sites,
denoted by i. The Hamiltonian describing the sys-
tem is

3C z ti (ai/si 8/ +bi/SiS/)
(g, j)

The coefficients a„and b, ~ are arbitrary and they
shall be kept as such throughout the discussion.
8 is the spin operator, of magnitude S, associated
with lattice site i, w'hose components satisfy the
equal-time commutation relations

[Si 8/1=2«/8'i

[8;, 8;]=+«/8',

Defining the operator 8(q) as N '/2g; e "'i S, one
has

3C= ——,'KZ [a(q)8(q) S(- q)+ b(q)S'(q)8'(-q)], (l. 4)

where

mhere

y (q, z)=&(f-S )ZS (q)l[z —(I P)z(1-JW]-'-
&&l(f-& )&8 (q)&/x (q, o),

x (q, 0) = &8 (q)l8 (q)& .
(l.13)

x'(q, o),
1'-(q„qz; z) = &8*(i,)s-(q, ) I

&&[z -(f-f )Z(f-P )] 'lzS (q))/

(l. 14)

2 is an operator on the linear vector space con-
sisting of all bounded operators on the Hilbert
space of the spins which we mill call V. P is the
projection operator Z, I 8 (q)& (S (q) I/&t (q) and I
is the identity operator on V.

We define the vertex functions I' (q&, qz,'z) with

q) + qm
= q as

(~q1 qz; z) = &8 (qi)8'( qz) I

& [z —(f-P')z(1-f ')]-'lzs'(q)&/

a(q) tV-I/2+a-i' (ri-r/)a

b( ) ~-1/2+a"ia iris'/&b

(1.?)

(1 6)

and the equa1. -time commutation relation for the
components of 8(q) are

[8 (q), 8-(q')] = KV-"'8*(q+ q'),

[8'(q), 8'(q')] = ~ N '"8'(q+ q') .

x(q o) .
It follows then that

p'(q, z) = —,'iV '"Z [a(q —q')
ql

—a(q )]r'(q

0 (q, z) = —iV '"+[a(q') —a(q-q')

+b(q)]1' (q', q-q;z) .

(1.15)

(1.16)

(1.17)

(l. 10)

The response of the system to an external per-
turbationz is given by

Z (q, z)= f, e'" &8 (q)l 8 (q, t)&dt (1.11)

The equation of motion for the spin components
are

i —8'(q) = ,'N '"Z [a(q——q') —a(q')] 8 (q') S'(q —q')
(1 6)

i —8'(q) =+ iV '"Z [a(q') —a(q —q')

+ b(q')] 8'(q') 8'(q —q ) .

%'e mill derive a set of equations for the vertex
functions, from mhich the Q functions can be de-
termined. The vertex functions describe the time
behavior of the longitudinal and transverse two-
spin correlation functions for particular initial con-
ditions.

II. MOMENT EXPANSION AND DIAGRAMMATIC METHOD

The standard method to calculate the moments
of the spectral line, used in NMR and EPR, usual-
ly for T= ~, is to evaluate the multiple commuta-
tion relation and then evaluate the equilibrium
averages of the obtained result. The procedure
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used here consists of representing the moments
as products of the matrix elements of Z. Closely
related procedures have been developed by Resi-
bois and De Leener4 and %egner. In this section,
the second and fourth moments are calculated.
There is no attempt to give details on the basic
theory of the diagrams. This can be found in
Reiter's' work. However, some basic formalism
is given in order to make the results obtained un-
derstandable.

The resolvent operator can be written as

[z-Z]-'=z-'Z(z-'Z) . (2. 1)

Using this result in (l. Ila)

z (q, 2) =tZz "'&s (q)Iz"
I
s (q)) . (2. 2)

This result is the Laplace transform of the expan-
sion in the time domain given by

z (q, t) =Z, (S (q)I O'I S "(q)) .
The spectral density can be obtained from the re-
sponse function

(2. 3)

nn( ) =ReZ'(q, 1d+ie) .
CO

In the last expression expand (&u —
&o )

' in powers
of ~'/1d and compare the result obtained with ex-
pression (2.2). The moments of the spectral den-
sity are found to be

( n) n1Xn 1 " '(q(d)
2 „)I(q, O)

=&s (q)l&"Is (q)&/x (q, o) .
Due to translation and inversion symmetry of the
Hamiltonian the odd moments are zero.

The same expansion for (z —8), Z = (1 -P )
xZ(1 —P ) can be used for 1!1 (q, z) defined by
(1.13).

From (l. 13) one gets

1t'(q, z)=pss'(q)I(8')'".Is-(q)&. ' '/)t (q, o)

The Kramers-Kronig relation together with (2. 4)
gives the following result:

where n=0, . . . , 2$, and g is a parameter.
The set obtained by taking all possible products

of the F", for all i, n, m is a complete set, be-
cause any operator in the Hilbert space V, can be
expressed by linear combinations of the tensor
operators.

In the following the case T= ~, S= —,
' is described.

For T= ~ the inner product is given by

&aIa)=(w', a) = p[Trw'a/(as+I)"],

p=l/!2T.

Define the new inner product

&/II 1!&-=-(I/p)&~l ff) =»/I'&/(as+I)" . (a. lo)

The operator /I", defined by (2. 11) are orthonor-
mal,

gnm —ynm/ 1/2
4ne ) (2. 11)

(2S+ 1+n)!(n!)' 2n! 1
(an+I)'(2S -n)! (n - ~) i(n+m)! (2S+ I)

In the (2S+ 1) dimensional space there are (2S
+1)2 independent operators. For S= —,

' those opera-
tors are I, 8', S, 8'.

Take for the complete normalized set the opera-
tors given by:

tions for the spin correlation functions.
There is a relation between the quantity (0 "' );

defined as

&II'""&;=-&&s (q)l(&') I&s (q)&/)t'(q, o)

and the moments &uz"
&2 defined by (2. 6).

In particular

(II'&;- = &2 &,-,
& Il'&,.'= ((o'- & (u'&; );-

In order to calculate the moments, insert a com-
plete set of states in V between the factors of 2 in
expression (2. 6). This complete set can be ob-
tained from the!as+I) tensor operators F," de-
fined by

+n

F" t"= (- tS', + 2S;. + S,/t)" (2. 9)

Q&fizn+2 &n -12n+1)

0 a
(2. 7)

The last relation defines &A~'2&". . Therefore for
large l el,

(q, z)= + n+ O(1/z ).&/d2&-

g
(a. 6)

This last result will become important when one
tries to obtain the moments from the kinetic equa-

A' 8;
[

2 S(s+ 1)]1/2

g1, 1
$+

[ 2 S(S+ I )]1/2

(2. 12)
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The identify operator on the space V is

f= ~A"&&A"~+2 ~ ~ ~Ai &&A( ~+ 2 ~ ~ ~ ~ IA"-A"'"'&&A" A"'"'I+ ~ ~

n~1 nt~-n (g,y) n 1 n'=1 nt -n me -n'
(2. 13)

where (i, j] is summed over all distinct pairs with
itj.

The moments are obtained by inserting the iden-
tify operator I between the powers of . The sec-
ond moment is given by

( 2 &(( ~-lg e-((7 (r( ry)-

x ~&Ai I
& IEA}&-&[All &

I A,"&. , (2. 14)

where [A} denotes all intermediate states. From
(2. 14) one sees that the moments are given by
products of the matrix elements of Z. In the
graphical representation, those matrix elements
are the vertices.

In the momentum representation denote the
operators A,'" by A (q }, where (r = z, + . From the
equations of motion for S'(q) the following results
are obtained:

ZA*(q) = —[-,' S(S+1)]"'N '"Z [n(q —q') —s(q')]
a

x A '(q }A'(q —q ), (2. 15a)

ZA"(q) = [-,' S(S+1)]'"X-'"Z[s(q'} —a(q -q')

+ b(q')] Ao(q')A"(q —q') .
Using Eqs. (2. 15) and the orthogonality condi-

tion for the states the matrix elements can be ob-
tained. An example of a nonzero matrix element
is

&A( q )
~

2
~
A'(q, )A '( q, ) )

=
& ZA'(q)

~
A"(q,)A-'(q, ) )

= —X-"'[-,'S(S+1)]'"[~(q,) —s(q, )]
x 5(q, +q2 —q) .

