## **COMMENTS AND ADDENDA**

The Comments and Addenda section is for short communications which are not of such urgency as to justify publication in Physical Review Letters and are not appropriate for regular Articles. It includes only the following types of communications: (1) comments on papers previously published in The Physical Review or Physical Review Letters; (2) addenda to papers previously published in The Physical Review or Physical Review Letters, in which the additional information can be presented without the need for writing a complete article. Manuscripts intended for this section may be accompanied by a brief abstract for information-retrieval purposes. Accepted manuscripts will follow the same publication schedule as articles in this journal, and galleys will be sent to authors.

## Donor-acceptor pair lines in ZnSe: An addendum

J. L. Merz Bell Laboratories, Murray Hill, New Jersey 07974 (Received 30 January 1974)

Previously unidentified close pair lines are reported, and the energies of all pair lines observed in ZnSe are given.

Recently, there has been renewed theoretical interest in the luminescence from donor-acceptor pair recombination processes in compound semiconductors.<sup>1-12</sup> Although this phenomenon has been well understood in broad terms for over 10 years.<sup>13</sup> discrepancies exist between the theoretically calculated energies of discrete pair lines and the observed spectra.<sup>1-5</sup> Other problems, such as the fine-structure splittings of individual pair lines,  $^{6-9}$ the minimum pair separation for binding an electron and hole,<sup>10,11</sup> and the dependence of the peak energy of the distant pair band on excitation intensity,<sup>12</sup> are presently being considered. There exists in the literature an abundance of experimental information concerning pair recombination in III-V and II-IV compounds; a comprehensive review has recently been published.<sup>14</sup> However, the experimental results are usually reported with insufficient detail to facilitate theoretical calculations. For example, the energies of discrete pair lines are usually plotted as a function of lattice separation with much less energy resolution than the data permit.

Donor-acceptor pair luminescence in ZnSe has recently been described by Merz, Nassau, and Shiever (MNS).<sup>15</sup> Three type-I (Ref. 16) pair systems were observed involving the previously identified<sup>17</sup> shallow donors Al, Ga, and In, and the Li acceptor. Another pair spectrum had earlier been reported<sup>18</sup> which is also type I, but which shows an unexplained doubling of all lines; this system, referred to as the DM pair spectrum, remains chemically unidentified.<sup>15</sup> It is the purpose of this brief addendum to the work of MNS (i) to report previously unidentified close pairs in the pair spectra of ZnSe, (ii) to comment on other unobserved close pairs and, (iii) to list the energies of the pair lines to within the accuracy of the experiments.

The energies of all observed ZnSe pair lines are given in Table I. These energies have been measured from photographic plates by a least-squares fit to a Fe calibration spectrum; experimental details are given by MNS. This fitting procedure is accurate to 0.02 meV; however, because of the width of the pair lines, their energies are accurate to 0.05 meV. Distant pairs have been identified to shell numbers as large as 125 (donor-acceptor pair separation of ~45 Å), <sup>16</sup> although fine structure can be resolved only for close pairs.

Calculations of the minimum donor-acceptor pair separation for binding an exciton have recently been reported by Munschy and Stebe.<sup>10,11</sup> For comparison with experiment, it is important to determine the separation of the closest pairs actually observable. In ZnSe, it is difficult to observe pairs closer than shell m = 10, because of intense bound exciton lines at higher energies. MNS have reported m = 10 lines for the Al-Li, Ga-Li, and DM pairs. In the case of In-Li pairs, the m = 10lines is masked by the  $I_1^{\text{DEEP}}$  line, which is believed to result from the recombination of an exciton to a neutral (but chemically unidentified) acceptor.<sup>15</sup> At higher energies, nominally undoped ZnSe crystals show a "window" in the spectrum between  $I_1^{\text{DEEP}}$ at 2.7827 eV and  $I_1^X$  at 2.7920 (Ref. 17) (believed to be the neutral Li acceptor bound exciton line<sup>15</sup>).

