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The contribution of dislocations to ultrasonic attenuation in the liquid-helium temperature range has
been measured in sodium chloride for the purpose of determining the resistive force acting on
dislocations. Use was made of a technique for measuring the ultrasonic attenuation change isa at
different frequencies, caused by a bias stress. The predictions of the extensible-string model of
dislocations, which account well for the behavior of h,n above about 70'K, are not consistent with the
observed frequency and amplitude dependence of ha at lower temperatures. A dislocation-drag model
based on a radiation-damping mechanism is shown to account for the present results. Furthermore, this
mechanism, taken in conjunction with the viscous damping normally assumed for the extensible-string
model, also accounts qualitatively for the behavior of dislocation damping at low frequencies (kHz),
which shows discrepancies with the string model.

I. INTRODUCTION

When a dislocation in a crystal is set in motion,
it experiences a resistive force leading to energy
dissipation. There are several physical mecha-
nisms giving rise to these resistive forces, i.e. ,
it is possible to have different energy dissipation
processes for a moving dislocation. In general,
the sources of the resistive force (drag) may be
classified into two categories, "intrinsic" and "ex-
trinsic. " The extrinsic sources are obstructive
barriers against dislocation motion, such as im-
purities, preeipitates, other dislocations, grain
boundaries, etc. , where a moving dislocation may
be held up for a certain period of time in course of
its motion. The dislocation may overcome the
barriers with the help of thermal fluctuations.
Therefore, the average dislocation velocity is in-
fluenced greatly by the waiting time spent at the
barriers. In particular, the drag determined by
methods which involve large displacements of in-
dividual dislocations (produced for example by
stress pulses of known magnitude and duration)
may be strongly influenced by these extrinsic
sources. Dislocation drag determined from ultra-
sonic attenuation studies, on the other hand, pro-
vides a measure of the intrinsic resistive force.
This is because the dislocation displacements (os-
cillatory) caused by ultrasonic waves are small, so
that the interactions between dislocations and the
extrinsic barriers are very infrequent and can be
neglected.

The intrinsic resistive force originates from the
intrinsic properties of the crystal, which may be
subdivided into two categories, (i) elementary ex-
citations (e. g. , phonons and conduction electrons),
and (ii) discreteness of crystal lattice structure.
Phonons and, in the ease of metals, conduction
electrons interact with dislocations through the
process of scattering, and produce resistive forces
upon moving dislocations. Theoretical treatments

of this subject are given by several investigators, 4

and they all agree in that the drag force I' caused
by such mechanisms is proportional to the disloca-
tion velocity v (viscous type damping):

The proportionality constant B is called (viscous)
damping constant or drag coefficient. It should be
emphasized here, however, that in the scattering
theories so far presented, dislocation configura-
tions are treated within the framework of continu-
um theory of elasticity, and the discreteness of
lattice structure is not taken into account. We have
investigated experimentally the values of B and its
temperature dependence for lead, aluminume and
sodium chloride, ' and obtained reasonable agree-
ment with the predictions of the scattering theories,
except that in the ease of sodium chloride the ex-
perimental results obtained in the temperature
range 2-70 'K were found to be inconsistent with
the predictions of viscous-type damping. We there-
fore concentrated our attention on the other intrin-
sic source of dissipation; namely, the discreteness
of lattice structure. It is this point that we treat
here in some detail.

II. EXPERIMENTAL TECHNIQUE

The experiments consist of measuring concur-
rently changes in attenuation 4n and modulus de-
fect [in terms of velocity change S,(b, V/V)] caused
by an applied dynamic bias stress. The dynamic
bias stress method, which is described in previous
publications, 6' is a way of extracting the disloca-
tion contributions from the total ultrasonic attenua-
tion by applying a second ultrasonic wave (low fre-
quency and high amplitude) in a direction perpen-
dicular to that of the attenuation-measuring wave.
The change An in attenuation and h(h V/ V) in ve-
locity caused by the bias stress wave is measured
as a function of frequency v at a given temperature.
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lel surfaces for the purpose of ultrasonic wave
propagation.

For the measuring wave, 1Q or 15 MHz trans-
ducer s (either quartz or LiNbO, ) are used at the
odd harmonics of their fundamental frequency. For
the bias stress wave, 5 or 10 MHz transducers
[quartz or lead zirconate (PZT5)] are used at their
fundamental frequency. As a bonding agent for the
transducers, 1-pentene is used. Since pentene is
highly volatile at room temperature, bonds were
made at temperatures slightly above its freezing
temperature.

FIG. l. Attenuation change «caused by a dynamic
bias stress vs frequency, T=4.2'K.

These 4n —v and h(h V/ V) —v relations are the
subject of analysis in terms of various models. In
this study, however, an additional precaution had
to be taken concerning the amplitude of the mea-
suring wave. As will be discussed later, the at-
tenuation change 4n is found to be sensitive to the
amplitude of the measuring wave. It is therefore
essential to keep this amplitude constant for every
frequency at which the measurements are taken.
To this end, a voltage pickup consisting of 40: 1
resistive voltage divider is installed right at the
transducer, which enables one to monitor the volt-
age applied to the transducer at each frequency.

The changes in velocity A(n V/ V) were deter-
mined by means of an interferometric technique,
which is a modified version of a method described
by Blume. Particular attention was directed to
eliminating spurious indications of velocity changes
associated with changes in echo amplitude. Details
of this technique will be published separately.

