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Local field effects and the dielectric response matrix of ins»ators: A model
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A simple model relating the low-optical-frequency dielectric response matrix of Adler and Wiser, age,
to the random-phase-approximation dielectric constant and to the Fourier coefficients of the
valence-charge density, is presented. The model is derived by use of Kramers-Kronig relations and f
sum rules. The results of a recent band-structure calculation and other model calculations are compared
with this model.

I. INTRODUCTION 'tl'lc lllatl'lx eg o(q ~),

Recently, serious interest has emerged in the
effects of the nondiagonal dielectric response ma-
trix of crystals in an electric field. ~~ When a real
solid is polarized by an electric field, microscopic
electric fields which vary on the scale of atoms are
established. In crystals, a (macroscopic) electric
field E(q, &u) will establish (microscopic) fields
E(q+R, &u) (K is a reciprocal lattice vector} whose
time average is not zero; the local or effective
field which polarizes the charge in the crystal is a
properly weighted average of these fields. The
microscopic fields E(q+K, v) are related to the
macroscopic field E(q, ~) by means of the dielec-

E(q+ K, (o}= (a=' /e5 t})E(q, (u),

hence, the term "off-diagonal response. " Effects
of this nature are sometimes called "local field
effects. " In this paper we develop an approximate
treatment of eK G in nonmetal crystals at zero tem-
perature for frequencies small compared to elec-
tronic frequencies but large compared to lattice-
vibration frequencies. Adler and Wiser (AW)'
have derived, essentially by an extension of the
random-phase approximation (RPA), an approxi-
mation to cK g for longitudinal fields,

4ve ~ fo[$, (k+q.)]-fo[g,('}t)]

x(k+q, I'~e" '""~k, I) (k, I (e-" ")k+q, I'), (1.2)

e „(q,oo) = I/[e '(q, (u)]5 g,
which can be rewritten

(1.3)

-1
emacro(qr &) e5, 5 ~ ~O, KSK ~ 6 eG, O r

K~G

where S=e restricted to RW045. Of course, for
light at or below optical frequencies, q = 0 and

„(longitudinal) = s „„(transverse). We will
consider Eqs. (l. 2) and (1.3) to be the extended
RPA (ERPA) result. According to Eq. (1.4),

(1.4)

&m~ro=&5 0 y (1.5)

where lk, I) and $,(k) are the eigenstates and eigen-
values of the unperturbed crystal Hamiltonian, f,
is the temperature-dependent Fermi-Dirac distri-
bution function and 0 is the crystal volume.
&o,o(q (d} is the usual RPA dielectric constant for
crystals as given by Cohen and Ehrenreich' (CE).
The macroscopic dielectric constant is derived
from Eq. (1.2) according to'

I

only if eg K is negligible for RW 0. The usual CE
approximation [Eq. (1.5) ] is valid only when mi-
croscopic field effects can be neglected; this is
true for most metals and for most covalent solids
as will be further discussed in Sec. III. The off-
diagonal matrix elements are an important physical
effect which can be determined indirectly [compare
Eqs. (1.3) and (1.4)] and, in some cases, directly;
the existence of electric fields E(q+K, &u) due to
the influence of light E(q, u&) [Eq. (1.1)] allows
one, in prinicple, to Bragg scatter Doppler-shifted
x rays' through a change in wave vector q+K in
addition to the static scattering &k=R. The scat-
tering efficiency for the former process is propor-
tional ' to a quantity l fIt5 Rt, where

AK —(&o o I}&- K/&o, o ~

To date efforts to observe such an effect have
failed, presumably because the QK's are too small.