Table I gives all possible vertices from which the
graphs representing the moments are composed.

The total contribution to the moments is obtained
by drawing all distinct graphs using the basic ver-
tices. The rules for calculating the moments
& &u~). are the following: (i) Draw all distinct
graphs beginning with a dotted line (left-to-right
arrow} and ending with a dotted line (left-to-right
arrow). (ii) Label initial and final lines with mo-
mentum index q and all internal lines with indices

(iii) Associate with each vertex the analytic
expression taken from the table above. Take
their products. (iv) Sum over all indices q, . (v)
Add results of all graphs. Using those rules the
graphs representing the second and fourth moments,
shown in Fig. 1 and their analytic expression,
Eqs. (2. 16) are obtained:

&
~' &'- = ~-'-', S(S+1)Z [s(q -q') —a(q')]',

& O'&;- = 2[& 'l S(S+1)]'&& [s(q -q') —s(q')]'[o(q") —s(q' —q")+ b(q")]'

,2[N-'-,' S(S+1)]'Z Z [a(q - q') - a(q')] [s(q - q' - q ) —(i&q'+q")] ls&q") —s& q')+ b(q" }]

x[a(q") —a(q-q -q )+b(q )], (2.16a)

&u'&;=& 'lS(S+1)~~[s(q') —s&q-q }+b(q')1',
~t

&fi'& = [X-'-,'S(S+1)]' ZZ [s(q') -a(q-q')+b(q')]'[a(q") -a(q-q'-q")+t(q")]'

+ Z 2[a(q ) —a(q —q')+ b(q')]' [a(q'-q") —a(q )]'+EX[a(q') —(2(q —q )+b(q )]

x [(2(q ) —a(q —q' —q")+ b(q")] [a(q") —a(q —q")+ b(q')] [a(q') —a(q —q' —q")+ b(q )]'
+RE[a(q ) —a(q-q )+b(q )] [a(q —q ) —a(q —q )] [a(q —q ) -n(q )]

Q g

x ( (i-i")—~(i")~ ((i-i"))) . (2. 16b)
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TABLE I. Matrix elements, equivalent diagrams, and
associated analytic expressions at infinite temperature,
for calculation of moments to lowest order in 1/C.

q)
(A (~) lilA (q[)A (qp) & q--

(m~ &
g

(~~ &g

-g

g
q-q'

q(
&A (qi) A (q&) I/I A (q) )

q2

&A'( )Ifl A'(q )A '(q ) & q ~
I

—= N-'/agt&S(S l)[a(f~')-a(q&)]

x 8 (q)+q2-q I {Q &q

Q'-q'

g
ql

& A (qa) 4'(qi) Ill A'(q) &

i

A" IX '(, )
'

)

ql--
& A'(q~) A Mqq 11ll( (q ) & ~ q

—='
N iZ &/'i S(S'I)

-Qi
q ~ [a(q~)-a(qq)'b(q&)j8kj, .qq-q)

q&
g-g'- g

'

+
g qi

ql

ql

Graphs of type shown in Fig. 2 a,iso exist but have
been omitted because they do not enter in the for-
malism since they are eliminated by the projection
operators. Me to the omission of the restriction
on the sums in the intermediate states, these rules
give the moments correct to lowest order in 1/C,
where C is the number of spins in the range of the
interaction (a&& and b„are assumed to have the
same range).

For the finite temperature case the set of
operators A& are not orthogonal, that i.s

P (A" ~A" &48 6„„.()

However, the rules outlined before to calculate
the moments are still valid if instead of the oper-
ators A™(q)one uses the operators A (q) defined

A'(q) = A'(q) p(q) '",
where the functions p(q) are the equilibrium two-
spin correlation functions defined ir. K&I. (2. 19).
The set of operators A™(q)can be treated as an

orthonormal set.
The prescription then is to insert the identity

operator I between the powers of Z 2" in expression
for ( &a~ ), where I is

q
'

/'
I g"

q-g' -- ~~I

g %. ((g-g"
q

q-q'
-Q"

FIG. 1. Diagrammatic expansion of second and fourth
moments to lowest order in 1/C.

It should be pointed out that the relations (2. 17)
and (2. 18) are not strictly correct even for order
1/C. What was shown' is that in calculating the
moments the terms corning from the nonorthogonal
part of (2. 18) cancel in order 1/C. The two rela-
tions are correct only in an operative sense. This
may be shown by the same method in the present
case.

The equilibrium spin correlation functions are

« s&s,'&) ~(f -j)p„(~-f)=&&A; A; &)=,
@ 1)

=,
( I),

I= IA")&A"I+~~IA (&I)&&A ~(&I)lp '((I)
q &=1

+-,~Z Z Z'lA. ((~,)A.'(~, )&
01 q2 g=-1 f=-1

& &A '(&I|)A &(&I,) I p '(&I&)p '(q )+ ~ ~ . (2 17)

It is also "true" that

« s'; sg» m(i —j)
p (i-j)=«A&'A!»=,

@ 1)
=,

( 1),

(2. 19a)

(2. 18)
FIG. 2. Diagrams omitted in expansion of 0 due to

projection operator in propagator.
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p„(o) = p (0) =1 . (2. 19b)

In Sec. IV more will be said about those functions.
An explicit form will be obtained in terms of the
coefficients a(q) and f}(q) and the static suscepti-
bility.

For finite temperature the vertices can be ob-

tained in the same way as for the T= ~ case,
where the only difference is the presence of the
function p. Table II gives all possible vertices
from which the graphs representing the moments
are composed.

Using the rules obtained before and the orthog-
onality condition the moments obtained are

(~')'; =& 'sS(S+1)& [a(i-i') -a(i')]p.(i')P. (q -i')p.'(i), (2. 2Oa)

(n'), =2[f(' '-', S(S+1)]'+~ [a(i-i -i )- (i +i )][a(i ) —a(i )+~(q )]

x [a(q") —a(q-i'-q")+&(i")] [a(q-i') -a(i')] p(q-i -i")p(i ) p.(q') p. (q)

+2[@ '-,'S(S+1)]'Z'Z [a(i-q') —a(q')]' [a(i') —a(i'-i")+&(i")]'

x p.(q-i') p.(i")p.(i') p.'(i),
(~') =N 'lS(S+1)r [a(i') - a(i-i') &(i')]' p.(i-i') P.(q') P.'(i),

(2. 2Ob)

(2. 21a)

(n'). = [N ' ', S(S+-1)]'ZZ [a(q ) —a(q —q )+b(q')]' [a(q —q ') —a(q )]'
i a

x p„(i —q') p„(i' —i")p„(q")p„'(q)+ [X '-', S(S+1)]'ZZ [a(q ) —a(q —i )+ f}(q )]'

x [a(q") —a(q -i'-q")+ &(q "]'p.(i') p.(i")p.(i-i' -i")p.'(i)

+ [N '-sS(S+1)]sZ 2 [a(i'-q") —a(i')] [a(i'-i") —a(q-q')]

x [a(q-i") -a(i")+f(q-q")] [a(i') -a(i-i')+h(i')]P. (q")P.(q-q')P. (i'-q")P. (i)

+ [& 'lS(S+1)]'& ~ [a(i')-a(i-i')+f(i')] [a(i")-a(i-i'-i")+h(i")]

x [a(i')-«(q-q -i )+~(q )] [a(i")-a(q-q")+h(q")]P.(q')P. (q-q'-i")P. (q')P. (q) .