The samples used are single crystals of sodium
chloride cleaved from optical grade ingots supplied
by the Harshaw Chemical Company. The size of
the samples is approximately 7~ 7' 8 mm, and the
faces are perpendicular to (100) crystallographic
directions. After cleaving, two sets of faces of the
sample are ground slightly to obtain flat and paral-

III. RESULTS AND DISCUSSION

A. General background

Examples of the 4n as a function of frequency v

obtained at 4. 2 'K for three different samples are
shown in Figs. 1-3. Here in contrast to the be-
havior of the 4n —v relation above 70 K, ' Ao in-
creases with frequency essentially linearly up to a
frequency in excess of 100 MHz (the exact value of
this frequency varies from sample to sample), then
levels off and becomes independent of frequency;
in about half the cases a "hump" appears prior to
4n leveling off, as seen in Figs. 1 and 2.

As mentioned in Ref. 7, we concluded that at low
temperatures (below 70 'K) contributions from
mechanisms other than viscous damping become
important. The main reasons leading to this con-
clusion are as follows: First, if the drag coeffi-
cient B is proportional to the thermal energy den-
sity e, which is the approach taken in Ref. 7, and
since & decreases with temperature quite rapidly
below 70 K, the incremental attenuation 4o, for a
given magnitude of the bias stress also should de-
crease rapidly with decreasing temperature. Ex-
perimentally observed magnitudes of 4a, however,

full bias stress
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FIG. 2. Same as Fig. 1 for a different sample.

FIG. 3. Effect of the amplitude of the bias stress on
&&-v relation. The amplitude of the bias stress is re-
duced by 3 dB(V') and 6 dB (4) from the full bias stress
amplitude (O). T= 4. 2 'K.
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H(d) = pcPb /Svd= c'/2d, - (5)

where d is the separation distance between kinks.
Equation (5) is a long-range interaction law and is
only valid when d is large compared with the kink
width. The kink energy barrier W~ mentioned be-
fore is then thought to be superimposed on this
long-range interaction energy. When the entropy
term is neglected, the kinks are uniformly spaced
within a given kink chain pinned at both ends and
the spacing d depends only on the angle Q (Fig. 4).
Under an applied stress o, which is much less than
the kink stress o» the jump frequency vo of a kink
to cross the kink barrier and to initiate kink motion
may be calculated by the standard method of rate
theory:

vo —via- var ~

vga = vooexp Wj —poN5 +3
2

d'd. " d.

v» = voo exp — m' +-,caO'+—
2

do do + do do+ a

where do is the initial (before stress is applied)
separation between kinks, v» and v&& are forward
and backward jump frequencies, respectively, and
voo is the attempt frequency. Since W„, oP, and
c'a /doo is much less than bT, vo can be approxi-
mated by

~o = drool(«bo —2c'a /doo)/&1"l ~ (6)

The above derivation of vo may not be accurate be-
cause the Einstein frequency is used as the fre-
quency factor. Nonetheless, it suggests that, upon
application of a stress 0, not all the kinks can
move, but only the kinks which satisfy the condi-
tion

and a close-packed crystal direction. With @= —,',
the value of P ranges fxoxn ~ for edge dislocations
to 2 for screw dislocations. With the values of p.

=1.26x10'~ dyn/cmo, a=5. 63&&10~ cm, b=4&&10 '
cm, and of Alefeld's estimate P(Inn)/4s =-,', one
finds, for T=4. 2'K,

P»0. 001.
Namely, the entropy term becoxnes important only
for the kink chain making very small angles with
the close-packed direction. On this basis, there-
fore, the entropy is disregarded in the following
analysis.

The interaction energy between kinks has been
calculated by several investigators, 3 and is giv-
en by

«b &2c'a /do

can start to move. It can be shown further that
once one of the kinks in the chain goes across the
kink barrier, the rest of the kinks in the chain will
follow. Therefore, the chances for kink motion in
a chain of n kinks should be enhanced by a factor
n, provided the stress satisfies the condition given
by Eq. (7). From these arguments, it follows that
since there must exist a distribution of do in a crys-
tal the number of kinks which contribute to the en-
ergy dissipation when subjected to an oscillatory
stress should depend on the amplitude of the ap-
plied stress oo. The distribution of do, however,
is not known. Therefore we simply assume that
the chains are evenly distributed with respect to
the angle P (rectangular distribution in terms of
P). Then the distribution function P for number of
kinks in terms of aldo bee~me~

where P„ is the largest angle of P considered (P
= sing = a/do). (It is assumed that all the chains
have equal length I. ) Then the total number of
kinks per unit volume N is given by

N= AQ„/2a,

where A is the total length of dislocations per unit
volume. The number of kinks y which will contrib-
ute to the energy dissipation under an applied
stress of amplitude oo then becomes

y =, ~ Anf—

where x= (boa b /2c')'I' and c„is the stress at
which all the kinks (up to the ones having the maxi-
mum angle P„) move. It should be noted that Ma-
son 4 derived a similar expression for y from a
different reasoning.

Once the kink motion is initiated, i.e. , a kink
goes across the first kink barrier, 8'~, the kink
acquires a kinetic enexgy by converting the poten-
tial energy 8'„, and can cross the next 2nd the sub-
sequent energy barriex s indefinitely if no other
forces act on the kink. In practice, however, the
kink experiences forces arising from the kink-kink
interactions just mentioned, as well as a dynamic
resistive force which is the source of the energy
dissipation to be discussed later. Therefore, af-
ter crossing the first energy barrier, the motion
of individual kinks should be described by a set of
equations of motion

mXo+fi(Xa) =«b+~f(Xa Xr) ~

llama

where Xo is the coordinate of the bth kink, f,(X„) is
the dynamic resistive force, and f(~ —X,) is the
interaction force between kth and 5th kink.
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The interaction force f(d) can be derived from

Eq. (5) (only nearest-neighbor interactions are
considered here)

Since this force is nonlinear in d, a further ap-
proximation is made by expanding it in terms of
(d —do). The result ' to first order is then

f(+a) = c(ma-s 2~&+ +a s) ~

where uA, is the displacement of the kth kink from
its equilibrium position, and c is given by

c = pa'b P/4md 3O .
In the case of viscous damping, the resistive

force is given by Bsi&, Bbeing the viscous damp-
ing coefficient, and the set of the equations of mo-
tion takes the form

Suzuki and Elbaum showed that the expression of
attenuation e for such a system has exactly the
same form (in terms of resonant frequency &uo, ap-
plied frequency &u and 8) as that derived from the
string model with viscous damping. 6 It is obvious,
therefore, that the kink model with viscous damp-
ing does not account for the present results. How-
ever, for the purposes of subsequent references,
steps leading to the expression for attenuation e
for this case are listed in the Appendix.