Equation (1.3) is not, as claimed by AW, equiv-
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alent to the classical Clausius-Mossotti (CM) re-
lation" between the dielectric constant and the
polarizability [(fo 5 I)/4grX may be thought of as
an atomic-like polarizability (see Wiser }], even
in the tight-binding limit; this was shown by Sinha
et al. , ~ who found it necessary to include exchange-
correlation corrections to the electron-electron
interaction in order to retrieve the CM equation.
It is known, from pressure-dependent measure-
ments, that the CM relation is obeyed in certain
crystals. Nonetheless, the difference between
Eqs. (1.3) and(1. 5) is correctly referred to as a
"local field effect" because the microscopic polar-
izing electric field is different from the macro-
scopic electric field and the AW formalism
(ERPA), modified for exchange correlation as
suggested by Sinha et al. , e provides a viable band-
theoretic starting point for analyzing such effects
in crystals. (One need not pecessarily do an addi-
tional electronic calculation, additional sums over
the Brillouin zone, etc. )

Although many authors have, for a wide range
of materials, calculated &g g band theoretically
as an approximation to E ~, apparently the work
of Van Vechten and Martinz (VVM), on diamond
remains the only detailed calculation of the &K,p
matrix, via Eq. (1.2), in insulators. They found
for q = 0, ~ arbitrary, that use of Eq. (1.3) gen-
erally increased the existing disparity between
~0 0 and experiment; in particular, they found

(q = 5, &o &band gap) that I/(e5 5) & e5 5 & e (experiment).
ment). Use of the CM local field always increases
the low-frequency dielectric constant over that ob-
tained by its neglect, i.e. , &o 0 in this case. In
order to achieve better agreement with experiment,
VVM invoked a particular Ansatz (quite different
from Sinha's) of frequency-dependent correlation
corrections that go beyond ERPA, namely,

1 1
q.,(q) = -, , + () . ~ ~

- q";(q'))
&0 OLj

Oso

[ej) j)((()) —1]
( )

()((o)

This assumption of the first term in large parenthe-

II. KRAMERS-KRONIG RELATIONS, ASYMPTOTIC
VALUES, AND f SUM RULES

Equation (l. 2) can be rewritten

eK G(q, ~}= &K, G('ql (q ) + f+K, G(q, ~)

where

(2. 1)

ses to a large extent merely undoes the damage
done by use of Eq. (1.3) instead of (1.5); if
p= —eo, o(0)/[e5, 5(0) —1], then e„,(0}= eB,O(0). None-
theless, use of Eq. (1.7) did generally improve
agreement with the experimental ez((d) curve.
VVM also found the largest Pg [ in ERPA, see Eq.
(1.6)] to be (f) „~= 0. 03 which goes a long way toward
explaining why the Doppler-shifted Bragg-scattered
x-ray effect has not been observed in diamond.
However, in view of Eq. (1.7) it is not clear what
will be the effect on EK, G of correlations beyond
ERPA, at least for diamond. The ERPA formula-
tion is, nonetheless, a useful band-theoretic start-
ing point for off-diagonal effects in solids and mod-
ification of the ERPA result, to include correlation
and exchange, can, in some cases, be approximated
by modification of the electron-electron interaction
v(Q) as suggested by Sinha et al. 8

This paper is concerned with the dielectric re-
sponse matrix ex, 6 in ERPA only [Eq. (1.2)] as ap-
plied to nonmetals at zero temperature. Section
II is devoted to Kramers-Kronig (KK) relations,
asymptotic ((d -~) values, and f sum rules. In
Sec. III these results are used to present a simple
model which relates ex 6((d = 0) to e; 0 and to the
spatial distribution of valence-charge density;
there are no adjustable parameters in the usual
sense. The model is presented not as a calcula-
tional aid (the Sinha factorization schemee is far
superior, when applicable, as it can be inverted by
hand), but merely to exhibit the close relationship
between the off-diagonal response and the spatial
distribution of valence-charge density. The results
are compared with those of VVM. This model, like
the ERPA upon which it is based, is never equiv-
alent to the CM equation. In Sec. IV other phenom-
enological models are compared. Section V is a
summary.