(2. 21b)

III. KINETIC EQUATIONS

The study developed in this section is intended
to provide the complementary information to the
diagrammatic method. A set of kinetic equations
for the two-spin correlation function'will be de-
rived and they will give a set of nonlinear equations
for the vertex functions. The derivation is based
on the decoupling of the equations of motion for the
spin operators. The decoupling is obtained from
the cluster expansion of the density matrix and
will be such that the second and fourth moments
of the two-spin spectra density are correct to or-
der 1/C. The procedure for decoupling a, corre-
lation function is to replace the higher-order func-
tion by the sum of all possible lower-order func-
tions and neglect the cumulant part. In lowest or-
der in 1/C the cumulant part has no contribution.
In the course of the derivation the vertex functions,

TABLE II. Matrix elements, equivalent diagrams,
and associated analytic expressions at finite tempera-
tures, p„(q) = ((S (q) ~ S'(- q) )) / q S5+ i); p~(q) = (( '(q)
~S'{-q) )) //-,'S5+ &).

=-N a/gS(SS() [a(q~)-a(qa)] P„(q~) PSqa)P (q)B(q~ TqS-q }

—= N }/'/ S(S I) [a(f~)-a(g&} b(f~}] P (%~)P„(q }P„(q)S(ga~ qa q )
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to be called 1' (q„qz, z), are renormalised. The
renormalization procedure is not exact in any
mathematical or physical sense. This renormal-
ization although intuitive is nevertheless suggested
by the diagrammatic method. The information

about the physical systems obtained from the kinet-
ic equations will be the a posteriori justification
for the renormalization.

The equation of motion for (S (q&)s'(qz); t) can
be obtained from (1.10) and it is

t st &s (q)s'(q); t&=ti-"'Z [n(q, -q}-n(q)-f(q)]&s'(q)s-(q, -q)s (q); t)
03

—N '"Z [a(qz-q, ) —a(q, ) —b(q, )](S (q, )S'(q,)s'(q, -q, ); t) . (3. 1)

The brackets & ) denote an average over an arbi-
trary nonequillbrium density matrix. The aver-
ages are time dependent although the time t is
omitted; if necessary the notation (AB; t) will be
used and &AB; z ) for its Laplace transform.

The equation can be closed by means of the ap-
proximation

(s,s;s, & =(s, ) (s;s;&+(s;& & s,s;)
+(s', ) & s, s,'&+3& s;) & s;) ( s;&,

(3.3)
Using the equations for ( S') and ( S') and a simi-
lar decoupling, together with (3.1) a closed set of
coupled nonlinear equations can be obtained. Those
equations have a stationary solution described by
arbitrary parameters that can be chosen to have

values appropriate to thermal equilibrium. The
linearization of the decoupled equation (3.1) yields

&s'(q, o) &=0,

&s(q, 0) &=«s(q) &)+5& s(q) &,

( s-(q, )s'(q, ) ) = « s-(q, )s'(q, ) )&

+5(s (L)s'(q, )&.
In other words the function consists of the equi-
librium part plus its deviation from equilibrium
(5 indicates this deviation). Under those condi-
tions only the second term of (3.3) contributes. A
set of linear equations (order of 5) describing the
behavior in time of the small disturbance from
equilibrium is obtained for the paramagnetic re-
gime:

t —5& s (q,)s'(qz)) =x "'Z [a(q, -q, ) —a(q, ) —b(q, )]«s (q, -q, )s'(qz) »5&s'(q, )&

—N Z [a(qz -q, ) -n(q, ) —S(q,)] «S (qz -q, )S'(q, )» 5& S'(q, ) &;

but

«s-(q)s'(q')&) =5;;«s-(q)s'(-q) &)
= 5;;,n(q) .

It follows that

i —5(s (qi)S'(qz)&

= x '"y'(q„q, )5&s'(q„q, ) &,

where

(3.3)

y (qi, qz) = [n(q~+qz)+ f (%+qz)][s(@)-nCqz)]

-a(q, )n(q&)+a(qz}n(qz) . (3.4)

An approximation for Z*(q, t) can be obtained
from (3.3) and from the equation

t —5&s*(q,t))=-,'x "'Z [a(q-q')-a(q')]

& 5&s (q')s'(q-q');t), (3. 5)

which was obtained from (1.9).
By definition 6& S'(q, t)) = h'(q)Z'(q, t) when

h'(q ) is a field applied up until t = 0, and then re-
moved. Since the equations of motion are linear,
h*(q) can be taken equal to one.

The Laplace transforms of (3.5) and (3.3}are
—i&t'(q, 0)+zZ'(q, z)

= -'iv "'~ [n(q - q ') —~(q ')]
& 5(S (q')S'(q-q');z), (3.ea)

i(s (q')S'(q —q )~ S'(q))+z5(S (q')S'(q- q'); z)
= A' '"y'( q, q -q ') Z'(q, ), (3.Gb)

where the initial values are obtained from the ini-
tial density matrix
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a
p&n&t&a

=
p44 Jo e S ( q }e d~ ps4

Solving (3.6) for Z'(i, z) we obtain

E'(i, ~) = iX'(i, 0) [~ —~'(i )/~] ',
with

"'"=-~ (q, .)z

(3.Va, )

(3.Vb)

changes due to the unit disturbance h(q) introduced
in the system until t = O.

A similar study for the function & S'(i, )S (q ); f&

gives

i sf &s'(q, )s (q4)&= ,'fi -"'2'[a(q, —i,) —a(i,)]
Q3

~&s (i,)s'(i, —i,)s (q, )&

-X '"Z [a(q, ) —a(q, - q, ) + b(q, )]

X(S'(q, )s'(q4)S (q4 -q4)&%e have used in the preceding step the fact that
&ZAlB&=&([B, At]&), that is, &Zs'(q)~ S'(q)&=0.

The results predicted by Eq. (3.3), i.e. , (3.7a)
and (3.Vb), show that this equation is inadequate.
The function C'(i, z) is not analytic at z = 0 as it
should be, and the equation gives also a wrong
result for q =O. In thi. s case it follows that

4
—„~&s-(q, )s'(q, ) & =-0 .

i —5&s'(q, )s (q4) )

= fi' '"r (q&, q4)a& s (q&+ q, ) &,

y (q4 q4) = a(q4+ qa)[rn(@) —zn(q }J

(3.10)

(3.11)

This implies that the disturbance of the two-spin
correlation functions would persist in time, when
it is expected that they should decay until they have
reached their asymptotic value. The decay pro-
cesses can be obtained by adding to Eq. (3.3) a
term of the type —v&8 (q )S'(q —q')&. The re-
sponse function obtained from this new equation
would be

Z'(q, z) =iX'(q, o)[z —~'(i)/(i+in)] ' . (3.3)

Equation (3.8) has the proper behavior for z =0.
This phenomenological approach, although giving

at this stage a correct qualitative description, will
not be pursued. Instead a more systematic deriva-
tion will be given.

Note that if result (3.7) is compared with (1.12)
and (1.13) one sees that the approximation leading
to (3.7} is

r (q„q„&)-=N-"'[y'(q„q, )/z]
=- 1'

O( qi q4' ~) ~ (3.9)

It has been shown above that this approximation
for the function f"(q&, q4,

' z) neglects the decay of
the two-spin correlation. So, the decay processes
a,re contained in the exact 1"(q„q~; i) which gives
the rate at which the function & S (q, )s'(qz); t&

—[a(q, ) + b(@)]m(4h) +-,' a(q2)n(q2)

(3. 12)

m(q) =«s'(q)s'(-q)&)

The approximation leading to (3.11) is

(-
(3.13)

A kinetic theory must be able to describe internal
relaxation processes and at this level of approxi-
mation this has not been accomplished. To obtain
a description of these processes, we will consider
the evolution of the correlation function
(S (q4)s (q4); f&, for the case that there is no

change in th external variables of the system,
i. e. , & S'(q, t)& =0. We will see that this suffices
to calculate 4(q, z), so that we will obtain at the
same time an expression for Z(q, z) that includes
the effect of the internal relaxation on the dynam-
ics of the external fluctuation. The time depen-
dence of the two-spin correlation functions now

depends on the three-spin correlation function and
this implies the need to study these functions. The
three-spin functions entering in the equations for
the two-spin functions are ( S (i,)s*(q4)s'(q4); i&,

iS (q&)S'(q4)s (i,); f&, and (S*(q,)s'(q4)S (q,); f&

The equation of motion for the first of those functions is

8
( S (il)S'(q4) S'(is)& = —iV' "'+ [a(q4) —a(i —i ) + &(i )] & S'(o )S (i —i4)S'(q )S '(i ) &

