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Conduction in anisotroyic disordered systems: Effective-medium theory
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Some aspects of conduction in disordered systems are studied by investigating the properties of
disordered classical resistance networks. The effective-medium theory of Kirkpatrick is extended to
include networks with an anisotropic distribution of conductance values, and then applied to some

model systems. In particular, it is shown that the "observable" anisotropy of the conductivity is limited

by an expression which only depends on the concentration of interruptions along the highly conducting

direction.

els (outside the threshold region) and to general
binaxy-disox"der networks, ' '4 and also to nearest-
neighbor hopping models at not too low tempera-
tures

In the following, the effective-medium theory of
Kirkpatriek will be extended to include the de-
scription of eonduetion in ggjsotyop~ disordered
networks (i.e. , networks with an anisotropic dis-
tribution of conductance values).

Such an extensi. on is not trivial and leads to in-
teresting predictions concerning the conductivity
and its anisotropy in anisotropie disordered sys-
tems. %ith the recent extensive studies on various
quasi-one-dimensional conductors, ~s the interest
in anisotropic disordered materials has become
very great. There exist a few measurements of
the anisotropy of the conductivity in such materi-
als s 7,' the theoretical explanations of the results
are, howevers far from clear. The effective-me-
dium theory for anisotropic random nebvorks can
at least help to clarify some general aspects of
conduction ln Rnlsotx"oplc systems~ even if their
simulation by a resistance network is a rather
crude approximation.

I. INTRODUCTION

II. EFFECTIVE-MEDIUM THEORY

Vite shall be concerned with disordex ed network
models of the following general type. To each
bond (ij ) of an infinite regular lattice we assign a
conductance g, &. These 0;& values are randomly
and independently distributed aecoxding to a prob-
ability density p(o). We shall restrict ourselves to
two-dimensional square and three-dimensional
simple cubic latticesy Rnd define Rn ggQ'ot/offal
distribution of conductance values by introducing
different probability densities p„(o) for the conduc-
tanees aligned along the different lattice directions
p (p = i, . . . , d; where d is the dimensionality of the
lattice).

In the effective-medium theory, ~ 's the average
effects of the random conductances in such a dis-
ordered network will be represented by an uniso-
txopie effective network in %'hich Rll tile conduc-
tances in p direction have the same value o„(v

Disordex'ed classical resistance networks have
recently become an important model for the in-
vestigation of transport phenomena in disordered
physical systems. ' 7 In particular, the network
model for variable-range hopping conduction in
amorphous materials has been studied exten-

ively ',s, , —3, 6, 7 Miller and Abrahams' have
shown that the therma. lly activated hopping between
two localized states j and j can be described by a
conductance 0;» so that the resistance of a mac-
roscopic sample is equivalent to that of the corre-
sponding random network of conductances 0,&.

Ziman, a Eggarter and Cohen, ' Rnd others have
suggested a connection between the eonduetivity of
disordered systems and percolation problems.
Mott's famous lno- T law for the varlable-
range hopping conductivity 0 at low temperatures
T has subsequently been derived on the basis of
percolation arguments. s'4'~'9 The study of nearest-
neighbor hopping models ' ' 's' recently lead to
an alternative explanation of the T '~4 behavior
often observed in disordered materials.

Disordered resistance networks have also been stud-
ied from a more general point of view. s 9'4'15

Analog simulations and numerical calculations on

large networks have been performeds 'cs in order
to study conduction in bond- and site-percolation
models. Kirkyatrickv also investigated some gen-
eral binary-disorder networks, and Stindhcombe'4

gave an exact solution to the conductivity of the
bond-percolation model for tree-lattices.

A simple, but very powerful, theoretical descrip-
tion of conduction in disordered resistance net-
works is provided by a so-called effective medium-
ggeoyy. ~~'ls'~0~3 This theory, originally formulat-
ed to describe the conductivity of binary mix-
tures *~' and recently generalized to include the
Hall effect, ~ has been extended Rnd adapted to
treat general disordered resistance netmorks. '-'
Under a wide range of conditions, the effeetive-
medium theory gives very accurate results for the
conductivity in such netmork systemsv 's'4 It
has been successfully applied to percolation mod-
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where

S„=1/R„—o„ (2)

and R„(o„.. . , os) is the total resistance between
two neighboring nodes in p direction in the infinite
effective lattice.