2

a„- 6=5x„--
& ~ Z(f [S,o(k ,q)]+f,[S-,(k)]}(R q+f~e, ""~k, l&(k, I ~e-"""'~k+q, f'& (V(~),

tq+ t Iq+ I ~ 2. 2a

Sg, (f+q) —Sg(R) —Ku 1
[q, .(q+q) —q, (ql —q ]' ~ a' q, (q q) —q, (%) —q'q)

2

Ag, 6= — ~ Q, [S,, (k+q)] f[Sg(Ro-)]}(R+q,I')e""""(k,E&(k, f(e " "(k "+q, 'I&& (()d,
lq+Kl lq+ 510 f» ~

u((d)= [S (~ ~ S (~) ]z, -w5[S, .(K+q) —S,(f) —8(d].

(2. 2b)

(2.2c)

(2. 2d)
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(The arrows signify n-O', P means principal
part. ) Hg, 6 (Ag, 6) is the dispersive (absorptive)
part of EK, g. Both Hg, g and AK, g are Hermitian;
they are real and therefore symmetric if (and, it
will be shown, only if) the crystal has an inversion
center. Because the time dependence of the fields
was assumed' to be e'"', AR, K & 0 if » 0 and con-
versely. Let 48 = 8,.(k+q) —8, (R), then

u(x) A B C
+ +x-co x-(u x-~$+ze x- &8-zn

(2.3)
where

(2. 6} and (2. 7) are analogues of the ordinary KK
relations" between a, and E~ but contain more in-
formation because Ag, g and Hg, g are, in general,
complex valued. We now derive asymptotic forms
for &g, G as ~-~. Let

fo[8&'((&+q) 1 -fo[8&(@]
h, .(k+q) —8, (R) -ff(o+ia

x&R+q, f'Ie"""' If, l&&k, lie-"" "Ig +q, f'&,

(2.8)

so that
A = n/[((d —a8)o + no],

B= —i/2((o —&8+ in),
C=B* .

(2. 4a)

(2. 4b)

(2. 4c) Consider

4me2

+/[ g (2. 9)

Integrating Eq. (2. 3) over a standard double-semi-
circle contour in the complex x plane (Fig. 29 of
Landau and Lifschitz") one finds

fo[8&'(&+q)]
f), , 8&.(F+q) —8&(K) —)Io)+in

P,." &(x)
dx=(P(o)),

7l' ~ x-&
which, together with Eqs. (2. 2), implies

H- -(q o)) =5- 5+—P
"" A-„6(q, x)

KoG o Ko

Ax. a(q, ~) xdx
)T ~() (o —x

(2. 5)

(2.6a}

(2. 6b)

x&K+q, I'le' ""'Ik, i&&k, lie """If+q, I'& .

(2. 1O)

If one makes the substitution P = —(k+q) (drop the
prime) and interchanges (l, l ), one finds

fo[8&(@1
8&.(K+q) —8, ('R) + Kd —ia

where Ag o(q, —(d) =-Ag 5(q, o)) will be proven.
Similarly,

(- )
P ""

Hx. a(q. x}—5x.6 dK, g q, CO-
7T x-(d (2.7)

and there is no difficulty associated with exchanging
the limit e- 0' with the x integration. Equations

x&k+q, I'Ie&("""Ik,f&&&, lie "" "I((+q, I'&,

(2. 11)
where we have assumed time-reversal symmetry
in the absence of spin-orbit coupling, ~3 but have
not assumed inversion symmetry. (Note that K

and f+ q can always simultaneously be taken within
the first Brillouin zone. ) Equation (2. 8) becomes

F- -=-2 5 f [«()]&( I'I"'"""I&0&~ fl"'""'I(
[8,.(R+ q) —8,(K) ] —( h(d —ia) (2. 12)

and one can immediately see that HK o(q, —(d) =HK, o(q, &o) and AK o(q, —(d) = -AK o(q, o)). As &o- ~ the lead-
ing term can be written in the form

(2. 14)

then

L FK 6= o ufo[8&(%)]K ([8&.(R+q) —8&(K)]&K+q, l'le"~""Ik, l&&f, lie """lk+q, l')
@~a

+[8 (&-q}-8 (k}]&k lie&'"""lk-q, f'&&&-q I'le """'lk,f&] . (2. 18)