D. Radiation damping

Eshelby showed that when a kink oscillates, en-
ergy is dissipated through radiation of elastic
waves. His expression for the dynamic resistive
force 18

an applied time varying force such as an oscillatory
stress. %hen the kink barriers are included, the
kink motion is not expected to be smooth and may
be accelerated and decelerated in crossing the bar-
riers, even if the average velocity v is kept con-
stant (applied stress is not necessarily oscillatory
in contrast to the continuum model). Such a change
in velocity also is a source of energy radiation.
This problem has been treated by several investi-
gators including Hart 8 and Nabarro. Recently
Alshits et al. ~o made a detailed calculation of this
problem and showed that, at high average kink ve-
locities, a kink emits energy mainly on the funda-
mental frequency, and that the radiation damping
is proportional to 1/v. With decreasing velocity,
the increase in the degree of nonuniformity of the
kink motion results in a broadening of the radiation
spectrum and in the growth of the dissipation. The
decrease of the velocity is possible only up to some
critical velocity v„below which a steady-state
kink motion is not realized.

Suzuki ' also considered this problem from the

analogy between charged particles in an electric
field and dislocations in a stress field. According
to his calculation, the stress required to move dis-
locations with a certain velocity e over an energy
barrier 8'is given by

where l is the length of the dislocation. If one ap-
plies this formula to the case of kink motion by re-
placing f with s (kink height), W by 4 0yQb, and with'

(kink mass),

the followirg expression is obtained

y, = pa b /10vc„'

where c, and c, are the velocities of longitudinal
and shear waves, respectively. If one uses this as
the dynamic resistive force, the expression for the
attenuation takes the form

Pg(d
& ~

(
a 2)a 2 6 ~

Obviously this does not provide the frequency de-
pendence needed to explain the observed results.

Eshelby's treatment is based on a continuum
model and does not take into account the effect of
energy barriers for kink motion. Consequently, in
order to radiate energy, a kink has to be driven by

m 5mse"' 0 1
16 a 4 a p (1+Bp,av /voztuc, )ii

(12)
In one extreme case, i.e. ,

8p.av
ma~wc,

the above expression reduces to Alshits et aE. 's'0
expression for the resistive force corresponding to
the critical velocity v, [ Eq. (18) in Ref. 20]:

In the other extreme case, i.e. ,
Bpae 3»$

5O'g, LUCE

Eq. (12) becomes
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iw I ~0' ~c (14)

which may be compared with the expression of
Alshits et al.

or

4I' Bg
w (~Q&o

Thus, both the analyses of Alshits et aE. and
Suzuki predict that at low velocities (below v,), the
resistive force for kink motion is independent of
the kink velocity and given by o„», the dynamic
Peierls stress for kinks; and at high velocities,
the resistive force is inversely proportional to the
kink velocity. If it is assumed that the critical ve-
locity v, is determined by the condition

8p, av~

vcr„wc,2

It should be noted that the equivalent damping coef-
ficient f), depends on u),0 (the displacement amplitude
of the kth kink) and no longer is a material constant.
By substituting b) for B in the expression (A9) and

solving it for u~o, one obtains

where

cot — sin

then for values of o)4/p =10~ and s)=5a, v, becomes
1.4&10 c&. The distance a kink travels in the
quarter cycle of the applied oscillatory stress is
thought to be in the order of ten interatomic spac-
ings. Then the critical velocity v, can be achieved
at a frequency of 150 MHz, which is well in our ex-
perimental frequency range.

According to this model, the kink will accelerate
indefinitely (in the high velocity range) if the ap-
plied stress is the only. stress acting on the kink.
In order to prevent this from occurring, Alshits et
a/. introduced a large viscous damping without
specifying its origin. It is difficult, however, to
find such a large viscous damping at the low tem-
peratures under discussion. We consider here, in-
stead, the case of geometrical kink chains pinned
at both ends. In this case, the interaction between
kinks will prevent the divergence from occurring.

The displacement of the kth kink becomes

s)) = neo cos[(df —((d/ 8x —4))]

with

From these quantities, one obtains

1 1 Nab@.Q=
2 ++1 0'oe 24 24

+ 4~B (4/v)(B, /M) ' '"
q~g M Eg

g V 1 1 iVabp, 1
V 2 tl+ 1 0'oe (dy (d

( /m4)(B, /)M)'

K~

(17)

E. Attenuation due to radiation damping

In the following the attenuation and the modulus
defect (in terms of the velocity change) caused by
the radiation mechanism just mentioned are pre-
sented. Only the two limiting cases are treated in
detail.