9

|           |                    |            |            | Energy (eV)            |         |            |
|-----------|--------------------|------------|------------|------------------------|---------|------------|
| Shell No. | r (Å) <sup>a</sup> | Al-Li      | Ga-Li      | In-Li                  | DM      | pairs      |
| 9         | 12,03              | 2,786 92   | 2,78613    | 2,78586                | 2,78734 | 2,787 00   |
|           |                    | 655        | 571        | 550                    | 671     | b          |
|           |                    | 613        | 534        | 513                    | 655     | b          |
| 10        | 12.68              | 387        | 327        | I                      | 424     | 391        |
| 11        | 13.30              | 081        | 013        | 2,77971                | I       | I          |
|           |                    | 036        | 2.77926    | 895                    | I       | I          |
| 12        | 13.89              | 2.77890    | 784        | 746                    | •••     | 2.77916    |
|           |                    | 815        | 712        | 677                    | •••     | 839        |
| 13        | 14.46              | 700        | 608        | 575                    | 2.77770 | 738        |
|           |                    | 647        | 545        | 498                    | 706     | 681        |
|           |                    | 607        | 496        | 457                    | 656     | 630        |
| 15        | 15.53              | 267        | 153        | 109                    | 324     | 291        |
|           |                    | 227        | 114        | 070                    | 291     | 259        |
| 16        | 16.04              |            | 2.76914    | 2.76861                | 085     | 058        |
| 17        | 16.53              | 2.76864    | 746        | 692                    | 2,76923 | 2.76895    |
|           |                    | 819        | 098        |                        |         |            |
| 10        | 16 01              | 784        | 668        | 622                    | 844     | 816        |
| 19        | 17.01              | 698<br>698 | 080        | •••<br>518             | 763     | 734        |
|           |                    | 690        | 040<br>510 | 460                    | 600     | 669        |
| 10        | 17 49              | 600        | 512<br>479 | 400                    |         | 620        |
| 19        | 17.40              | 579        | 413        | 440                    | 620     | 607        |
|           |                    | 552        | 402        | 366                    | 607     | 584        |
|           |                    | 515        | 366        | 309                    | 548     | 518        |
| 20        | 17 93              | 415        | 286        | 232                    | 474     | 443        |
| 21        | 18 37              | 242        | 119        | т<br>Т                 | 304     | 272        |
| 41        | 10.01              | 206        | T          | Ĩ                      | 272     | 241        |
| 22        | 18 81              | T          | Ī          | 2.75934                | 194     | 158        |
| 22        |                    | ī          | ī          | 901                    | 158     | 121        |
| 23        | 19.23              | r          | 2.75857    | 791                    | I       | I          |
|           |                    | ī          | 828        | 762                    | ī       | ī          |
| 24        | 19.64              | 2,758 59   | 709        | 653                    | Ī       | Ī          |
| 25        | 20,05              | 780        | 647        | 585                    | 2.75845 | 2,75806    |
|           | -                  | 734        | 600        | •••                    | •••     | • • •      |
|           |                    | 719        | 585        | 523                    | 806     | 765        |
|           |                    | 672        | 538        | 477                    | 735     | 701        |
| 26        | 20.44              | 608        | 473        | 404                    | 672     | 641        |
| 27        | 20.83              | •••        | 403        | 331                    | 601     | 576        |
|           |                    | 514        | 380        | 313                    | 576     | 550        |
|           |                    | 476        | 328        | 263                    | 534     | 500        |
| 28        | 21,26              | 381        | 270        | 199                    | 476     | 446        |
|           |                    | 331        | 228        | 160                    | 433     | 399        |
| 29        | 21.59              | 271        | 169        | I                      | 376     | 344        |
| 31        | 22.32              | I          | 2.74981    | 2.74911                | 159     | 126        |
|           |                    | 086        | 952        | 885                    | I       | I          |
| 33        | 23.03              | 2.74954    | 829        | 756                    | 013     | 2.74979    |
|           |                    | 936        | 800        | •••                    | •••     | •••        |
| ~ .       | a                  | 922        | 783        | 717                    | 2.74979 | 956        |
| 34        | 23, 38             | 882        | 738        | 684                    | • • •   | 927        |
|           |                    | 858        | 727        | 665                    | •••     | 919        |
| 0.5       | 00 50              | 826        | 666        | 634                    | 015     | 846        |
| 39        | 23,72              | 730        | 033<br>501 | 596                    | 610     | 801        |
| 26        | 94 00              | 694<br>699 | 591<br>591 | 00Z                    |         | 704        |
| 30<br>97  | 44,U0              | 533        | 040<br>100 | 11E                    | • • •   | 660        |
| 51        | 42.09              | 074<br>540 | 40J<br>11Q | 400                    | 660     | 00U<br>696 |
| 38        | 94 71              | 590        | 440        | 210                    | •••     | 500        |
| 90        | 47, (1             | 020<br>129 | 979        | 31 <del>3</del><br>301 | 500     | 550        |
| 39        | 25 04              | 452        | 337        | 255                    | • • •   | 521        |
|           | -0.01              | 419        | 310        | 299                    | 521     | 480        |