Q4

+-,' iV '"2 [a(q, -q, ) -a(q4)] (S (qg)S (q4)s'(q4-i4)S'(i4) &
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+ ~ '"Q [s(q4) —n(q& —q4) + b(q&}]( 8 (q&)s'(qz) 8*(q4}s'(qz —q4) ) ~

o4

Making the cluster expansion for the four-spin functions we get

(3. 14)

& s'(q, )s-(q, )s'(q, )s (q, ) ) =
& s'(q, )s'(q, ) ) & s-(q, )s'(q, ) ), (3.15a)

(s (q )s (q )s'(q )8'(q.) ) =(s (q )s'(q ) ) (s (q )s'(q ))+(s (q )8'(q ))(s (q )s'(q )) . (3.15b)

The initial density matrix will be taken rotationally invariant about the z axis, and therefore (S;8,') = (8', &

=0. Insert (3.15) in (3.14) to get

( 8-(q, )8'(q, )8'(q, ) ) = —tt-'"Z [a(q,) —a(q, - q4) + b(q4)] & 8'(q4)s'(qz) & & 8 (qf q4)S'(q, ) &

e4

+-,'N "zZ[n(qz —q4} -a(q4)]&8 (q, )s'(qz-q4}&&8 (q4)s'(qs}&
4 tI4

+ N '"E [ (q ) — (,—,) + b(,)]( 8 (,)8'(, —,) ) ( 8'(q, )8'(q, ) ) . (3.16)
04

In obtaining (3.16) we used the fact ( 8'(q) ) =0. Equation (3.16) now has to be linearized about equilibrium
(restrict to linear response). Therefore, the equilibrium values for (8 (q, )s'(q )) and (8'(q&)s'(q~)) must
be such that the time derivative of the three-spin function vanishes. The condition on the equilibrium val-
ues n(q) and m(q), when (s/st) (8 (q, )s'(qz)s'(qz) ) =0, is

[a(q ) —a(qz)]n(q )m(qz)+[tz(q) -a(q )]n(q&)-[s(q )]+[a(qz) —n(q&)]s(q&)m(qz)+b(qz)m(qm)[s(q ) -nrq )]=0 .
(3.1V)

Equation (3.16) is now linearized about correlation functions which satisfy (3. 1V), with the result

t —,5& S (q, )S*(qz)8 (q,) &= —lV "'5[a(q,) —a(q, -q, )+ b(q4)1
e4

& [(&8'(q&)s'(q ))&5(s (q, -q, )s'(q, ) &+(&s (q, -q, )s'(q, ) &) 5& 8'(q, )s'(q, ) &]

+-,' x '"Z [a(qz —q,) —a(q, )] [&8 (q~)s'(qz -q, ) &) 5&s (q,)s'(q, ) &

+ «8-(q4)s'(q, ) » 5& s-(q, )s (q —q4) &]+tt-"'Z [a(q4) —a(q, -q,)+ b(q, )]

& [«8 (q,)s'(q, -q, ) » 5& 8'(q, )s'(q, ) &+ «8'(q, )8'(q, ) )) 5& s-(q, )s'(q, —q, ) )] .
(3. iS)

Using the fact that ((8'(q )8'(q'))& = 5;;.m(q ),
((S (q)s'(q')»=5; g.n(q), and defining

s'(q» q ) =-5& 8-(q, )8'(q, ) &,

m(q, „qz) =- 5( 8'(q&)s'(qz) &,

the result (3.19) is obtained after substitution and
rearrangement of the terms:

=tt '"y (q, q&) '(qi+q q»t)

This equation shows that the rate at which three-
spin fluctuations are produced is equal to the sums
of rates at which one of the fluctuations in the ex-
cited pair decays into two. This rate for fluctua-
tions of wave vector q, +@ is just y and y' in
this approximation. The Laplace transform of
(3.19) with the initial value 5( S (q&)s'(qz)s'(qz); t
=0)=0 ls

5&S (q, )8'(qz)8'(q, ); z &

= I',(q„q„z)n'(q, + qz, q» z)

tt "'y (q, qz) -'(q»qz+q» t}
+tt "'y*(q„q,)m(q, +q„qz; t), (3.19)

—F 0(qz qi' z)n (ql q2+ 4 z)

+ I' 0(q» qz; z)m(q, + q„qz; z), (3.20)

where y (q» qz) and y (q» qz) are given by (3.4)
and (3.12).

where (3.9) and (3.13) were used.
Taking the initial value equal to zero implies

neglecting the possibility of a fluctuation. decaying
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directly into three fluctuations. The initial value
enters in the equation of motion as
(8 (q, )8*(qz)8'(qz) I Zl 8'(q) }and this is a matrix
element of order I/O and hence can be neglected.

The presence of F;(q„qz, z) in Eq. (3.20) indi-
cates that the equation will not describe the re-
laxation process.

One way of including those processes is to sub-
stitute in (3.20) the exact function I' (q„qz; z) for
I'o(qi, qz; z). This modification will include the in-
ternal relaxation processes in the response of the
three-spin function to a change in the two-spin
function:

6& 8-(q, )8*(q,)8 (q, ); z }
= I' (q„qg' z)n (qg+qz q3' z)

—I (qz, qadi z)n (qi qz+qzi z)

+ ~ (qs» qz» z)n (qz+qs qz» z)»

6& 8*(q,)8'(q, )8 (q, ); z }
= I' (q„q„z)n (q„qz+q„z)

(3.2lb)

(3.2lc)+ 7 (qi, qe» z)n (qz, qi+ q~; z),
where n (q&, qz, z) = 6& 8'(ch)8 (qz)' z }

The Laplace transform of the equations of mo-
tion for the two-spin correlation functions
6& 8 (q, )8'(qz); t}, 6& 8*(q,)8 (q ); t), and

6& 8'(q, )8'(qz); t) are

+r'(q„q„z)m(q, +q„q„.z) . (3.21a)

Similar study for the other three -spin functions
gives

6& 8 (q,)s'(q, )s (q, ); z)
= ~ (q& qz z)n (q&+qz qzi z)

zn'(q~, qz; z) = tn'(q„qz; t = 0)+ N "'Z [a(q, —q') —a(q') —b(q')]6& 8'(q')S (q, —q')8'(qz); z }

—N '"~[ (q —q') — (q') —b(q')]«8 rq )8'(q')8'(Z —q'); }
ql

zm(q„qz; z) = tm(q„qz; t = 0)+ ', N "'Z -[a(q, —q ) —a(q )] 6& 8 (q )8'(q, -q )8'(qz); z }

(3.22a)

+ ,'N "2 [a(q——q') —a(q')]6& 8'(q&)S (q')8'(qz —q'); z),
tI

zn-(q„q„z) = in-(q„q„. t = 0)+ z N "'X'[a(q,-—q') .—a(q')]6& 8-(q')8'(q, —q')8-(q, ); z }
Q

Z [a(q') —a(qz —q') + b(q')] 6& 8'(q, )8'(q')8 (q2 —q'); z } .
40

(3.22b)

(3.22c)

Substituting (3.21) into (3.22) and mak;ng use of results (l. 16) and (1.1V), the kinetic equations are ob-
tained:

zn (q1 qz z) in (q1 qz t 0)+ [0 (ql z)+0 (qz, z)]n'(qi, q.; z)

-N "'2 [a(q') —a(q, -q') —b(q, -q')] I' (q, -q', qz, z)n'(q', q-q'; z)
qt

—N "'~ [a(q') —a(q. —q') —b(qz —q')] I' (q. —q', qi; z) '(q —q, q'; z)

+ N + [a(ql q') —a(q') —b(q')] I"(qi —q', qz z)m(q —q, q; z)
t7

+ N "'Z [a(qz - q') —a(q') —b(q')] I"'(q, -q', q„z)m(q - q', q'; z), (3.23a)

zm(q~, q; z) = im(q„q„ t = 0}+[@ (q, z) + 4 (qz, z)]m (q„q,; z)