In the isotropic case, where all the o„are equal,
the problem of calculating R (or S) is easily solved
by using symmetry arguments. ~ ' In the aniso-
tropic case, however, the calculation of the R„'s
is much more complicated. Exact analytical ex-
pressions for R„can be obtained, for example,
by Fourier transforming the appropriate Kirch-
hoff equations or by using a generalization of the
method of Jelitto and Borm. ' ~ In Appendix B
we describe the Fourier-transformation method
from which we obtain

=1, . . ., d). These effective conductivities o„are
self-consistently determined by the requirement
that the fluctuating "local fields" in the random
network should average to zero. As in the isotropic
case we can use two procedures to express this
qualitative requirement in mathematical terms.
The first method is an adaption of the classical
theory of mixtures to random resistance net-
works, ' '" and the second ' is analogous to the
coherent potential approximation ' in the theory
of electrons in alloys. Both procedures (the an-
isotropic version of the first method is sketched
in Appendix A) lead to the following set of integral
equations for the determination of the effective
conductivities p'1, , Q„..

[pg (1 —cost) + 0'2 + og] —(0's —0's)
(7)

and ks, ks are obtained from Eq. (7) by cyclic per-
mutation of the indices 1, 2, 3;

K(k)= f d8(1 —k sin' 8)
0

(6)

o1 —g„and ~=03 —o

and obtain, from Eqs. (6) and (7),

2 & 1 —cosy
1P o 20' + oII (1 —cosx)

(10)

is the complete elliptic integral of the first kind.
In general, formula (6) can be evaluated only nu-

merically.
By using certain results obtained from calcula-

tions on a con.inuum with an anisotropic conduc-
tivity tensor we can, however, construct a simple
approximate formula for the S„'s corresponding to
a three-dimensional simple cubic network:

S
— arctan [&1 (&1&2+ oso3+ o3+1)]

arctan[o, (o;os+ ohio, +V&oi)]
' '

(and cyclic). (9)

Equation (9) reduces to the exact result (5) for two-
dimensional square networks (os ——0 or o3 = 0) and

gives the correct answer (S= 2o) for the isotropic
case (a~= o2=Vs=o)

To conclude this section, we shall discuss the
important special case of uniaxial anisotropy in
some detail. We set

1I'
1f

R„=— dk&. .. dk, (1 —cosk„
o

4

g o;(1 —cosk, ), @=1, . . ., d.
1=1

For d=2 (two dimensional -square network) the in-
tegrations in Eq. (3) can be carried out analytical-
ly, and we obtain

R~ is related to R„by

R, = (1/2o, )(i —o„R„), (i2)

Rll =R~=I/3oll for o~=&II ~ (i3)

as is easily seen from the original expressions (3).
From Eq. (12) we immediately obtain the isotropic
result

or

2
R, = arctan (o,/o2)' t (and cyclic)

Fg1

arctan (o,/o, )'~
S, = o, , ', „&3 (and cyclic) .arc an (0'1/ Op)

(4)

(5)

For small and large "effective anisotropies" U,

U

ohio„,

= (14)

R„=(1/o„)(1 —0.9581MU) for U-O, (15)

we can derive the following exact asymptotic ex-
pansions:

For d = 3 (three dimension-al simple cub. ic network)
the expression (3) for R„can be reduced to + 2. 355'7 — for U

1 lnU
271Oi

(16)

where

dx k„&(k,), (6)

(i7)

Finally, we observe that, for uniaxial anisotropy,
the "continuum-approximation" (9) leads to

R„= (2/so„) arctan [(2U+ U')-' "J .
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Its small U behavior

R„= (I/o„)[1 —(2W/s)Wtr] (18)

10

is qualitatively correct, and the coefficient of WU

differs from the exact value by only about 5%. The
values of R„, obtained from the exact formula (11)
and from the "continuum approximation" (17),
respectively, coincide at U=1 and differ at most
by 0.02 over the whole range of U(0 & U& ~). The
large-U behavior of Eq. (17), R„-1/U, is qualita-
tively different from the exact result (16), so that
the relative error becomes very la,rge in this
limit. The effects of this discrepancy, however,
are negligible in most applications.