TABLE I. ZnSe pair-line energies. The accuracy of the reported energies is  $\pm 0.00005$  eV. Lines marked I are obscured by bound-exciton lines or their phonon replicas.

-

| Sheļl No. | r (Å)ª         | Energy (eV) |          |                 |                         |          |  |
|-----------|----------------|-------------|----------|-----------------|-------------------------|----------|--|
|           |                | Al-Li       | Ga-Li    | In-Li           | DM                      | pairs    |  |
| 40        | 25,36          | 2.74378     | 2,74265  | 2,74187         | •••                     | 2,744 52 |  |
| 41        | 25,67          | 339         | 220      | 145             | •••                     | 397      |  |
|           | -              | •••         | •••      | 124             | 2.74397                 | 365      |  |
|           |                | 316         | 184      | 106             | 365                     | •••      |  |
| 42        | 25,98          | 293         | 145      | 060             | •••                     | 335      |  |
|           |                | 269         | 118      | 043             | 335                     | •••      |  |
| 43        | 26.29          | 220         | 078      | 011             | 306                     | •••      |  |
|           |                | • • •       | •••      | 2,73988         | • • •                   | 242      |  |
| 44        | 26.59          | • • •       | •••      | 927             | • • •                   | 183      |  |
| 45        | 26,90          | 103         | 2,73956  | 871             | 141                     | 109      |  |
| 47        | 27.49          | 2,73990     | 848      | 762             | •••                     | 064      |  |
|           |                | • • •       | •••      | 740             | 064                     | 035      |  |
| 49        | 28.07          | 886         | 734      | 645             | 2,739 58                | 2,73929  |  |
| 50        | 28.35          | 855         | 716      | 592             | • • •                   | 903      |  |
| 51        | 28,63          | •••         | 650      | •••             | •••                     | 868      |  |
| 52        | 28.91          | 720         | 592      | 498             | •••                     | •••      |  |
| 53        | 29.19          | 684         | 531      | 448             | 762                     | 724      |  |
| 55        | 29.73          | 604         | 451      | 358             | 686                     | 645      |  |
| 57        | 30.27          | 513         | 357      | 268             | 590                     | 552      |  |
| 58        | 30.53          |             | 321      | •••             | •••                     | 519      |  |
| 59        | 30,80          | 424         | 273      | 185             |                         | 469      |  |
| 60        | 31 06          |             | •••      | 141             | •••                     | 434      |  |
| 61        | 31 31          | 360         | 179      | 105             | 400                     | 374      |  |
| 63        | 31 82          | 281         | 120      | 039             | 2.73                    | 3 16°    |  |
| 65        | 32 32          | 202         | 052      | 2,72960         |                         | 280      |  |
| 00        | 01.01          | 184         |          | •••             |                         | 243      |  |
| 67        | 32 82          | 130         | 2 729 80 | 915             |                         | •        |  |
| 01        | 01.01          | •••         | •••      | 889             |                         | 179      |  |
| 69        | 33 30          | 072         | 913      | 829             |                         | 118      |  |
| 70        | 33 54          | •••         |          | 789             | •••                     |          |  |
| 71        | 33 78          | • • •       | 835      | 747             | • • •                   |          |  |