Law velocity region

In this region the dynamic resistive force is in-
dependent of kink velocity:

E= o„sIab .
In order to incorporate the velocity-independent
dynamic resistive force into the equation of mo-
tion, we use the "equivalent viscous damping meth-
od", which postulates the equivalence of work
done by the real force o~»ab(= Bz) and by the e(luiv--
alent (fictitious) viscous damping force b, ci» at the
end of each cycle;

The above expression for n loses meaning unless
the following condition is fulfilled:

(
(4/w)(44/M) )',

Kq

The relative magnitudes of X'„and [(4/s)(B, /M)]~
are practically determined by [oo sin[eh/(n+ 1)]]
and (o~z,~)~ (the factor [ /(2n1+)] c t[o/~4( )n1+)] in K~

changes from 1 to 4/m as n increases from 1 to ~).
oo is in the order of 10 dyn/cm and cr~» is esti-
mated to be 103 dyn/cm (o~»/o, = 10, o)4/p = 10~).
If one sets a criterion

o
I

2
&as a &0. 1

o, sin[ma/(n+ 1)]

for [(4/m)(B, /M)] to be neglected against R~, 20
kinks out of 99 kinks of the chain (the first ten and
the last ten kinks) fail to meet this criterion. For
a kink chain containing less than nine kinks, all the
kinks meet this criterion. %ithin this approxima-
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tion, we may discard the term [(4/v)(B, /M)]»
against If», and obtain

1 n I4 Nab p, (rqp~

2V n+1) v ooe 'M

4V' 1 2 &&r 1 Na b p, 1

(19)

(2o)
In the above derivation, however, it is assumed

that all the movable kinks N will contribute to the
energy dissipation upon application of even an in-
finitesimal stress. As mentioned earlier, the
number of kinks p which participate in the energy
dissipation depends on the amplitude of the applied
stress &ro [expression (8)]. Therefore, N in the
expressions (19) and (20) should be replaced by
(0'p/e„)N and finally one obtains

(21)

1 2 3~&17 1 ooe Na b p. & 1
2 cot'I—

v 2(n 1) '~2n+1 v M iwi —&)'
(22)

As can be seen, as long as the frequency of the ap-
plied stress ~ is much smaller than the resonant
frequency co&, the attenuation a increases linearly
with frequency and does not depend on the ampli-
tude of the measuring wave, while the velocity
change hV/V is independent of the frequency &o but
increases with the amplitude of the wave. It should
be noted also that, for a given chain length l, the
contributions of each individual kink to the attenua-
tion n (and also to d V/ V) are approximately the
same regardless of the kink density n, therefore
of angle iti, provided n is not too small. Qualita-
tively, this is because, for a given chain length,
as the angle Q decreases the number of kinks n de-
creases, but the distance each kink travels during
the stress cycle is larger, and the area swept out
by the chain, which is the measure of the energy
dissipation, does not depend strongly on the angle

This is not the case for the viscous-type damp-
ing because the area swept out by the chain is not
directly proportional to the energy dissipation.

The quantities we measure, however, are not
the attenuation a nor 6V/V themselves, but the
change of these quantities ho and h(b V/V), due to
the dynamic bias stress. The role of the bias
stress has been thought to be a slight increase of
loop length I, on the average, by depinning disloca-
tions from weak pinning points, as described in
Ref. 7. However, in case of a system of kink
chains, the effect of the bias stress may be better
understood in terms of increasing the number of
kinks responsible for the energy dissipation, by
activating kink chains having larger angles which
would not be activated by the measuring wave alone.
Namely, the number of kinks z is increased from

(eo/o )N to [(oo+»(Ts)/(7 ]N, where oe is the ampli-
tude of the bias stress, and the factor & arises
from the fact that, in our present experimental ar-
rangement, two out of four slip systems the mea-
suring wave activates are affected by the bias
stress. Then the incremental attenuation and the
corresponding velocity change become, respective-
ly,

1 ( n 4 o NQ5podp» (d

4VI,n+1 m o ooe- ~M (dx —co
(23)

O
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FIG. 5. Attenuation change as a function of measuring
wave amplitude, at frequencies of 30, 90, 150, and 270
MHz, in the presence of a bias stress (same for each
frequency). The amplitude of the measuring wave is
increased by 10 dB in 1-dB steps. The attenuations are
normalized to the value corresponding to the lowest am-
plitude at each frequency. T= 4. 2 K.

4 n+1 2n+1 o' ~ ~
(d —(d

(24)
It is clear from the above expression that the fre-
quency characteristics remain the same as before,
but 4a has an "inverse" amplitude dependence
(i.e. , the incremental attenuation decreases as the
amplitude of the measuring wave increases), while
6(b, V/V) is insensitive to the measuring wave am-
plitude.

Evidence for the "inverse" amplitude dependence
is presented in Fig. 5. Here the measuring wave
amplitudes of each frequency indicated are in-
creased by 10 dB, in 1-dB steps, while the ampli-
tude of the bias stress is kept constant throughout
the experiments. It is apparent that the magnitude
of the "inverse" amplitude dependence seems to in-
crease as the measuring wave frequency increases,
in accordance with the prediction of expression
(23). When the amplitude dependence experiments
are conducted without the bias stress, either no
amplitude dependence or very slight "normal" am-
plitude dependence is detected. This inverse am-
plitude dependence is influenced markedly by the
temperature at which the experiments are con-
ducted. An example for this is shown in Fig. 6.
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10~rL(, , which agrees with the theoretical estimate
ozp, /o~ =10 by Weiner, ' combined with o,/p,
= 10 by Schottky.

In the following, dislocation attenuation n is es-
timated from the expression (21) and from the cor
responding expression of the string model with
viscous damping'8 (attributed here to phonon scat-
tering) which may be written as

FIG. 6. Effect of temperature on "inverse" ampli-
tude dependence. & = 150 MHz. The attenuation decrease
due to 10 dB increases in the 150-MHz measuring wave
in the presence of a bias stress (same for all tempera-
tures) is plotted as a function of temperature.