——,'N-"'Z [a(q, —q') —a(q')] r-(q„q, —q'; z) [n'(q —q', q'; z)+n'(q', q —q'; z)]

,'N Z [a(qz —q ) ——a(q )] I' (q„qz —q; z) In (q —q, q; z) + n'(q, q —q; z)t,
qt

«(qi qz» z) =in (qi qz' t=o)+ [b (qi z)+@ (q z)ln (qi qz' z)

+ —' N 2 [a(qq —q') —a(q')] I"(qz» q, —q'; z) n (q —q', q'; z)

(3.23b)
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—tt Z [a(q') —a(q, —q') + b(q')] I' (q„ qrr
—q'; z)n (q', q —q'; z) . (3.23c)

Equations (3.23) form a set of linear equations for
the two-spin correlation functions with initial val-
ues still arbitrary. Because the functions
F'(q„qz, z) are still unknown the set is not closed.
It will be shown next that for a particular initial
condition F'(q» qz; t) is simply ( S (qr)s'(qz); t)
and 1" (q„qz, t) is (S (qr)s (q2); t). From the
definition of F *(q„qz; z) given by (1.14) follows

I"(q„q„t) = —i-,'N '"5 [a(q —q') —a(q')]
qc

&&& s (qr)s'(q )Iz"'I s (q')

»'(q —q'})/x'(q, o},
and for t=O

F '(q„q„. t = o) = —t( s-(q, )s'(q, ) I
vs*(q))/)t'(q, o).

Because the set (3.23) is still valid for any initial
value we choose the initial condition to be such that

t(S (q, )S'(q2); t=0) = iI"(q„q„t=0)

t(s'(q, )s (qz); t=0)

= (s-(q, )s'(q, ) I zs'(q))/)t (q, o)

=(([s'(qr+q ), s (qr)s'(q, )]))/

)t'(q, o)

= [X "'/)t *(q, 0)] [n(qz) —n(qr)],

(3.24a)

and

m(q„qz; z) = 0

= [N '"/)t (q, 0)] [n(qz) —2m(q, )] . (3.24b)

Because the initial value

m(q„q„ t = o) = (s'(q, )s'(q, ) I
zs'(q) ) = o

arid using the fact that I"(q„qz, z) = —F'(qz, q„z) it
follows from (3.23) that

«F'(qr, q; z) = & '" .,- - ', + 8 (qr, z)+ 0 (q2, z}]F'(qr, qz; z}
X &qs+q2, o)

+ X "'2 [ (q, —q'} — (q') + b(q, —q')] I' (q, —q', qz; }I"(q', q —q'; )
rIC

+& "'&[a(qr, -q')-a(q')+&(qz-q }]F (qz-q qr z}F'(q-q q''z} (3.25a)

zl' (q„qz;«)=N "' " -, ' +[y'(qr, z)+4 (q„z)]F (q»qz;z)
X (q2+ Lr', , O)

+ z & "'& [a(qr - q') - a(q')] F '(q, qr -q'' z}F (q -q, q ' z)
ql

-X-'"Z [a(q ') - a(qz - q') + &(q')] F (qr, q -q'; z) F (q', q - q'; z) .
t c

(3.23b)

It should be noted that the initial perturbation for
which |)(S (qr)s'(qz); t=0) = F'(q„qz; t=o) has the
property 5(s'(q); t=o), and that furthermore sinceI" evolves in accordance with Z, not Z, this
property will be preserved in time. Hence, the
kinetic equations derived assuming 5(s'(q); t) = 0
are the appropriate equations to use. A similar
statement holds for I' (q» qz, t). This is a coupled
system of nonlinear equations satisfied by the
I"(q„qz, z) functions. Those functions contain
most of the dynamical properties of systems de-
scribed by Hamiltonian (1.1). The equations are
valid for any spin and any temperature above T„
and give the correct second and fourth moments.

IV. APPROXIMATE HIGH-TEMPERATURE SOLUTION

If the solution to the kinetic equations are known
the time-dependent: spin correlation function

(s r(q» t)s™z(q„t)Is z(q„o)s 4(q, o))

can be calculated and with the aid of this function
a wide range of experiments can be discussed.
The proposed solution will be based on a physical-
ly motivated approximation for the functions
I' (q» qz, z) at high temperature. By an iterative
procedure the equation can be solved.

In the preceding sections the equilibrium corre-
lation functions n(q) and m(q) have appeared con-
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stantly throughout the discussion. In the follow-

ing an explicit formula will be obtained for those
functions and together with the initial values for
the vertex functions the approximate solution is
presented.

From the definition of F (~, qz,
' z) the following

result is obtained for large values of z'.

F,( . )
& s (qi)s'(q2)128'(q) & 0(1/ z)I qg/qz~z =

( )
+0 z

1 ~-1/z n(qz) s(q1)
z X'(q, +qz, 0) '

where we have the identity (A, i XIII&=(( [8, At])).
It w'as shown that the first approximation for
I"(q„qz; z) is

F'(q„q.; ) =-~ "'[y*(q„4,)/ ].
The last two relations combine to give

= —[aCq ) —a(qi) + bCqz)]
n(q, )m(qz)
n q, +qz)

(4 4)

By interchanging q, and q2 one sees that the left-
hand side of (4. 4) is just y (q~, qz) [see Eq. (3.11)].
Combining (4. 3) and (4. 4)

The condition for the stationarity of the three-spin
correlation function (8 (q, )8'(qz)8'(qz) ) gives a re-
lation for n(q) and m(q). Take qz=q, +qz in (3.1V):

[a(q, + qz) —a(qz)] n(q, +qz)mCqz)

+ [aCq~) —a(qi+qz)1nC«) z [s(q +qz)]

+ [a(qz) —a(q, ) + b(q, )]n(q, )m(qz)

—b(qz)m(qz&n(q, +q, ) =0 .
Divide by nCqq+qz) to get

Cq +q)[ Cq)-l (q)]-[ Cq)+b(q, )]

x m(qz) + —', a(qi)s(q, )

n(qz) - n(q, )
x'(q q o) '

where, according to (3.4), y'(q„qz) is

(4 1)
n(qz) —2m(q, ) C

-
)

x (q, .q., o)

y (q„qz) =a[(q, +q, )+b(q, +qz)]

x (n(q, ) —n(q )) —a(q, )n(qz)n(qz) .
Taking qz=q —q and q, =q in (4. 1),

n(q —q') —n(q') =[ [a(q) + b(q)] (n(q') —n(q —q')}

—a(q')s(q') + a(q -q')a(q —q')}

x x'(q, o),
n(q —q')[1 + X '(q, 0)[a(q) + b(q) —a(q —q')]]

—n(q')[1 + X *(q, 0)[a(q) + b(q) —aCq)]] = o .
Taking q-0,

q V;.{1+X'(0,0)[a(0)+ b(0) —aCq')])n(q') =0 .
Therefore

n(q) = If'(1 + X '[a(0) + b(0) —a(/I) ]) ', (4 2)

zx (@0)

where X' =
X *(0, 0).

The expansion in z gives for I' (q&, qz, z) the val-
ue

[a(q1) —a(qz) + b(qi)]
n(qz) m(q&)

s(q, +qz)
(4. 5)

From the fact that matrix elements of 2 are O(1/C),

(A[;] ~A[; ] &=P((A[;"]„))(1+0(1/C))

and therefore

X'(q, 0) =
& 8*(q)18'(q)& = p« 8*(-q) 8'(q)» = pm(q),

(4. 6)
x-(q, o) =&8-(q)ls-(q)) = p((s (-q)s-(q))) = p (q).

(4. V)

Using result (4. I) in (4. 5),

n(qz) —2mCqi) = [aCqi) —a(qz)+ b(qs)1 ps(qz)m(qs)i

m(/Ig) = [2/n(q, ) —[a(q, ) —a(q, ) + b(q, )]P]
' .