| 72        | 34 02          |             | •••      |                 |                         | 023      |  |
| 73        | 34 25          | 2 729 36    | 783      | 694             | 2 729 77                |          |  |
| 75        | 34 72          | 881         | 727      | 630             | 920                     |          |  |
| 76        | 34 95          | •••         | 691      | •••             | 940<br>878              |          |  |
| 77        | 35 18          | 836         | 661      | 584             | 878                     |          |  |
| 79        | 35 64          | 781         | 606      | 517             | 807                     |          |  |
| 81        | 36.08          | 726         | 551      | 462             | 807<br>749              |          |  |
| 83        | 36 53          | 670         | 503      | 413             | (49<br>706              |          |  |
| 95        | 36.96          | 614         | 461      | 368             | 654                     |          |  |
| 87        | 37 40          | 565         | 405      | 320             | 600 <del>4</del><br>606 |          |  |
| 80        | 37.40          | •••         | 355      | 974             | 559                     |          |  |
| 01        | 38 25          | 482         | 315      | 214             | 518                     |          |  |
| 02        | 39 66          | 402         |          | 195             | J10<br>476              |          |  |
| 95        | 20.00          | 444         |          |                 | 470                     |          |  |
| 95        | 39.00          | 359         | 101      | 007             |                         | 306      |  |
| 97<br>103 | 35.45<br>40 60 | 004<br>996  | 191      | 091<br>2 710 84 |                         | 000      |  |
| 103       | 40.09          | 230         |          | 4.11904         |                         |          |  |
| 100       | 41.40          |             | •••      | 900<br>071      |                         |          |  |
| 109       | 41,00          |             | 9 71094  | 0/4             |                         |          |  |
| 115       | 42.24          | 090         | 2.71934  | 842             |                         |          |  |
| 117       | 44.99          | 033         | 800      | 782             |                         |          |  |
| 110       | 43.37          | 4. (19 94   | 838      | 740             |                         |          |  |
| 195       | 40.14<br>11 00 | • • •       | •••      | (41             |                         |          |  |
| 125       | 44.82          | • • •       | •••      | 653             |                         |          |  |

TABLE I. (Continued).

<sup>a</sup>Using zinc-blende ZnSe lattice constant  $a_0 = 5.67$  Å. <sup>b</sup>These lines appear as an unresolved band from 2.78655 to ~2.7859 eV.

<sup>c</sup>The doubling of the DM pairs is not resolvable for m > 61.

TABLE II. Inequivalent sites and their degeneracies for shells 1-10 of type-I pairs. This information for shells 11-30 is given in Ref. 15.

| Shell No. | r(Å)  | Number of<br>inequivalent sites | Degeneracies |
|-----------|-------|---------------------------------|--------------|
| 1         | 4.01  | 1                               | 12           |
| ·2        | 5.67  | 1                               | 6            |
| 3         | 6.94  | 2                               | 12,12        |
| 4         | 8.02  | 1                               | 12           |
| 5         | 8.97  | 1                               | 24           |
| ·6        | 9.82  | 2                               | 4,4          |
| 7         | 10.61 | 2                               | 24,24        |
| 8         | 11.34 | 1                               | 6            |
| 9         | 12.03 | 3                               | 12, 12, 12   |
| 10        | 12.68 | 1                               | 24           |

