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This paper is concerned with the relationship between the scattering tensors for the Raman (inelastic)
scattering of light by phonons, or other excitations in a crystal, and the crystal-space-group
Qebsch-Gordan coefficients. It is proven that the elements of the first-order scattering tensors are a pre-
scribed linear combination of Qebsch4ordan coefficients; the elements of the second-order scattering ten-
sors are a prescribed bilinear combination of Clebsch-Gordan coefficients.

I. INTRODUCTION

In the analysis of the elastic or inelastic scat-
tering of light by quasiparticles in solids it is use-
ful to introduce a scattering tensor~ which relates
the Cax'tesian components of the scattered radiation
field to those of the incident field. If the unit po-
larization vector of the incident radiation is de-
noted ei with Cartesian components eis ( p=1, 2, 3)
and the unit polarization vector of the scattered
radiation is denoted q with Cartesian components
es (a = 1, 2, 3) then the intensity of scattered light
polarized in the direction e for incident light po-
larized in the direction P is given as

I= C
I &s P.s &is I

In Eg. (1.1), P s is the scattering tensor, and C
is a coefficient.

Depending upon the physical process under con-
sideration the tensor P z ean be further specified
by giving the individual contributions from various
subehannels, each of which contributes to the total
scattering. For example, in an inelastic first-
order (one-excitation) process the intensity of
scattering can be written as proportional to

C
I as. P.s (jo)e„I (1.2)

where the indices jo specify the symmetry of the
excitation produced. For a second-order (two-
excitation) process the expression becomes

I
es Pu (j& jo )eis I'

The excitations involved may be phonons, rdag-
nons, ~ etc.

It will be shown here that the elements of the
first-order (one-excitation} scattering tensor
P',is'(jo) are precisely certain Clebsch-Gordan co-
efficients or px escribed linear combinations; the
elements P~q'(j o;j'o') of the second-order tensor
are a particular sum of products of Clebsch-Gordan
coefficients. To the best of our knowledge this
result has not previously been given despite the
fact that many scattering-tensor elements have

(+ t) ~ ~ e5fg t 4lagt (2. 1)

where j = 1 and 2 for incident and scattered wave,
&& is the unit polarization vector which is trans-
verse to k& (the propagation vector), and ~& is the
photon frequency. The total intensity of scatter-
ing is given by

(2 2)

where P z is the scattering tensor, eP = 1, 2, 3 re-
fer to Cartesian components, and C is a constant.
This is a purely macroscopic statement which can
be variously related to microscopic theories.

A useful approach, when neither ~, nor ~2 are
at resonance, is to work in a generalized adiabatic
framework. s Then, )t~(R) and )t„.„.(R) are initial
and final eigenstates of the crystal with n and n'

representing al/ vibrational quantum numbers and
with v and v representing the electronic quantum
numbers, and 8 is the set of all instantaneous ion
positions. In the harmonic approximation y„„and
g„.„.axe symmetrized products of single-oscillator
eigenfunctions. In the case of phonon Raman scat-
tering, a polarizibility operator P s(- kskiK) can
be defined so that the scattering matrix is

P~ (- ks ki) = J )t„*.„(5 ) P~ (- ks ki R) )t~(K) d k .
(2. 3)

The operator P (-ksk, Ks) depends intei alia upon
initial and final wave vectors, and upon the ion
positions. In the work of this paper we shall not
be concerned with wave-vector dependence so we

been calculated for particular processes in crys-
tals of different symmetry.

II. SCATTERING TENSOR

A review of some familiar material may be
helpful in preparation for the new results. It is
simplest to analyze the situation for phonon Raman
scattering, although magnon, etc. , scattering can
be similarly txeated. I et the incident and scattered
electric fields of the photon be denoted
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suppress kak~ below. %'ave-vector dependence
will be discussed elsewhere.

The operator P„&&(R) can be expanded in a Taylor
series in the ion displacements from equilibrium:
%=K'+u, where u is usual displacement vector.
Instead of the individual u for each ion, the nor-
mal coordinates of the lattice, here denoted Q»,
can be used:

P.,(K) =P&.", g')+ Z P(~ (R'; jo)q.'
»a

Q P(R&(RO. jo. j~o~)qiqi' +. . .
(2. 4)

Clearly terms linear in Q,' produce one-phonon
scattering, bilinear Q» Q~. produce two-phonon
scattering, etc. ; this is consistent with (1.2) and
(1.3). The indices jo will be used to specify the
symmetry species of the phonon (vide inf~«).