As can be seen, the effect decreases as tempera-
ture increases, and at 70 K, the inverse amplitude
dependence disappeared. Again, without the bias
stress, no amplitude dependence was detected
throughout the temperature range tested.

The inverse amplitude dependence was predicted
ea,rlier by Suzuki and Elbaum and by Alefeld.
The origin of this effect (nonlinearity) in their the-
ories, however, is the higher-order terms in the
interaction force between kinks, and is not the non-
linear damping terms discussed here (a viscous-
type damping is used in their theories). Nonlin-
earity in the interaction force, however, fails to
explain the present experimental results at least
in iwo accounts: (i) the frequency dependence of
ho, and (ii) the sign of hn. The first point was
already mentioned earlier. For the second point,
the nonlinear interaction force mechanism predicts
b,e to be negative, ' while we have never observed
negative 4o. throughout our experiments.

Figure 7 shows the results of concurrent mea-
surements of hn and h(b V/ V) taken at frequencies
of 15, 45, 75, and 105 MHz and at a temperature
of 4. 2 'K. In accordance with the predictions of
the expressions (23) and (24), ha increases linear-
ly with frequency, while b(AV/V) appears to be
independent of frequency, though there is substan-
tial scatter in the experimental points. Using a
pair of experimental values of b o. and b (6 V/ V)
[for example, be=0. 03 dB/p sec, and 6(nV/V)
= 2x10 ' at 75 MHz], one can calculate the ratio
o~»/oo from the expressions (23) and (24):

4.2 K

.05-
0

0

0
X

2
o

With numerical values of g = 1.26x 10" dyn/cm~,
a = 5. 6 x 10 cm, b = 4 x10 8 cm, c, = 2. 4 x 10~ cm/
sec, V=4. 5x10' cm/sec, and with the estimated
values of os/o„=10 ', i=10~ cm, do=10~ cm, n
=n+1 =l/do=10, A=106 cm/cm3, %=A/d =10'
and with a,»/oo = 10 ' (just obtained above), Ao.

[Eq. (23)] is calculated to be 4x10 Np/cm or l. 6
x10 ' dB/psec for 100 MHz, which is comparable
to the data shown in Figs. 1-3. The dislocation
attenuation n due to the radiation mechanism is
then estimated to be in the order of 3x10 dB/
psec (o. = 4n x 2oo/os). On the other hand, the cal-
culation from the ezpression (25) at the same fre-
quency and with the same values of the parameters
yields a =10 6 Np/cm or 4x10 8 dB/iLsec. In this
calculation, the viscous damping constant B is es-
timated from the assumption that B is proportional
to the thermal energy density, and is scaled down
to 4. 2 K from the measured value of 10 '

dyn sec/
cm at 70 'K (with Debye temperature eD = 321 'K).
It is concluded from these estimates that the ob-
served dislocation damping at low temperatures
cannot be attributed to phonon scattering in the
sense formulated to date, and applicable at higher

&d Pk

n(n V/V) c~ oo 2 '
I

100
FREQUENCY

I

200
MHz

or o~»/oo = l. 2x 10 '. Since the stress amplitude
of the measuring wave oo is in the order of 10'
dyn/cm or 10 'p. , o~» should be in the order of

FIG. 7. Concurrent measurement of attenuation
change && and the velocity change 4(»/&) as a function
of frequency. T= 4. 2 'K.
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2, High velocity region

In this region the resistive force is inversely
proportional to the kink velocity;

where

2 'F Ql ~~V~

Here again the equivalent viscous damping method
is used. The equivalent damping coefficient q be-
comes

g = 2Qab/u~(d

The amplitude u~o and phase angle P, are given by

Ã~+ [1 —(2(vq —uP)2Qab/K~M&o)]
+no = 2 Z)

tang, = (2qab/M(ou', 0)/(uP, —(u'),

which leads to

1 Nabgp, m 1
2cg 0'oe 0'~ 2 n+ 1)

xQ~, sin[em/(n+1)] ' (27)

hV 1 goe ~Nab p, 2 3 5 1 1, cota-
v 1 Mv„(n+1)* I n+1) 2 —aP

'

(23)
The effect of the bias stress is again thought to in-
crease the number of participating kinks, and one
obtains

1 os¹bgp, (v 1
4c, (ooe ')'o„(2 n+ 1]~

x Q . , (29)
z sin[em/(n+1)] '

4V le~Nab p, 2 3 m 1 1
~~

V 4 Mo (n+1) 2 n+1 &oi —+
(30)

temperatures. @'

The concept of using a dynamic Peierls stress of
akink, 0&», as the source of internal friction, was
introduced previously by Mason. '3 ' 6 In his
treatment, however, the dynamic resistive force
arising from 0&» is set to be proportional to the
applied stress 0, i.e. ,

& = (oa~a/oa) bo(t)

for unit length of dislocation. Thus the equation of
motion remains linear as in the case of the viscous
damping, and no amplitude dependence appears in
either attenuation or modulus defect. Consequent-
ly, such a treatment presents difficulties in ex-
plaining the "inverse" amplitude dependence ob-
served in La mentioned above.

FREQUENCY

FIG. 8. Schematic representation of attenuation as
a function of frequency, &~ without bias stress, &2 in the
presence of a bias stress.

As can be seen, he is independent of the fre-
quency (d, which is consistent with the experimen-
tal observation at high frequencies. It should be
noted that o. and ha are independent of the reso-
nant frequency &u„and are proportional to 1/oo and

1/oo, respectively. This last characteristic indi-
cates that in this high velocity region, n itself has
the inverse amplitude dependence, and when a bias
stress is applied, the effect should be enhanced.
The experimental verification of this matter was
not possible because of the insufficient dynamic

range of our attenuation measurement instrument,
when operated at high frequencies.