Substitute n(qz) given by (4. 2) in the last result to
get

m(/Ig) = (( 2/I)f[1+X'[a(0)+b(0) —(qz)]}

[a(q1) —a(qz)+ b(q~)]P)
'

For q~=0, m(0) =X*/P and from this obtain IC

= 2X'/P. The equilibrium spin correlation func-
tions are given by

„,s(qz) - 2m(q, )
X (qi+q, o)

and the first approximation for I' (q„qz; z) is

F -( . ) ~-1/z Ql& qz
1t Q2t Z

z t

and therefore

n(qz) -2m(q, )
'y &qu qz/= -( 0)

~ (4. 3)

nCq) = (2/P) (1/X'+ [a(O)+ b(O) —a(q)] }-', (4. 6)

m(q) = (1/P)(1/X'+ [a(0)+ b(0) —a(q) —b(q)]] ' .
(4. O)

These are anisotropic spherical model values,
which could also have been obtained directly by
making the usual spherical-model approximation
on the Hamiltonian (1.1). The equivalence of the
spherical model and the stationary solution is a
consequence of evaluating the decay rates correct-
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ly to lowest order in 1/C. The relationship be-
tween y and P, that completes the description of
the model, is obtained by requiring that

Z [m(q)+n(q)] = S(S+1) .

Using results (4.6)-(4.9) the initial values for
F'(q„q; z) can be written as

~-vz n(q ) -n(qi)
X'(qi+ q., o)

=~-" [.(-)-.r )]
"rq'"'~'

aqz aqa (- -) i (4. 10)

~-1/z n(qz) 2mrql)
X (qi+qz 0)

= —N '" [a(q, ) —a(qz) + b(q, )]

„n(qz)m(q~)
nrqs+ qz)

(4.11)

We have derived the expressions (4. 6) and (4.9)
from the equations of motion, but they can as
readily be derived from the diagrammatic expan-
sion, by equating the matrix elements given on
the right-hand side of Table H mith the expression
calculated exactly using the identity ( A

~
2

~
8)

=(([B At])) The result would be that

p (q) = [ 4 S (S + 1)] m(q),

p„(q) = [-;S(S+1)] 'n(q) .
However, in order to derive the expression for
the vertices, and to verify the rules for calculating
the diagrams at finite temperature, me required
the condition p„(i —i) = 1, p (i —i) = 1, which is not
satisfied, since m(q) &-,'n(q) in the presence of an-
isotropy. From (4.11) we have, however, that

Z [n(q) —2m(q)]=-,'PZb(q)n(q)m(q) = O(1/C) .
Thus p„(i —i) =1+0(1/C), p„(i —i) =1+0(1/C), and
the corrections to a diagram arising from the
deviation from 1 will be of the same order as the
terms that we have been neglecting. The incon-
sistency is only apparent, therefore. %'e note also
that this correction vanishes at T= ~.

In order to get an estimate of the accuracy of the
kinetic equations, me mill introduce a simple physi-
cally motivated approximation that mill allow us to
obtain an approximate solution of the equations that
mill have the correct second and fourth moments.
%e mill assume that the solution of the kinetic
equation for the vertex function can be mritten

I"rq» q„.z) =(N "' ', S(S+1)[arq-z) —a(q, )]

p„rq, )p„(qz)p-.'rq»/. (.), (4.».)

I' (q» qz; z) =(- A/ "'-,' 5 (S+ I)[a(q, ) - a(qz) + brq&)]

P'(q, z) = ((u');/v(z),

4 (q, z)=(~'), /p(z) (4. 14)

(a)
~04' (q,z) =

$ (qg) =

Z yu(z))Lflz)

zu(z)pdz)

(b)
P (qg) =

fIel (qg) =

FIG. 3. (a) Approximate expression for 4 obtained by
using constant relaxation-time approximation in equation
of motion for I", (b) Approximate expression for 4 using
constant relaxation-time approximation directly in equa-
tion for 4 in terms of I'.

x P (q )P„rqz)P. '(q))/P( z) . (4»b)
This is the constant relaxation-time approximation
for the functions I' (q» qz; z). The functions
I' (q» qz; t) determine the rate of decay of one spin
fluctuation of mave vector q, +q into tmo fluctua-
tions of mave vectors q, and @ and the quantities
in the brackets of (4. 12) are the values of
F'(q» q; t) for i=0. Therefore the approximation
states that the relaxation of those functions is in-
dependent of q& and q~. The approximations are
valid and will lead to correct descriptions of the
experiments, because at high temperatures fluc-
tuations of any wave vector will decay primarily
into short-wavelength fluctuations, since the phase
space for such decays is large. Moreover, the
relaxation time for short-wavelength fluctuations
is approximately constant, and therefore the re-
laxation of the functions I' (q» qz; t) are nearly
independent of wave vector. The functions v(z),
p(z) will be determined by using the assumption
(4. 12a) and (4. 12b) to calculate these functions
self -consistently from the kinetic equation at T = ~.

Insert (4. 12a) and (4. 12b) in the right-hand side
of (3.25a) and (3.25b). Divide by z and substitute
the resultant expression for 1" (q„qz, z) and
1' (q» qz; z) in (l. 16) and (l. 1V). After some alge-
bra we obtain the result shown in Fig. 3(a).

If (4. 12a) and (4. 12b) are substituted directly
in (1.16) and (1.1V), we obtain the result shown
in Fig. 3(b),
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i1((d+2m) = 2'+ i(& fl'&, 2/& (u'&, 2
——,'1v')"',

(4. 17)
when

~ & 2(& fl'&, 1, /&
~2

&, 2)'" .
Using this result in (4. 14) we get from (1.12) and

(2. 4) the line shape

&g4&- 1/2 2
&

2&- 1/2

1 I I

4 5 6

2 (g4&- -1

(4. 18)

H (gauss)

FIG. 4. Comparison of spectral densities predicted by
constant relaxation-time approximation ~ith data of
Bruce on CaF2. Intensity axis normalized by fitting ex-
perimental and theoretical results at ~=0 for the [1,0, 0)
direction.

These results when combined give the following
equations from which v(z) and i1(z) can be calcu-
lated:

&/d2&'; & & '&g & f14&;-

v(z) z zv(z) i2(z) ' (4. 15)

& 1v'&;,
p(z) z z v(z) i4(z) z p'(z)

The solutions must satisfy the condition v(z), i4(z)- z for large z. That the solution wiQ have the
correct second and fourth moment is then evident
by comparing the expansion of the right-hand sides
of (4. 15) and (4. 16) for large z with (2.8). The
values of v(z), i4(z) obtained by solving these equa-
tions will have & 1v2 &, , & 0 ), as parameters, and

when substituted in (4. 13) and (4. 14) yield a solu-
tion for the spectral density. Strictly speaking,
v(z) and p(z) depend also upon q, and since this
dependence has been neglected in deriving (4. 15)
and (4. 16), the approximation is only a good one
if the variation with q is small. In order to com-
pare with experiment, we have used the values of
g,.&

and b, &
appropriate for the truncated dipole

Hamiltonian on a simple cubic latti. ce:

a,, = [(ys')2/22. 42, ] (1 - 3 cos'e, ,),
5f ' 30)~

which allows us to calculate the NMR line shape
and free-induction decay in a system of coupled
nuclear dipoles, CaF&, in a strong magnetic field.
All that is required to interpret these experiments
is the value of the spectral density at q=0, and
since "&0&,= P &0&, for q=0, there is little loss
of accuracy in making i1(z) = v(z) in (4. 16). We get

where f (/d) = ReZ (0, /d )/y (0, 0).
The second and fourth moments appearing in

(4. 18) are those predicted by Eqs. (3.25). The
second moment is exact and the fourth moment
differs by only a few percent from the exact value.
In actually calculating the line shape, we will use
the exa,ct value of the fourth moment in (4. 18).
In Fig. 4 we show the line shape for CaF~ for the
three different directions of the external field.
The points represent Bruce's data. In Fig. 5

we show the free-induction decay, which is the
Laplace transform of the line shape, also for the
three different directions of the external field.
The data are due to Lowe and Barnaal, who mea-
sure the free-induction decay directly, and the
Fourier transform of Bruce's line shape.