III. EFFECT OF SYMMETRY

Let 8 be a symmetry element in the crystal sym-
metry group Q&. In general S = ((t&, l t,)& where Q,
ls R px'opex' ox' improper x'otRtlon Rnd t is R lRttlce
plus fractional translation vector. %here there
is no risk of confusion we write the Cartesian ma-
trix elements of Q, :

and o is the row by which q,' transforms. In a
crystal the full designation would be j-*kj, where
+k is the star of the wave vector and j is an allow-
able irreducible representation of I (k).

The polarizibility operator P,»(R) can be sub-
jected to transformation by S and so

p„,(R) ~ p'., (%) =Z s.„s„p„,(s-'R) . (s. a)

The operator P,&&(R) transforms as a second-rank
crystal Cartesian tensor field. Owing to crystal
symmetry, P„»(K) =P'(&(5) so

P„,N) =Z S„,S,„P„„(S-'R). (s. 9)

P(&&(jo) =g S.„S„ZD"&(S'),.P(',&(jr}

=Q Z S.„S,.D&»(S)*„P(,'„&(j~), (s. 10)

At this point one could expand P»(S 'R) in a Taylor-
series expansion about the transformed lattice po-
sitions {S'R}, and then equate term by «rm in
such an expansion with corresponding terms in the
expansion (2. 4). An equivalent procedure is to
consider the set of quantities (P"&&'(R; j&r)) to be
the basis for D'", so that (suppressing 1P) the
transformation (3.9) can be written

(4,)„=-S„,, (s. 1) since D'»' is unitary. Similarly in second order,

where S~ =8» since Q is an orthogonal matrix.
Under transformation by &t&, a polar vector is trans-
formed Rs

P(2&(j& . j~o~) Q g S S D(i&(S}(c D(i&(S)y
Tf'

(s. 11)

(3 2)

(3.3)

Clearly the polarization vectors &» transform as
r. The components P

(& of (1.1) transform as a
second-rank crystal Cartesian tensor

+a,g +@/ ~ ~afk ~By, PXg
8

)tp.

Owing to the crystal symmetry, I' z
——I' z so

Po&&=Z S «S&» P„„.
)tg

(s. 4)

(s. 5)

Microscopic theorys indicates that usually for co»

away from resonance, the scattering tensor for
phonons is symmetric P,&&

=P&&, , so that (S.5) should
be replaced by

(3.6)

Under transformation by 8, the normal coordi-
nates can be taken to transform as

These equations are, of course, well known and

are the basis of the conventional method' for ob-
taining the elements of the scattering tensor. In
the usual procedure, elements 8, T, . .. of Q are
substituted one at a time into Eqs. (3.10) and

(S.11) and compatibility of left-hand and right-hand
sides result in only certain elements being non-

z ex'0,

IV. RELATION TO CLEBSCH-GOROAN COEFFICIENTS

A second-rank Cartesian tensor transforms,
i&ex definitionem. , according to the representation
by which the set of products of Cartesian compo-
nents (r„r&&ftransforms. If D'"' is the represen-
tation by which the set {r j transforms [as in Eq.
(S.3)], then the Kronecker square matrix D2"' is

[D'"&(S),].„,=-S.,S,„.
Under circumstances where P [3 is symmetric in
(&r, J3) and (3.7) applies, the relevant matrix repre-
sentation is the symmetrized Kronecker square,
denoted D'(,")', and

qi S qi' Q D&i& (S) qi [ '
D( )( S]~2&&&»(S~„S(&„+S~& S&»() . (4. 2)

Thus j epitomizes the irreducible repxesentation
Our analysis is not affected by which of the two

[Eq. (4. 1) or (4. 2)] is relevant, but since (4. 2)



4514 J. L. BIRMA N AND R. BE RE NSON

is the conventional nonresonant situation we shall
assume it applies [i.e. , (3.6) describes the trans-
formation of the scattering tensor]. Let U be the
unitary matrix which brings D&z)) to the fully re-
duced form