Another feature of the experimental results
shown in Figs. 1 and 2 is a small "hump" in the
ho —v relation which sometimes appears in the
transition region between the frequency-dependent
and frequency-independent regions. This hump is
thought to arise from the effect illustrated sche-
matically in Fig. 8. In this figure, n& portrays
the frequency dependence of the attenuation in the
absence of a bias stress, according to Eqs. (21)
and (27), with emphasis on the linear dependence of

a on v and the v-independent regions. The applica-
tion of a bias stress causes a to change from a, to
a3. If the transition between the two regions ap-
pears at lower frequencies when a bias stress is
applied, then since the measured incremental at-
tenuation Aa is the difference between na and n„
4a will display all the qualitative features, includ-
ing the hump. Under what conditions the shift of
the transition to lower frequencies occurs is yet to
be explored. Alternatively, the hump may indicate
the onset of the singularity (do= &, which does not
fully develop, because the frequency-independent
attenuation takes over.

The velocity change A(n V/ V), on the other hand,
contains a factor (v, —u& ) and does not depend on
era. Therefore, there should be no amplitude de-
pendence, and at high frequencies the effect of a
singularity should be observed. Unfortunately, our
velocity measurement technique is limited to the
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frequency of up to 110 MHz at present. Therefoxe,
full confirmation of the validity of the model used
is stiB subject to verifying the above predictions.

The experimental results at high frequencies
{i.e. , attenuation independent of frequency), imply
that the decrement (energy dissipated per cycle) is
inversely proportional to frequency. On the other
hand, for a given amplitude of an oscillatory stress,
the dislocation (or kink) velocity is proportional
to the frequency. Therefore, this behavior can be
nterp eted ' te ms of ady am' e ' t ve fo c

which is inversely proportional to the dislocation
(kink) velocity. The radiation mechanism just dis-
cussed, howevex', is Dot the only mechanism having
such characteristics. In the theory of phonon vis-
cosity proposed by Mason, ~I Suzuki et af. s8 sug-
gested that the cutoff radius r{=,5) s-hould be re-
placed by r* = nl/ V when I * becomes larger than

Here, V is the Debye average velocity of sound,
v is the velocity of dislocation, and l is the phonon
meanfree path. Since the expression for the damp-
ing constant (viscous) derived by Mason is propor-
'tloIlal to 1/1', use Of t+ glV8II RboV8 CRuses 'tile I'8-
sistive force to be inversely proportional to the
dislocation velocity. However, the concept of ap-
plying the phonon viscosity, which was originally
proposed as a mechanism for ultrasonic attenua-
tion, to dislocation damping is questionable and
often critized. 3'4 In fact, our experimental results
shown in Refs. 6 and 7 indicate clearly that this 1s
not the case (the temperature dependence of B is
too steep to be accounted for by the phonon viscos-
ity theory).

Seeger and Engelke' discussed the I orentz con-
traction of dislocation width as a possible cause of
decrease in resistive force at high dislocation ve-
locities. The maximum resistive force takes place,
according to their theory, at a velocity approxi-
mately —,

' of the sound velocity, which is considered
to be much too high for the present experiments.
In any case, their theory concerns the scattering
of phonons from dislocation strain fields and there-
fore is I.ot relevant at the temperatures under dis-
cuss1OD

Ookawa and Yazu derived a resistive force in-
ve1-sely proportional to dislocation velocity ax 181ng
from the rad1ation caused by veloc1ty fluctuations
similax to the one discussed here. However, the
velocity fluctuations these authors considered are
the acceleration (and deceleration) of uniformly
moving dislocations encountering a strain field of
an isolated defect. Therefore, their calculation
pertains to an "extrinsic" loss in which disloca-
tions must travel considerable distances before this
mechanism becomes operative.

Finally, we examine the connection between the
low-temperature mechanisms discussed here and
the viscous damping assumed to prevail at higher

VELOCITY

T2

Tl

FIG. 9. Proposed (schematic) dependence of resistive
force acting on dislocation (or kink) as a function of dis-
location (or kink) velocity. Straight lines labeled &» to
&6 represent the ease of viscous damping for increasing
temperature (&~& T2' ' & T'6). Curve labeled 8 represents
the case of radiation damping and of the type discussed
in the text.

temperatures (i.e. , T&7O'K). Figure 9 shows
schematically the proposed xesistive force depen-
dence on velocity, for various temperatures. The
stx'aight lines labeled T& to Ts are assumed to rep-
resent the resistance due to viscous damping as the
temperature increases from T, to Te (the slope of
the straight line is the damping coefficient 8). The
curve R, composed of R velocity-independent I'8-
gion at low velocities, and a part proportional to
the reciprocal of the velocity at high velocities,
represents the resistance due to radiation damping,
as discussed above (it is assumed that to a first ap-
proximation this curve is independent of tempera-
ture). The transition from high- to low-tempera-
ture behavior is viewed as follows. At any set of
conditions, the largest values of the resistive force
dominates; thus at high temperatures (say, Tz) and
aQ but the smallest velocities, viscous damping ap-
plies. As the temperature is lowered, the viscous
damping becomes less and less important for a
given velocity. At the lowest temperatures viscous
damping becomes negligible for all velocities and
radiation damping dominates throughout. This be-
havior could also account for the fact that disloca-
tion damping measured at low frequencies {KHz re-
gion and below) generally displays a frequency-in-
dependent decrement and is therefore not consis-
tent with the predictions of the Granato-Lucke
theory, which ls based oD viscous damp1ng only.
Indeed, at low frequencies the dislocation veloci-
ties are generally smaQ and could be in the region
to the left of the viscous damping line that corre-
sponds to the temperature of the experiment, Un-
der these conditions the damping would be governed
by the radiation loss depicted by the curve 8, and
would display the feature mentioned above. Fur-
thermore, it is worth noting that in the irradiation
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experiments concerning the dislocation pinning rate
determination, investigators~ '~' prefer to use, for
various reasons, the modulus defect data (velocity
change data) rather than the decrement data (atten-
uation data). If the condition of such an experiment
falls into the regime where the radiation damping
discussed here predominates, a viscous damping
model will provide incorrect loop length depen-
dence (l' dependence instead of l~) for the decre-
ment. On the other hand, as far as the modulus
defect is concerned, it is irrelevant whether one
uses the viscous damping model or the radiation
damping model, because the loop length dependence
is the same (l dependence) for the two models.