%e can see that the kinetic equations together
with the constant relaxation time approximation
accounts not only for the shape of the free-induc-
tion decay but for the systematic variation of the
shape with the direction of the magnetic field, i.e.,
with the parameters of the Hamiltonian, which
are known precisely from the lattice constant. %e
emphasize that there are no adjustable parameters
in the fit in Fig. 5, and that only the intensity at
one point has been fit in Fig. 4, which is made
necessary by the arbitrariness in the intensity
scale for the experimental data. The differences
between the theoretical and experimental curves
are comparable to the correction to be expected
upon solving (3.25a) and (3.25b) exactly. One
can estimate these corrections to f(1d) by iterating
the solution, which has been done for the isotropic
case, b, , =0. The corrections amount to about
20/„at most (at &v=0), in this case, and are ex-
pected to be smaller for the present situation,
since the constant relaxation time approximation
can be expected to hold for the entire zone, where-
as it fails when q&, q2.=-0 in the isotropic case.
%e have not calculated the variation of the ratio
(0 ), /( 1v ), with q, but again we expect it to be
smaller than in the isotropic case, where it is
20% over the whole zone. %e point out that nu-
merical solutions of the equations are readily ob-
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FIG. 5. Free-induction decay in CaF2 compared with
theoretical prediction using constant relaxation-time
approximation. Circles are the data of Lowe and Bar-
naal, the crosses the Fourier transform of the data of
Bruce, shown in. Fig. 4.
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%e have derived the set of kinetic equations
(3.35) based on first principles, which is able to
describe the dynamics of a system of spine S at
any temperature T ~ T,. As a result of the re-
normalizati. on of higher-order spin correlation
functions most of the internal relaxation processes
are described by the kinetic equations. The re-
normalization procedure is the essential point of
the theory.

tained in one dimension, and have been carried
out for the isotropic case by Foster and Reiter. '

CONCLUMNG REMARKS AND COMPARISON PATH OTHER
%PORK

The spin dynamics of systems described by the
Hamiltonian (l. l) has been the subject of work for
a long time. However, only recently attempts
towards microscopic theories were made. The
early works' have been restricted to the
study of particular problems, such as NMR or
EPR line shape, valid only for T=~ for special
values of the spin. Moreover, those theories have
made use of ad Roc assumptions about either the
spin correlation function or another related dynam-
ical function. More recently, the thermodynamical
Green's-function method was used to study the
NMR line shape' and the exchange narrowing prob-
lem. ' The first of those theories contains an ad-
justable parameter which is chosen to fit the ex-
perimental data and no attempt to derive the equa-
tion for the correlation functions is made. The
second theory obtains the equations of motion for
the two-spin function. However, the equations can-
not be solved and the analysis of the problem pro-
ceeds only if one assumes ad hoc the correct form
for the spectral function valid only in the hydro-
dynamic limit.

The first attempt towards a microscopic theory
capable of describing the fluctuations of the dipole
system was done by Borkmans and %algraef. ~s

They have made a systematic analysis of a per-
turbation solution of the function (8;(f)SP(0)) by
renormalizing the perturbation theory. This meth-
od does not yield accurate results if the kinetic
equations are solved directly, and gives an incor-
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rect value for the fourth moment. A better ap-
proximation on this method has been done, ' which
consists in factorizing the four-spin correlation
function (S (q„ t)S (qz, t)S (qz, 0)S (q@0)), b«
it does not lead to any significant improvement.
The predicted spectral density and fourth moment
are still incorrect. It is evident that this approxi-
mation does not allow for the scattering process.
This is the reason why the fourth moment pre-
dicted by the equations ' ' ' ' ' is seriously in er-
ror, and also it leads to an exact solution of the
equations which underestimates the damping of the
oscillations appearing in the experiments. On the
other hand, the derivation of the present work
which is based on the renormalization of the func-
tion (S (q» t)S'(qz, t)S'(qz, t)S (qz, 0)S'(qz, 0)) lead-
ing to the equations (3.25) for the functions
1 "(q„qz, t) explicitly shows both the decay of the
single excitation and the scattering between exci-
tations. The fourth moment calculated from the
equations (3.25) is correct to the order of 1/C (see
Appendix).

Although the solutions of the kinetic equations
for the vertex functions have been used to describe
dipole spin systems at T= ~, the theory is not re-
stricted in any sense. For a system composed of
spin S we can treat, using the derived formalism,
the temperature dependence of the diffusion con-
stant which can be obtained from P*(q, z) = —iDq'
as q- 0 and z- 0, the temperature dependence of
the exchange narrowing proble, etc. Due to fact
that the coefficients a;, and b, &

are arbitrary, we
could as well study the intermediate cases for di-
polar-exchange systems, 'the x-y model, and the
Ising model. The isotropic case (fz;z =0) has been

In this appendix it will be shown that the pro-
posed kinetic equations guarantee the conservation
of total spin and energy, i.e. ,

—fq-z& & S(q) ~ S(-q) &
= 0

—}V-'5[a(q) &S(q) ~ S(-q) &

at

+ b(q)(S'(q)S*(-q}&]=0, (A2)

and that the moments derived from the kinetic
equations agree with the values calculated from
the diagrams in Sec. II.

Prom the commutation relations

(S'(q, )S (qz); t)

= ( S (q, )S'(q, ); t) + N "z& S'(qz + qz); t &

= n'(qz, q„ t)+ tqz "&S'(qz+qz); t &,

Using the fact that (S'(q); t &
= 0,

&S(q) S(-q); t)

=& l [S (q)S'(-q)+ S'(q)S (-q)]+ S'(q)S'(-q) &

=-,'[n'(q, —q; t)+n'(-q, q; t)]+m(q, -q; t) .
(A3)

Substitute (A3) in Eqs. (3.23) to get

shown to give good agreement with experiments, ~2

and w'e can expect the same order of accuracy for
the calculations based on Eqs. (3.25) together with
the constant relaxation-time approximation.

APPENDIX: CONSERVATION LAPIS AND MOMENTS FROM
KINETIC EQUATIONS

z(S(q) S(-q); z&=t(S(q) S,—q); t=0& P(+q z)-,' [n'(q, —q; )+z'( nqq; z)-]

+4 (-q )l[ '(q -q; )+ '(-q,q; )]+q'(q ) (q, -q; )+4'(-q, ) (q -q; )

—,V "zZ [a(q') —a(q —q') —5(q —q')]r (q —q', —q; z) —,'[n'(q', —q'; z)+ n'(- q', q'; z)]

—tq "'2 [a(q') —a(-q —q') —5(-q —q')] I' (-q —q', q; z)-,'[n'(q', —q'; z)+n'(-q', q'; z)]
q

+tq "zZ[a(q-q') —a(q') —b(q')]r*(q —q', -q; z)m(-q', q'; z)

+tt "zZ[a(-q-q') —a(q') —5(q )]r'(-q-q', q; z)m(-q', q'; z)
ql

—N '"Z [a(q —q') —a(q')] I' (- q, q —q'; z) —,'[n'(- q', q'; z) + no(q, —q'; z }]
qt

—X "'E[a(-q —q ) —a(q')] r (q, —q —q'; z)-', [n (-q', q'; z)+ n'((q', —q'; z)] . (A4)

Sum (A4) over q ard consider the seventh and eleventh terms:

zV z"RE[a(-q-q')+5(-q-q') —a(q )]r (-q-q, q; z)f(q )
q q'

Z 2 [a(-q —q') —a(q')] I' (q, -q —q; z)f(q'},
q
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where

Consider term by term

f(q) =-,'[n'(q', -q'; z)+n'(-q', q'; z}] .