Hence,

D(&&(S)n D(J'&(S)n

D'"(s):. (v ' „) .
mm'

(4. 13)

U D") U=4,(2)

where

(4. 3)
Now substitute (4. 5) and (4. 13) into (4. 10) to ob-
tain

P(s& (jo.j o )
(l)

~snr . =&si D~'' ~ (4. 4)

1nn' (4. 5)
Rewriting (3.10) we have

P„"(j.) =Z Z [D'"'(s)...].„.D'"

We assume that D'"' is irreducible and, for the
moment, that each D'" occurs only once in the re-
duced A. Then, from (4. 3) and (4.4),

(D'"'(S)&s&)ns&n= ~ Uns&nD'"(S)~ U&n ~ &n ~

=ZZ Z Z U.„„D&'&(s)„„.U-, '„,„„
inn' Amm'

x V„. &

D'"' (S),V
&
"„,Pi'„' (j &;j 'v') .

(4. 14)

Again, sum left-hand and right-hand sides over all
group elements S in O& and use the orthonormality
rule. to obtain

P,'&&'(jo; j'o')

x (S).*,P'„'„' (j~);
then usi'ng (4. 5),

P&.',& (j.) =ZZ Z U,„D'"(s).„
Xu ~ Snn'

(4. 6)

(4. 7)

=QZ Z Uw(nU(n'&n Vnn („
A.g 7'T' 1nn'

x(V „,„,) P&„'„'(j;j' ') —. (4. 15)

In (4. 15), l is the dimension of D'". Now to solve
(4. 15), let

1P"s (io)=~ U s,'U&'.&nPF'(j')
l

(4. 8)

Now we sum both left-hand and right-hand sides of
(4. 7) over all elements of the group 8 and use the
orthonormality relation for irreducible represen-
tations to obtain

PIn'(lr; g ~ ) = Z U~„(n C(„(.„.V„.(.n
gfl(s gs

(4. 16)
This form is chosen since it is the most general
bilinear in the components of the matrices U and
V. Substituting (4. 16) into (4. 15) we obtain

(&)
~ =&a D (4. 13)

where l& is the dimension of the irreducible repre-
sentation D'~'. To solve this equation take

P&&&(j~)=c(j)U„„„. (4. 9)

On substituting this expression back into (4. 9) it is
seen that it is consistent. The quantity c(j) de-
pends on the irreducible representation j. This
proves that the elements of the first-order scatter-
ing tensor are precisely Clebsch-Gordan coeffi-
cients multiplied by a constant c(j) for the re-
duction of the symmetrized square into irreducible
components, in this case. (See Appendix A. )

Now we turn to the second-order scattering ten-
sor. Assuming that the second-order tensor also
is symmetric in (c&P), Eq. (3.11) can be rewritten

p5(j.;j'.') =& ~ (D'"'(s)...)...D"'(s)*
A,p,

xD' '(S)n...PP„'(j&.;j '~') . (4. 10)

Let V be the unitary matrix which brings D'~' D'~ '

to fully reduced form

V 'D&"D" )V=~ (4. 11)

where

P.'s'(f o; j'o')
1~ U s(nVnn'tn
l

~ C&n'&n'
ln n

Call

(4. 17)

1
K(l) -=—~ C( '(

n'

Then,

P j~(go;g o ) =Z U s(„Vn, ,„K(l)
ln

(4. 18)

(4. 19)

is a consistent solution. In (4. 19), K(l) depends
on the index l of the irreducible representation.
[Note that the irreducible representation D'" is
common to the reduction of D&z) and D' 'D'
i.e. , must appear in both'2 and Z, or else K(l)
= 0. ] This proves that the elements of the second-
order scattering tensor are bilinear sums of
Clebsch-Gordan coefficients, in this case.

In Sec. V we continue with the assumptions that
D'"' is irreducible and that each irreducible D'"
occurs only once in & since this permits us to dis-
cuss the physics with minimal notational complex-
ity. In the Appendix we generalize by removing
these restrictions.
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V. TOTAL SCATTERING INTENSITY

The total scattering intensity is the incoherent
superposition of scattering from individual (partial)
subchannels. Each order of scattering may be
treated separately, and within each order the in-
coherent superposition is assumed.