IV. CONCLUSIONS

It is shown that, among the mechanisms so far
investigated, the radiation damping of the type dis-
cussed here is the only mechanism which can ex-
plain the experimental results concerning the mag-
nitude and frequency dependence of the incremental
attenuation 40. of sodium chloride taken at low tem-
peratures. The radiation mechanism considered
here originates from the fluctuations of velocity
when a kink moves across the energy barriers
arising from the discrete lattice structure of the
crystal, and has the characteristics such that,
when the average velocity of the kink is small, the
dynamic resistive force against the kink motion is
independent of the velocity, and at high average ve-
locities of the kink, the resistive force becomes
inversely proportional to the velocity. These dy-
namic characteristics are incorporated with the
static interaction forces between kinks in a system
of kink chains, and the expressions for the attenu-
ation n and velocity change (hV/U) as well as the
incremental changes of these caused by a, dynamic
bias stress, ho, and b,(b V/V), are presented. The
predictions of the analysis such as the frequency
dependence of ho. (d o. increases linearly with fre-
quency at low frequencies and becomes independent
of frequency at high frequencies), and the amplitude
dependence (no amplitude dependence in o, but "in-
verse" amplitude dependence in 4n in low-frequen-
cy region) are verified by experiments. By mea-
suring concurrently the b n and 4(4 V/ V) in the low-
frequency region, the dynamic Peierls stress for
kinks cTgpg, is determined to be in the order of 10
dyn/cm . The relation between the radiation damp-
ing mechanism and the viscous damping mechanism
which prevails at high temperatures is discussed.
A possible cause of the discrepancies between the
Granato-Lucke theory and the low-frequency decre-
ment experiments is suggested.
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APPENDIX

{AS)

Here, M is the kink mass; u~ is the displacement
of kth kink from its equilibrium position; B is the
viscous damping constant; c is the linearlized
spring (interaction force) constant between kinks,
given by expression (10); o(t) is the applied os-
cillatory stress; p is the density of the material;
p, is the shear modulus; a is the interatomic spac-
ing (kink height); k is Burgers's vector; A is the
total length of movable dislocations per unit vol-
ume; and l is the length of the kink chain.

The set of equations (Al) can be decoupled by
the expression

(A4)

and together with a trial solution of the form

o =o,e "cos[&ut-(&u/V)y],

one obtains

2 '
m m l ooe 'ab

cos[&ut —(&u/ V)y —g„]
(((d —(d ) + [(B/M) ~] }

M
sin

2 n+1

(B/M)(u
2 a

(d —(d

(A5)

where 00 is the amplitude of the applied stress; u
is the attenuation constant; & is the angular fre-
quency of the applied stress; and V is the wa, ve
velocity. The plastic strain e due to these kink
displacements becomes

Calculation of attenuation and velocity change for
a system of kink chains of n kinks with viscous
damping (F= Bv) pinned at both ends. We follow
the method of Granato-Lucke used for vibrating
string model.

The linearized differential equation of a kink

M'u~+ Bu~+ c(u~ ~
—2u~+ u~. q) = bo(y, t }, (Al}

and the equation of motion for a propagating wave
(in the y direction)

p k( g ( t)ey' ]L( &at' l (&t

k=1, 2, ~ ~ ~ n, (A2)

should be solved simultaneously with the boundary
conditions
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Aab g 2 Naoe "aaba
I ~, (n+1) M

7f teal cos[(dt —((d/ V)y —p~]
2 n+I (((d —(d ) + [(B/M)(d]')'" '

(AS)
where N= A/do (total number of movable kinks) is
used. From these quantities one obtains

proximately Q for n = 9. In the following we ne-
glect the terms higher than the second:

n+1~ 2 n+1) M n+1

cos[(dt —((d/ V)y —$]
((~2 ~2)R+ [(B/M)~]2)1/2

g „,(&
2V M (n +I)', ~2 n+ I

(B/M)(d
(~' —(d')'+ [(B/M)(dl' ' (A7)

=—u~ cos[(dt —((d/ V)y —g],

(B/M)(d 3 4c . 2/v 1
=M 12 1(d( (d II, n+ &I

(A9)

AV 1 Nab@, 2 "
z m m

(AS)

The contribution of the higher-order terms to n
(terms m=2 and higher) of this expression depends
on the relative magnitude of u against co or
(B/M)(d. For the worst case, i.e. , (d is much
smaller than the other two, the ratio of the second
term to the first is approximately & for n= 9. The
larger the number of kinks in l the smaller is this
ratio. In the other extreme case, i.e. , & domi-
nates in the denominator, the ratio becomes ap-

1 Nab@, 2 q m 1
2V M (n+ I) 2 n+ I

(B/M )(d

((d~( —(d ) + [(B/M)(dl

hV 1 Nabs 2 2 v 1
V 2 M (n+ I)' 2 n+ I )~

2 2
Cd g

—(0

((d( —(d')'+ [(BIM)(d)'

(Alo)

(All)

In the limiting case of do/l«1 (or n large), these
expressions agree exactly with those obtained by
Suzuki and Elbaum. ' In the other extreme case of
do/I=2 (or n= 1), the latter overestimates n by a,

factor of 4/v.