N "z++f(q')a(-q —q )[I' (-q —q', q; z) —I' (q, —q —q';z)]
Q

+f(q )5[a(-q-q ) —a(q)] I' (-q-q, q; z)
Q Q

by redefining the indices in the second term as -q -q =q and call q =q. The other term is

—N "zZ Z a(q )f (q )[I' (- q -q', q; z) —I' (q, -q -q; z)]
Q

= -)ii "'Zy'(i(')ii(i(') &[(' (-i-i', i; )-(' (i, -i-i';*)]I.
Q Q

The term in the curly brackets is zero because the sum is over all q. So it contains

I' (-q —q', q; z) —I' (q, —q —q; z) + I' (-q —q', —q; z) —I' (-q, q —q; z) .
The first and last term add up to zero, as well as the second and third, by redefining the indices

~[l' (-q-q', q z)-I' (-q, q-q';z)]=~I' (-q-q', q;z)-El -( q" q', q";,)=O.
Q Q oN

Therefore the contribution from terms seven and eleven is

~f (q }~ I a(- q —q }—a(q ) + I)(-q —q')] I' (- q —q' q z)
Q Q

=Et'(i(') )ii "'&Is(i()- (-i-i')+((i)I(' (i -i-i';*)I
Q Q

= -~f (q )0 (- q i z)
ql

which cancels the result obtained from the third term when summed over q. Similarly the sixth and tenth
terms cancel the second term.

Now take the eighth term and sum over q:

N '"Z Z [a(q -q'} —a(q') —f)(q')] I"(q —q, -q; z)m(- q, q; z) .

The function I' (q„q[[;z) is antisymmetric in interchange of q& and q[[. Therefore

5 a(q')m(- q', q'; z) Z I'*(q —q', —q; z) = 0 .
Q

The only nonzero contribution comes from the first term, and using the antisymmetric property ofI"(q„qz; z) follows

(-i' i''*) i&[ (i-iT) - (-i()] ("(i(-7i, -i; *))
Q, Q

-XX2(-i', i'; *)I(- ] )i( '"&[ (i-i') — (i)I("(Ii' —i); i))
Q

= —Z m(-q', q'; z) P'(q', z)
qS

which cancels the result obtained from the fourth term when summed over q. Similarly, the ninth term
cancels the fifth. Therefore,

zA-'Z(S(q) 8(-q); z) =@V-'2 (S(q) S(-q); f=O) =iS(S+I),
Q

which is the Laplace transform of (Al). In order to prove relation (A2) multiply result (A4) by a(q) and
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(3.23b) with q, =q, qz=-q by b(q) to get

z[a(q)(s(q). S(-q); z)+b(q)(S'(q)S (-q); z)]

=i[a(q)(s(q) S(-q); t=0)+b(q)(s'(q)s (-q); t=0)]+a(q)(t (q, z)f(q)+a(q)(t) (-(b z)f(q)

+[a(q)+b(q)](t'(q, z)m(q, —q; z)+ [a(q)+b(q)](t) (-q, z)m(q, —q; z)

-& '"&a(q)[a(q') —a(q-q') —b(q-q')]F (q-q', -q; z)f(q')
q

-X ' 'Z a(q)[a(q') —a(-q-q') —b(-q-q')]F (-q-q', q; z)f(q )

+& "'&a(q)[a(q-q') —a(q') —b(q')] F'(q-q', -q; z)m(q', —q'; z)
q

+ & ~z Z a( q )[a(-q - q ) —a(q ) —b(q )]I"(- q -q', q; z)m(q', —q'; z)
~g

-A "'2[a(q)+b(q)][a(q-q') -a(q')]F (-q, q-q'; z)f(q')

-& '"+[ (q)+b(q)][ (-q-q')- (q )]F (q -q-q' )f(q ) (AS)

where f(q) = —,'[no(q, -q; z)+no(-q, q; z)]. Consider terms seven and eleven and sum over q

—N "'Z Z [a(q )a(q ) —a( q )a(- q —q ) —a( q )b(- q —q )] I' (-q —q, q; z)f (q )

~~[a(q)a(-q-q')-a(q)a(q')+b(q)a(-q-q')-b(q)arq')]F (q -q-q;z)f(q') (A6)

Take term by term

—& "'+f(q')Z a(q)a(q') [F (-q —q' q' z) —I' (q -q —q' z)]

=-& '"+a(q )f(q')2[a(q+q') —a(q)]F (q, —q —q'; z)] .
a

This result, when combined with the contribution coming from b(q )a(q ), gives

N i'zZa(q')f(q') 5[a(q) —a(q+q')+b(q)]F (q, -q —q';z) =-Za(q')f(q')Q (-q', z)
q

and this cancels the result obtained from the third term when summed over q. It has to be shown also that
the other terms in (A6) have zero contribution. Consider

& '"2f(q')Za(q)a(-q-q')[F (-q-q', q; z) —I" (q, -q-q'; z)]
q

=x "'zf(i')(r[ (i) (-i—i') — (-i-i') (i)]r (-i i r(;*)] =o, — ',
q

«lf
where in second term q- -q —q and g; —g;.

The same procedure, when applied to the group of terms (2), (6), (10), (5), (9), and (4), (6) would lead
to a cancellation.

It follows then

zN '2 [a(q )(8(q ) ~ 8(- q); z) + b(q )( S'(q )S*(-q); z )]= z ((H; t = 0)),

which is the Laplace transform of (A2).
The derivation of the kinetic equations was based on a cluster expansion of the correlation function and

the terms kept in this expansion were correct to the order 1/C. The diagrammatic expansion of the matrix
elements of the Liouville operator was also correct to order 1jC. Therefore the moments of the spectral
function calculated from the kinetic equations should agree with those calculated from the diagrams as will
be shown now.

Take Eq. (3.25a) and divide by z, and iterate it once using the first approximation F (q,qz; z) = I'0 (qiqz);
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F'(q, i;z)=Fl(is qo)+ [&~ &:+&~ &:]I'o(qs qz)(1/z )

+ N ~ [a(q q ) a(q ) + b(q1 q )] F 0('q q qz) F o(q', q —q )(I/z)
t t

+N 5[a(q, —q') -a(q')+b(qz —i')j F,(q, —q', q, ) I"o(q-q', i')(1/z),
qo

where P (q, z) =&&a )./z in first approximation. Substitute (AV) in (1.18):

@'(q, z) = —,
' N "Z [a(i —i') —a(i')] I"o(q', q —i')

Q

+ oN "'~ [a(q -i ) —a(i')] [& co'&; +& co'&;; ] Fo(q', i -i')(1/z')

(A V)

+ ,'N "-'ZZ[a(q-q ) —a(i)][a(i -i ) -a(q )+b(q —q )]F,(q -q, i-q )I";(i,q-q )(1/z)
c

+-,'N "'2 5[a(q —q ) —a(q )][a(q-q -q ) —a(q )+b(q —i -q )] &o(q-q -i, q )I",(i —q, i )(1/z) .

Insert in this expression the values

F,(- )
I „z n(qo) —n(q, ) F ( )

1 n(i, ) —2m(q, )Foqi qz =
—,N ~(- 0) Foqi, qz =

—, -(- 0)

and compare the result obtained with (2.8):

( &u'&;
P'(q, z)= ' + o

' + O(1/z') .
The second and fourth moments are given by

&(o'&'-= —,'N' '2[a(i-q') —a(i')] "q
q

(ASa)

&Q'&'- = —,'N 'Z [a(i-q') -a(q')][&(u'&, +&(u'&. , ]
tI

+ ,N 22 [a(q——q ) —aiq )j jaiq —q ) —aiq ) + be —q )j
~, n(q -q ) -2m(q-q ) n(q-q ) -n(q')

x 4-~", o) x'(q, 0)

~f ~I ~f/

+ -,' N '2 Z' [a(i -q') —a(i')][a(q —i' —i') —a(i") + b(i -q' —i")]

n(i" ) —n(q —q" )
x'(i o)

From results (4. 10) and (4. 11) of Sec. IV the following is obtained:

(A8b)

' =N '"
o S(S+1)[a(qz) —a(i&)]p. (i&)p.(io) p.'(i),

X

' = —N "'oS(S+1)[a(q~) -a(qz)+b(i&)] p.(i~) p. (qo) p.'(i) .
x q0

Substituting (A9) into (AS) yie1ds the result (2.20). Equation (2.21}can be derived in the same manner,
proving the equivalence of the second and fourth moments of the solution of the kinetic equations with the
diagrammatic results.

*Work performed at the Dept. of Physics, University of
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