Let 3C be the appropriate (unperturbed) one-electron crystal Hamiltonian, assumed by AW' to be a local
operator,

+la, f& =8,(glk, f&,

[[Z e-&(i+5) ] e&(o+K) t] ( ho/2 )
&(K-(I)~

r(q pQ ( Q)

taking the matrix element of Eq. (2. 15) on both sides with ( K, l ) and using the completion relation

(2. 15)
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Z lk, f&(%,Ii=1,
R, l

we find

2 ([S,.(k+q) —$,(K)](R, lie " 6'"if+@,I')(R+q, I'le""""lk,I)+ [$,.(k-q) —8, (k)]

h2
(q+K) ~ (q+n) (f, fle'~" 6"lk, I) . (2. 16)

Comparing Eq. (2. 16) with Eqs. (2. 9) and (2. 13)
gives.~- &g, 6(q, ) =.~- &-.6(q,

= 5g 6 —(4we'n/m(o')

xf(K-5)e(q+R) e(q+5), (2. 17)

where e( ) indicates unit vector in the direction
of the argument, n is the average-number density
of electrons in the crystal, and

f@)=- ~f0[~2%)]« I I""la I) (2. 18)
f g

is the Fourier transform of the total-number den-

sity of electrons normalized to f(0) =1. When

R = 5 = 0 we get the ordinary RPA result

for (2)=(d~. ] The KK relations on e ~ are also
model independent, depending on causality argu-
ments alone, ~' so the f sum rule

f (d Im [e,.(q, (u)] d(u = - 2 w(u~ (2. 25)
0

still holds. ' Equation (2. 20) shows that all solids
except jellium have a nonzero dielectric response
matrix ez, o for all (R, 5); the f sum rule [Eq.
(2. 20)] is quite different from the acoustic sum

rule of Pick, Cohen, and Martin ' since it puts a
condition on each element.

In the next section Eqs. (2. 6b) and (2. 20) will
be used to develop a simple model for the dielec-
tric response matrix of nonmetals at low fre-
quency in ERPA.

„~„&()p)(q, (d ) = I - (v~2/uF,

(d,' = 4wnea/m .

(2. 19a)

(2. 19b)

III. MODEL FOR THE DIELECTRIC RESPONSE MATRIX
IN INSULATORS AND SEMICONDUCTORS AT LOW

OPTICAL FREQUENCIES

where J has only off-diagonal elements indepen-
dent of ar. Using

(I B) =I+B+B-+B

it is easy to show that

(2. 23)

Comparing Eq. (2. 17) with Eq. (2. 6b) we find the
new f sum rule

f (o A x(qo, (2)dd(o = ,' w (d~f-(K-—Q)

xe(q+R) ~ e(q+4) . (2. 20)

It is clear that A, and hence H, are, in general,
real only if the crystal has an inversion center.
When R = 5= 0, Eq. (2. 20) reduces to the usual

f sum rule on the RPA dielectric function eo, o,

f (d 1m[ca&,„(q2 (2))]d(2) = —2 w&()& . (2. 21)

The equivalent relations on e ~, [Eq. (1.3) ] are
unaffected. Write Eq. (2. 17) in the form

CO~ COp
~-,, ;(2,~)=(c(- l 2-2- J &;,-, ,, (2. 22)

We wish to develop a simple model for the
~ = 0 elements of &g, G in ERPA and apply the mod-
el to diamond. Specfically, we intend to relate

G to &Rpg and the spatial distribution of va-
lence-charge density.