The total first-order scattering intensity is
2I(i) Q Q e J)(l)(jg) e

ja al

r' ' =Z (2 aa, c(r) rr, aa, aaa)
k eS

I("= 5 Z Z Z e,.e,„,V.„„jj' eB a'8' ln

x r)xa. a„~ rr(r) ~' a„ax.)
It then follows that the second-order scattering
from all excitations j and j (summed over oo )
which combine to produce particular allowed rep-
resentations D'" contained in D&2', depends only
on the coefficient }K(l)t . Explicitly it is given
as

x Z a,. r: (,) U:, ...„)a'8'

=Z
( Z a,.a,. i(;(r)ia

X Uao ja Ue's' ja &~ &1p~

The first-order scattering from mode j is then

given as

I'"(j)= Z e, e, .I',".„.(j)e~ ev), ,
a a'88'

where

I',", » (j)=-1t-(j)
1

Z v»;, v, g. ), . (5.4)

=Q Q Q e,.Q V.„„V.*.,,„K(f)e
jj' aa' eB En

=LE ZZ a,.rr, „r...„rr(r)a„)
jj' aa' e8 fn

x Z Z a U, a...„rx„., „rrtr )" aa )e'a' ~'n'

(5.5)

Recall that V is unitary, so
n-1~aa'l'n' " l 'n'aa'

Then, the sum on ov' can be easily carried out to
obtain

Obviously this is independent of o since all partners
o are degenerate. The microscopic dynamics is
contained in C(j) which is the quantity not pre-
scribed by symmetry. Since each set of degen-
erate modes jo has a fixed common energy, in

this approximation the first-order scattering is
simply a superposition of scattering from indi-
vidual modes.

The total second-order scattering intensity in

which argr two modes are created is
2I'" =Z Z Ze, I'(2,'(jo; j'o')en)

XI (Jg ) ra rr a» r evr ev) ~

where

I"..' » (jj') =21K(f)1 -v,„v.*, ,„.
tn

(5. io)

The matrices I++a»a(jj )f) or I+~+ a»a( jj)
averaged over a small frequency interval, corre-
spond to the second-order scattering matrices in-
troduced by Born and Bradburn, which have been
widely used in phonon Raman scattering; analogous
matrices were also introduced fox magnon scatter-
ing.

VI. SUMMARY

The close relationship between scattering ma-
trices and Clebsch-Gordan coefficients has been
demonstrated explicitly in this paper. Although
the work emphasized the case of phonon scatter-
ing it can easily be extended to magnon scattering
by using correpresentation theory and using the
appropriate generalized Clebsch-Gordan coeffi-
cients. Also extensions to higher-order processes
can be given. In a separate paper an application
to the calculation of the scattering tensors for
multipole-dipole-resonance Raman scattering in
Cu20 will be given.

Despite the many explicit calculations of the
first-order scattering matrices and several cal-
culations of second-order scattering matrices, we
believe that Eq. (4. 9) and (4. 19) pointing out the
explicit connections with Clebsch-Gordan coeffi-
cients are new, and to the best of our knowledge
has not previously appeared in the literature.

From a mathematical point of view, the present
work is an example of extension of the Vfigner-

Interestingly it is independent of the coupling coef-
ficient matrix V, but only depends upon the indi-
cated combinations of the coefficients from the ma-
trix U, and an effective "reduced matrix element"
IK(f)l. The microscopic dynamics is contained in
K(l). For a given jj the partial scattering inten-
sity in all allowed channels D(" is

I ~~a =~ 2 f2~ f2~a'
eB e'5'
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Eckart theorem for the matrix element of an op-
erator which transforms as a row of a Kronecker
product representation under the operations of the
group. Koster discussed the case of an operator
which transforms irreducibly under the group op-
erations but did not give the particular application
to the scattering matrices.