III. APPLICATIONS

o) = G)(p) —»)/(1 —»),

o, = G,[p, —(1 —»)]/», q= tan'(2v»),

so that x is the solution of

(20)

tan (' ) =~
G~ (1 —»)[p2 —(1 —»)]

' (21)

The conductivities o, and g& both vanish for p, +p&
& 1 and are nonzero in the complementary region.
Figure 1 shows the results for pj = p2 =p, G, = 10.
and 6 = 1. The agreement with numerical calcu-
lations on networks with 20x 20 nodes is remark-
ably good, except in a critical region near p = —,'.

For fixed values of p, and p2 (with p, + p2 ) 1),
the anisotropy Q increases monotonically with in-
creasing G,/G2, but it is bounded by tan (~p, ) as
G,/G2- ~. This boundedness of the anisotropy Q
has important consequences for the interrupted
strand model which has been introduced to explain
certain features of quasi-one-dimensional (i.e. ,
highly anisotropic) conductors. ~ The simplest
network-model of an interrupted strand system is
represented by the following special case of a
three -dimensional bond-percolation model:

p)(o) = (1 —p) 5(o —o )+p6(o),

pg (o) = ps(o) = 6(o —oi) ~

In the following we shall apply our effective-
medium theory of Sec. II to some specific examples
of anisotropic disordered network models. First,
we consider the two-dimensional anisotropic bond-
percolation model defined by

p„(o)=p„5(o —G„)+(1-p„)5(o), v =1, 2, (19)

i.e. , the conductances in p direction assume the
values G„and zero with probabilities p„and 1 —p„,
respectively. The results for the effective con-
ductivities o» o2 [as determined by Eqs. (1) and

(5)] and the effective anisotropy Q= o,/a) can be
represented as follows:

We assume a high uniaxial intrinsic anisotropy

(c„/&r, » 1) and a small concentration of interrup-
tions (missing conductances) in the highly conduct-
ing chains (p«1). In these limits we obtain sim-
ple, but very instructive, relations between the
intrinsic anisotropy Qg/(Ti and the "observable"
anisotropy Q= o„/o) '. If /oo» 1/p, Q is approx-
imately equal to

Q„=0.918/p (22)

i.e. , Q is given by the defect concentration p
alone, and is proportional to the squa. re of the
mean length 1/p of the strand segments. In the
opposite limit 0'„/og «1/p, Q is practically equal
to the intrinsic anisotropy o„/o, . As an illustra-
tion, Fig. 2 shows a plot of Q vs g„/o, for p = 0.002.

These results offer a simple explanation to the
anisotropy measurements of Zeller ' on the
quasi-one-dimensional conductor K2Pt(CN)4Bro. ,
~ 3(H20). In this compound, the anisotropy is
strongly sample dependent at high temperatures
where it has its maximum value. It decreases
with decreasing temperature and becomes prac-
tically sample independent (intrinsic) below about
100 K. Within our simple model, these results
can thus be explained as a consequence of the de-
fect-limited observability of large intrinsic con-
ductivity anisotropies.

Finally, we consider a two-dimensional network
model for anisotropic thermally activated nearest-
neighbor hopping. We assume the individual con-
ductances o',&) (v = 1, 2) to have the form

(I )P) (v) BE)& P I/-P T (24)

0.5 0.6 0.7 0.8 0.9 1.0
P

FIG. 1. Effective conductivities o&, o~ for the aniso-
tropic bond-percolation model defined by Eq. (19), with

pf p2 p +f 10, G2 = 1~ The circles refer to numerical
computations on networks with 20x20 nodes.
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50 and its anisotropy in disordered systems.
The theory gives an accurate description of a

wide class of anisotropic mixture problems (ex-
cept in critical regions). For a quantitative anal-
ysis of hopping models, however, it ought to be
supplemented by an extension of the critical-path
analysis'~ "to anisotropic systems.

10 lO 30 )09

FIG. 2. "Observable" anisotropy Q = o„/cr~ vs intrinsic
anisotropy 0~,/cTj for the model defined by Eqs. (22), with
p=0. 002.

the activation energies E,'&' being distributed ac-
cording to the probability density p„(E). For the
simple case where the activation energies in both
directions have the same uniform distribution

In Fig. 3 we have plotted ln~, and lnoa as a func-
tion of the inverse temperature P for 00"'=10 and
oat'=1. The anisotropy Q is equal to oz"/oo ' at
p=0 and tends to 1 as p ~. In the case of two
different uniform distributions ~(E) and pz(E) of
the type (25), Q is still equal to oo"'/oo ' at p= 0,
but tends to t a[n-,'g(1+E"'/E„') '] as P-~. As in
the isotropic case, " the predictions of the effec-
tive-medium theory for such hopping models are
quantitatively only reliable at not too large P val-
ues.