We observe that, for a fairly large class of
semiconductors and insulators, the absorption
spectrum e(,.(q = 0, (d) is a single sharply peaked
function of (2), at least as far as its effect (through
the KK relation) on e, ((d = 0) is concerned; the
structure in E3 is more related to the structure of
the bands $, (R) than to the matrix elements, as
long as the f sum rule is obeyed. We make the
one-oscillator approximation

A „-,6(q2 &u) = C(q + R, q+ 5) 5 [h(d -E(q+ R, q+ t2(j ] .
(3.I)

This approximation is trivially satisfied by a solid
whose valence band and conduction band are per-
fectly flat; for q=O, the bands need only be paral-
lel. The (truncated) f sum rule [Eq. (2. 20)] yields
the value of C(q+K, q+5) and Eq. (3. 1) substituted
into Eq. (2. 6b) gives

„(q, (d) =1 —(d~/(d (2. 24)

to lowest order, as it must since Eq. (2. 24) is a
model-independent result '4 [Neithe. r Eq. (2. 24)
nor (2. 17) is necessarily a good approximation

eR, B(q2 (d) =~a, o+ -', f„(K—4)E q+K, q+c,

xe(q+R) e(q+5), (3.2)
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where

e»g = eo 0(q = 0, &() = 0) = 1 + [md9/E(0 0)] (S.8a)

g[q+-'(R+ 5); R- 5]= [E(0, 0)/z(q+R, q+5)]' .
(s. sb)

E(0, 0) is chosen so that e»„equals the calculated
value eg, g(q=O, &v =0) and not, for our purposes,
the experimental value c ~„as Penn and Srinivas-
an i have done. Equation (3.4) is not a tautology;
since g 0, Eq. (3.4) makes a definite prediction
about the phase of &K,g. It may happen that
(q+R) (q+5) =0 and/or f„(K—5}=0either of which
predicts 6K, G = 0. Since, for longitudinal fields

5(q, R}=e(q. R) III, (S.8a)

X(q R) =e(q+R) IEI ~ (3.6b)

Equation (3.4) says that only components of f along
5 contribute to the polarization, which is certainly
reasonable but not necessary. This point will be
discussed in Sec. IV. We seek an approximate
formula for g[q+-, (K+ 5); (K —5)] and we anticipate
that it will not depend on the details of the bands,
such as matrix elements, the point being that with
a reasonable choice of such a function, &K, g can
be related primarily to e»„and f„(K—%.

Actually, Penn" has already suggested such a
formula in the case when R —5=0, namely,

(3.7a)

where (d9 and f„(4}refer only to the valence
bands 1B

For R= 5= 0 we have merely reproduced the re-
sult of Penn's model, upon which Phillips has
based a theory of bonding,

eo 0(q, (d =0) =1+ [Rr9/E(q, q)]' . (3.3)

[Our energy E(q, q) differs slightly from Penn's. ]
That Eq. (3.3) applies for q w 0 can be seen by re-
ferring to the calculation of Walter and Cohen"
on Si. If E(q, q), for a given q, is determined by
setting the right-hand side of Eq. (3.3} equal to
the calculated value of eg g(q, 0), one obtains en-
ergies that correlate well with peaks in the cal-
culated absorption spectrum Im eg, g(q, (d) of Ref.
19, although for q & (100)(v/a) (X in the Brillouin
zone) the approximation of Eq. (3.1) is hardly
valid. Walter and Cohen" calculated Re ~g, g di-
rectly and used KK analysis to determine Im 6p p ~

for this reason their calculation of Im Ep, p changes
sign below the absorption edge.

We write Eq. (3.2) as follows:

ex Qq, o) =5x d+(e»9, —1)g[q+z(R+5); R-5]
x f„(K—5) e(q+K) e(q+5), (3.4)

(- R)2
I

This gives

ex x(q) = eg 6(q+ R) =1

5 e —1"'
2m(u

(3.7b)

(3.8)
where e»„ is taken (in the present work) to be the
calculated eo 0(q= 0, &u =0). The origin of Eq. (3.8)
is that when q+K =0, &g g