The factorization of a physical quantity (matrix
element, scattering tensor element, etc. ) in a
generalized fashion into a Clebsch-Gordan coef-
ficient, U», „and a "reduced matrix element"
c(j) epitomized by Eq. (4. 9) or Eq. (4. 19) repre-
sents a maximum realization of the simplifications
due to the symmetry of a problem. The Clebsch-
Gordan coefficients for groups of interest (crystal
point groups, crystal space groups, rotation group,
etc. ) are more and more becoming available and

being used. In addition to the results given here,
Clebsch-Gordan coefficients will be shown to arise
in an analogous fashion (making necessary changes)
in the following physical situations: (i) Brillouin
scattering tensor, (ii) scattering tensors for
morphic effects, (iii) higher-order moment ex-
pansions in infrared absorption, (iv) two-photon
absorption matrix elements, and (v) diagonaliza-

tion of the dynamical matrix. The theory for
these phenomena as well as extensions to co-rep-
resentation theory will be published elsewhere.
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APPENDIX: GENERALIZATION INCLUDING MULTIPLICITY
AND TIME REVERSAL

If the vector representation D'"' is a sum of
irreducible representations D'" in Q, it is con-
venient to use double indices and write

D, ;.g = 5);.D~(fl) (i) (Al)

Then the scattering tensor also has double indices
and equations (4. 8) and (5.15) for the first- and
second-order scattering tensors become

In the analysis in Secs. IV and V it was assumed
that D'"' is an irreducible representation and that
D'" occurs only once in 4 and &. We can deal
with the most general case by removing these re-
strictions.

A. Multiplicity

and

P~"-'; s(jo)= ~ ~ ~ U-; Bl.D'"(S) ~ Uil a~" D'"(S):.P'M"(&~)
tnn'

P', I.z(jo; j 'o') = Z Z Z 5 U, „,z,„D'"(S.)„„,U,„',
au'f ~~' rnn' A yn'

x~ a D '(S) ~A ' Piu

(A2)

(AS)

and

Pa~'~(2T') = C(kk'2) U~u. „g, (A4)

Now sum on S and use the orthonormality relation
as before, then the solutions, (4. 9) and (4. 19), be-
come

Kronecker 5 symbol 5D&~; which is unity if repre-
sentation l is the same as representation j. Hence
summing on S in Eqs. (4. 8) and (4. 15) and using
orthonormality with inclusion of multiplicity, we
find

P'I ~ „(j~; j ~ ) =Z K(kk l) U»„»„V~,„. (A5)
ln and

(A8)

The indices kX and k p, refer to rows of the irre-
ducible representations D'"' and D' ', respectively,
and D' ' and D'" ' are contained in D'"'. These in-
dices correspond to the usual Cartesian indices
since the basis functions belonging to row X of D'"'
and row p of D' ' are either (x, y, z) or are related
to (x, y, z) by a unitary transformation.

If D'" occurs more than once in & or & we must
make additional generalizations. Note that in Eq.
(4. 4) the index l is used to label a row in the ma-
trice U and also a particular representation in the
reduced matrix &, and similarly for index k in Eq.
(4. 13). It is convenient to introduce a modified

U„„i„K(ll ) V,",, i,„s~,~i.
Ll'n

(AV)

Pygmy, (jT) =Z C(kk ij ) UNARY j 5D jDj (A8)

Similarly, the most general second-order tensor
is

When D'"' is a sum of irreducible representations
D' ', and D'~' occurs more than once in the decom-(A)

position of D' 'D'" '; then, combining Eqs. (A4)
and (AS), the most general form of the first-order
scattering tensor is
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a&'&.,(j.; j'i'}
= Z Uau~u&n ~~~'&~nK(kk ll )f&p&pv

l 2'n

B. Time reversal

(A9)

esp+(jo) =I'&.',&(qo)

g =Q+8SQ . (A10)

8 is the time-reversal operator and S may or may
not belong to Q. Then,

When the representations involved are complex,
time-reversal symmetry must be considered. In-
stead of the symmetry group Q we then have the
antinuitary group Q where, in general 9 has the
structure

where D'~' is a corepresentation of g .
Equation (A11) may introduce some relationships

among elements of the scattering tensor. As an
example, consider a group for which S is the iden-
tity and for which the inclusion of time reversal
causes two one-dimensional representations j,
and j2, to form one two-dimensional corepresen-
tation j with rows o, and o2. Then from Eq. (A11}

p'. '8 (j o~) =I'~'*(j o~) . (A»)
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