*Research supported in part by the Office of Naval Re-
search, by the National Science Foundation, and by the
Advanced Research Projects Agency.

W. G. Johnston and J. J. Gilman, J. Appl. Phys. 30,
129 (1959).

For conduction electrons, V. Ya. Kravchenko, Fiz.
Tverd. Tela 8, 927 (1966) [Sov. Phys. -Solid State 8,
740 (1966)]; calculation due to T. Holstein, quoted by
B. R. Tittman and H. E. Bommel, Phys. Rev. 151,
178 (1966); A. D. Brailsford, ibid. 186, 959 (1969).

For phonons, A. D. Brailsford, J. Appl. Phys. 43,
1380 (1972), and the references therein.

V. I. Alshits, Zh. Eksp. Teor. Fiz. 63, 1829 (1972)
[Sov. Phys. -JETP 36, 978 (1973)].

A. Hikata and C. Elbaum, Phys. Rev. Lett. 18, 750
(1967); A. Hikata and C. Elbaum, Trans. Jap. Inst.
Metals Suppl. 9, 46 (1968); R. A. Johnson, thesis
(Brown University, 1971) (unpublished).

A. Hikata, R. A. Johnson, and C. Elbaum, Phys. Rev.
B 2, 4856 (1970); 4, 674(E) (1971).

A. Hikata, J. Deputat, and C. Elbaum, Phys. Rev. B
6, 4008 (1972).

8R. J. Blume, Rev. Sci. Instrum. 34, 1400 (1963).
B. B. Chick (unpublished).
K. Locke and J. Schlipf, Proceedings of the Symposium
on the Interaction between Dislocations and Point De-
fects, Harwell, 1968, Atomic Energy Research Estab-
lishment, AERE-R5944, p. 118 (unpublished).
H. M. Simpson and A. Sosin, Phys. Rev. B 5, 1382
(1972).
L. M. Brown, Phys. Status Solidi 1, 585 (1961).
J. L. Talion and W. H. Robinson, Philos. Mag. 27,

985 (1973).
4T. Kurosawa, J. Phys. Soc. Jap. ~19 2096 (1964).
A. Seeger, Philos. Mag. 1, 651 (1956).
J. Friedel, Dislocations (Pergamon, New York, 1964),
p, 72.
G. Schottky, Phys. Status Solidi 5, 697 (1964).
W. T. Sanders, J. Appl. Phys. 36, 2822 (1965).

9A. C. Anderson and M. E. Malinowski, Phys. Rev. B
5, 3199 (1972).
G. Alefeld, J. Appl. Phys. 36, 2633 (1965); 36, 2642
(1965).
F. Kroupa and L. M. Brown, Philos. Mag. 6, 1267
(1961).
A. D. Brailsford, Phys. Rev. 122, 778 (1961); 128,
1033 (1962).
A. Seeger and P. Schiller, Acta Met. 10, 348 (1962).
W. P. Mason, Fundamental AsPects of Dislocation
Theo~, Natl. Bur. Stand. Spec. Publ. No. 317 (U. S.
GPO, Washington, D. C. , 1970), Vol. 1, p. 447.
T. Suzuki and C. Elbaum, J. Appl. Phys. 35, 1539
(1964).
A. Granato and K. Liicke, J. Appl. Phys. 27, 583
(1956).
J. D. Eshelby, Proc. R. Soc. A226, 222 (1962).
E. W. Hart, Phys. Rev. 98, 1775 (1955).
F. R. N. Nabarro, Theory of Crystal Dislocations
(Oxford U. P. , Oxford, England, 1967), p. 505.
V. I. Alshits, V. L. Indenbom, and A. A. Shtolberg,
Phys. Status Solidi B50, 59 (1972).
H. Suzuki, Introduction to Dislocation Theo~ (in
Japanese) (AGNE Publishing Co. , Tokyo, 1967), p. 272.
J. H. Weiner, Phys. Rev. 136, A863 (1964).



DISLOCATION DRAG IN SODIUM CHLORIDE AT. . . 4541

33L. S. Jacobsen, Trans. Am. Soc. Mech. Eng. 52 (1),
169 (1930).
G. Alefeld, J. Filloux, and H. Harper, Dislocation
Dynamics, edited by R. Rosenfield, G. T. Hahn, A.
Bement, Jr. , and R. I. Jaffe (McGraw-Hill, New York,
1968), p. 191.
%'. P. Mason, J. Geophys. Res. 74, 4963 (1969).
W. P. Mason and J. Wehr, J. Phys. Chem. Solids 31,
1925 (1970).
W. P. Mason, in Ref. 34, p. 487.
T. Suzuki, A. Ikushima, and M. Aoki, Acta Met. 12,
1231 (1964).
A. Seeger and H. Kngelke, in Ref. 34, p. 623; see

also Agenda discussion, p. 609.
40A. Ookawa and K. Yazu, J. Phys. Soc. Jap. Suppl. 18,

36 (1963).
4iR. den Buurman and D. Weiner, Scripta Met. 5, 573

(1971).
K. Lucke and G. Both, Scripta Met. 5, 757 (1971).
V. K. Pare and H. D. Guberman, J. Appl. Phyi. 44,
32 {1973).
D. O. Thompson and O. Buck, Phys. Status Solidi 37,
53 (1970).
G. Roth, G. Sokolowski, and K. Lucke, Phys. Status
Solidi 40, K77 (1970).