= &RpA and when 1q+ K1

&R, R(q, (d = 0)- I+(S(d9/[(K~/2m)(q+ R)'])' (3.9)

i. e. , for large 1q+Rt, band effects are negligible
and one obtains the free electron (Lindhard) re-
sult of which Eq. (3.9) represents the leading
terms. That eR x(q) decreases to unity as I q [ -~
is due to the nonlocal response (in real space) of
the valence electrons. Walter and Cohen ' found
that e;;(q, &u = 0), calculated band theoretically, is
an exceptionally isotropic function for Si, Ge,
GaAs, and ZnSe, as is Eq. (3.8), although the lat-
ter has the inadequacy, first pointed out by Brust,
that it appreciably overestimates eo ~ 0(q) at inter-
mediate values of q. We are more interested in
rough, yet reasonable, values of eo;(K), however,
and Eq. (3. 8) may not be such a bad approximation
in those cases. In this spirit, it is interesting

that Eq. (3.8), based on a model small-gap semi-
conductor, is very similar to eo o(q) based on mod-
els of large-gap insulators. 2'

We arbitrarily extend Penn's approximation [Eq.
(3.7)] to include

g [q+ & (R+ 5); R —5]= {I+ K (K —5) [q+ 2 (K+ 0)]'j
(3.10)

v is a measure of the extent of the nonlocal re-
sponse (in real space) of the valence-electron gas
to an electric field. For elements EK,G, where

I K —51 is "large" corresponding to well-localized
components of the valence-charge density, one may
reasonably expect that nonlocal effects are neg-
ligible, i.e. , ~-0. We arbitrarily cut off tc when

I R-51&2%9 corresponding to the end of the pre-
dominance of first-order scattering between states
on the surface of the unperturbed Fermi sphere
and the onset of the predominance of higher-order
scattering processes. ' The model of this paper
for the dielectric response matrix of insulators
and semiconductors in ERPA at zero frequency
is, therefore,

(e»„—1)f„(K—5)e(q+K} e(q+G)
(I+~[q+-,'(R+5)]'] '

(3.11a)
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where

x =g(e»„—1) ~ /2m'& if ~R —5~ &2k+

(3.11b)

The model has no adjustable parameters in the
usual sense because KRp is chosen equal to the
calculated value eII 5(q = f, &u = 0); as mentioned pre-
viously, 6pp~ 1 may be thought of as the polariz-
ability. The model relates eR 6 to f„(R—0) and
band energies E(q+R, q+4); the latter have been
eliminated in favor of &»„alone by means of Eqs.
(3.5) and (3.10). The particular choice [Eq. (3.10)]
is arbitrary and is only meant to illustrate the
close connection between ex, 6 and e»„, f„(R—5)
with use of some reasonable function, g, such as
is given by Eq. (3.10). The spirit of this article
is that the valence electrons reside in valence
states, which have a certain similarity to each
other; the success, in Ge, of the Baldereschi
mean-value point stems from this point of view.
We do not choose, for example, to further simplify
the diamond-valence states in terms of atomic
charges and bond charges, ' although the particular
choice of Eq. (S.10) is reminiscent of Phillips's
arguments. The appearance of f„(K—5) is not at
all surprising when one considers the effects of
other short-wavelength electric fields, but for the
geometrical factor which picks out the longitudinal-
longitudinal component of each tensor &g, G, Eq.
(2. 17) could be used to discuss ordinary Bragg
scattering of x rays. ~'

The only existing band-theoretic calculation of
ex 6 in ERPA [Eq. (1.2)] is that by VVM on dia-
mond. ~ They found 8

eo, o(q=0, gv =1.5 eV) =5.4779;
we accordingly set e»„=5.4779. [The model of
Eq. (3.11) has been derived for ~ = 0 but well be-
low the band gap most of the weak dispersion can
be absorbed in e»„.] In order to obtain f„(5) we
have taken the experimental data of G5ttlicher and
Wfilfel~7 (and Renninger 8 for F[222)) as rescaled
by Dawson, divided out their assumed Debye-
Waller factor, and then subtracted off the calculated
core form factor of McWeeny in order to get
f„(5) for a frozen lattice at the room-temperature
lattice constant used by VVM. The experimental
f„(5)'s are essentially the same as those tabulated
by Kleinman and Phillips except for f„[111]which
is perhaps more accurately determined by Klein-
man and Phillips ' and so we have used their re-
sult for f„[111]. VVM calculated eg 6 for reciprocal
lattice vectors through the set [222]; the model
of Eq. (3.11) requires f„(5) through the set [444]
and all of these f„(5}'sare listed in Table l. lt
would perhaps make more sense to use f„(G) as
calculated by VVM but the experimental values
of Table I are more readily determined. Since
I f„(5}I

«
I f„„(5)I =

I f„,~(5) I when 15 I & 12201,

TABLE I. Fourier coefficients of the normalized
valence charge density in diamond obtained according
to the method described in Sec. III of the text. Error
bars reflect experimental errors only and do not include
calculational errors associated with the core states.