However, when crystals are doped sufficiently to exhibit discrete pair lines,  $I_1^x$  becomes intense,

- <sup>1</sup>L. Mehrkam and F. Williams, Phys. Rev. B <u>6</u>, 3753 (1972).
- <sup>2</sup>F. Williams, J. Luminescence <u>7</u>, 35 (1973).
- <sup>3</sup>R. Bindeman and K. Unger, Phys. Status Solidi B <u>56</u>, 563 (1973).
- <sup>4</sup>V. Schröder, Verhandlungen der Deutschen Physikalischen Gesellschaft, Münster, 1973 (unpublished).
- <sup>5</sup>K. Kreher, Phys. Status Solidi B <u>56</u>, K75 (1973).
- <sup>6</sup>L. Patrick, Phys. Rev. 180, 794 (1969).
- <sup>7</sup>T. N. Morgan and H. Maier, Phys. Rev. Lett. <u>27</u>, 1200 (1971).
- <sup>8</sup>E. I. Rashba, Fiz. Tverd. Tela <u>12</u>, 2963 (1970) [Sov. Phys. -Solid State <u>12</u>, 2391 (1971)].
- <sup>9</sup>A. R. Hutson, Bull. Am. Phys. Soc. <u>18</u>, 380 (1973).
- <sup>10</sup>G. Munschy and B. Stebe, Phys. Status Solidi B <u>59</u>, 525 (1973).
- <sup>11</sup>B. Stebe and G. Munschy, Phys. Status Solidi B <u>60</u>, 133 (1973).
- <sup>12</sup>E. Zacks and A. Halperin, Phys. Rev. B <u>6</u>, 3072 (1972).

and the "window" is closed by the acoustic phonon wing of  $I_1^x$ , making the observation of pair lines in this energy region extremely difficult. This can clearly be seen in the low-resolution pair spectrum [Fig. 1(a)] given by MNS. A careful search in this energy region has revealed the presence of a weak triplet corresponding to the m = 9 pair lines, unreported by MNS. The energies of these lines are included in Table I. Other possible close pairs are listed in Table II. The m = 8 singlet should be much weaker than observed pairs (degeneracy 6 instead of 12 or 24). Closer pairs (m < 8) would occur where the  $I_1^X$  acoustic phonon is stronger, or where the  $I_2$  and  $I_3$  bound excitons dominate the spectrum.<sup>17</sup> For these reasons it is felt that, although pair recombination may in fact occur in ZnSe for pair separations less than 12 Å, bound exciton luminescence from these same donors and acceptors makes the observation of such pairs experimentally unlikely.

- <sup>13</sup>For example, cf. D. G. Thomas, M. Gershenzon, and F. A. Trumbore, Phys. Rev. <u>133</u>, A269 (1964); D. G. Thomas, J. J. Hopfield, and W. M. Augustyniak, Phys. Rev. <u>140</u>, A202 (1965). A more complete list of references is given by MNS (Ref. 15).
- <sup>14</sup>P. J. Dean, *Progress in Solid State Chemistry*, edited by J. O. McCaldin and G. Somorjai (Pergamon, New York, 1973), Vol. 8, p. 1.
- <sup>15</sup>J. L. Merz, K. Nassau, and J. W. Shiever, Phys. Rev B <u>8</u>, 1444 (1973).
- <sup>16</sup>For type-I pairs, the donor and acceptor are on the same sublattice. In this case, the shell number m and pair separation r are related by  $r = (m/2)^{1/2}a_0$ , where  $a_0$  is the lattice constant.
- <sup>17</sup>J. L. Merz, H. Kukimoto, K. Nassau, and J. W. Shiever, Phys. Rev. B <u>6</u>, 545 (1972).
- <sup>18</sup>P. J. Dean and J. L. Merz, Phys. Rev. <u>178</u>, 1310 (1969).