In the isotropic analog of our two-dimensional
hopping model, the effective-medium result for
the lng-vs-P curve is a straight line with slope
( ——,'). Figure 3 therefore gives us some informa-
tion about the influence of anisotropy on the shape
of the conductivity curves. Conductivity measure-
ments on triethylammonium-tetracyanoquimodi-
methanM' [TEA(TCNQ)&) seem to indicate such an-
isotropy effects.

The above simple examples demonstrate the
usefulness of the effective-medium theory in deal-
ing with quite general aspects of the conductivity

1/E, 0 E E
pi(E)=p (E)=

~ ~

~

~

0, otherwise,

and only the prefactor pp"' is anisotropic, the re-
sults for the effective conductivities can be repre-
sented as follows:

(1) t2) WS — i- 2 iol ' &2 o0 o0 e 'q o1/o2 tan (2o+)

with g being the solution of

o(~)" xsinh[-. PE (1 -z)]
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APPENDIX A: DETERMINATION OF THE EFFECTIVE
CONDUCTIVITIES 0„

(Al)4 V„(op~, og, . . . , o'q) = V]~ —V„,
where V,'&' is the voltage across o &' and V„ is the
voltage across a conductance 0„ that is far away
from v,'&'. The effective conductivities (Tg ~ ~ ~ Og

are determined by the requirement that the hV„'s
should average to zero.

J do p„(o) 4V„(o;o„.. . , o~) = 0, v = 1, . . . , d.
(A3)

The quantity AV„ is evaluated by using the same
equivalent circuit diagram as in the isotropic case
[Fig. 2(a) of Ref. 13]; this leads to

10

0

-IO
0 10 20 ISEm 50

FIG. 3. Solutions 0& and a2 of Eqs. (26) and (27) as a
function of PE for 00"'=10, ao =1.

In the effective network we change a single con-
ductance, oriented along the external electric field
(direction v), back to its true value o P, leaving all
the other conductances equal to their respective
mean values a„.. . , a„. Then we calculate the dif-
ference
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(AS)

where S„=1/R„—o„and R„ is the total resistance
between two neighboring nodes in v direction in the
(infinite) effective lattice. R„depends on all ef-
fective conductances 0„.. . , o„and is calculated in
Appendix B. Insertion of Eq. (A3) into (A2) finally
leads to the system of integral equations that de-
termines the o„values [Eq. (I)].

g(k) = Z e '"V;, (Bs}

it follows from Eq. (B2) that

for all lattice vectors n of our infinite effective
lattice. The summation is over all nearest neigh-
bors n+ 5 of site n, and v(5) denotes the lattice
direction to which 5 is parallel.

If we introduce the Fourier transform g of V,

APPENDIX B: DERIVATION OF AN EXACT EXPRESSION
FOR R„

g(k) = J(e "~—e '~ f) Zo - (1 —e'" )
6

(B4)

We characterize the nodes of our effective net-
work (Sec. II) by lattice vectors n= (n„. . . , n~),
with n„ integers. From outside we impose a cur-
rent Jwhich flows into the network at site n' and
out at site n . The node voltages are denoted by

V;, and the total resistance R;- between the sites
n' and n is then given by

RI'g- = (VE' —V; )/J . (Bl)

To calculate the voltages V; we consider the Kirch-
hoff equations corresponding to our problem:

The voltages VI are then given by

Vz=~& ~, fdk e'" g(k). (B5)

From Eqs. (Bl), (B5), and (B4) we can now cal-
culate the resistance R;.~ . If we specialize to the
case where n' and n are nearest neighbors in the
v direction, we obtain the desired exact expression
for R„,

1R„=—~ dk, ~ ~ ~ dk, (1 —cosk„
7J 0

2 7o f (V- —V- -}= J(5- g' —5- =)
6

(B2) Z o,(1 —cosk, ) . (B6)
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