000
111
220
311
222
400
331
422

333}
440
531
620
533
444

-0
0.
0.
0.
0.
0.

000
245 *0.001
046 +0. 002
011+ 0. 001
038+ 0. 003
036 + 0.002
003 + 0.001
007 + 0.001

-0.001 +0.001

—0.015 60. 003
0. 006 +0.001
0. 004 + 0. 001
0. 001 + 0. 001
0. 0

our values of the corresponding f„(5)'s are prob-
ably not very accurate, even as to sign, but we
present them anyway. However, f„[222]is quite
accurate because f„„[222]—= 0 by virture of spheri-
cal symmetry, and its sign is determined by as-
suming it corresponds to a charge accumulation
in the bond region. Table I could be determined
very nearly by mere inspection of Fig. 1 of Ref.
27. The room-temperature lattice constant ~ de-
termines kF and ~~.

Table II contains the values of the diagonal ele-
ments and largest off-diagonal elements eK, 6(q = 0,
he =1.5 eV}as calculated by VVM~'~~ in ERPA
[Eq. (1.2)] compared with the corresponding ele-
ments calculated from the present model [Eq.
(3.11)] using the input of Table I and e»„=5.4779.
Table II also lists the respective values of &,~,
[Eq. (1.3)] and the largest value of PR [Eq. (1.6)];
the size of the dielectric matrix was 59X59 cor-
responding to R vectors through the set [222] and
was inverted numerically in each case. For
IK —41=0, llll1, 13111, and 12221 our calcula-
tion agrees fairly well with VVM, although the
diagonal elements do exhibit the aforementioned
overestimation discussed by Brust; for ~K —Q ~

~ 14001, our values of f„(R—5) are not at all ac-
curate but the pertinent (eK, o) are generally small
compared to the other off-diagonal elements, as
expected. Our values of eK g when I K —51= 12201

are of the opposite sign of VVM's; evidently, '6

Jo" &o A-„,o(q = 0, ~) d~ and f 0 [Ag, 6(q = 0, v)/&u] dv
have opposite signs and there is no simple way Eq.
(S.11) can be modified to accommodate this. The
second law of thermodynamics ~ requires Im E ~0;
this is automatically satisfied by AK, K in ERPA,
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IK-G I

~R, C
(Present worg

000

000 000
ill 111
200 200
220 220
311 311
222 222

5.4779
l.2621
1.1829
1.0578
1,0203
1.0170

5.4779
1.3858
1.2527
1.0814
1.0464
1.0396

TABLE II. Comparison of the diagonal and largest off-
diagonal elements of f&& o [q =5 {10{0;h~ =1.5 eV] as
calculated by Van Vechten and Martin~ for diamond using
the Adler-Wiser formalism, with the same elements
calculated from the model of Sec. III using the data of
Table I. &~~ and ft)K are defined in the text.

but there is no corresponding requirement on the
phase of the off-diagonal elements. If either
f„(K—4) =0 or (q+K) (q+4) =0, Eq. (3.11) pre-
dicts &K G =0 in cases where this need not be so,
as can be seen in Table II. We observe that the
physically observable quantities, e „„and QK,
are in rather good agreement with those calculated
by VVM, although, according to Eq. (1.4), es n

—e ~, is the quantity that ought to be compared.
Again, we emphasize that this model is not to be
thought of as a calculational aid' but it merely ex-
hibits the close connection between EK G and &Rp~,

f„(K—5), for +=0.

IV. DISCUSSION

200

220

311

222

400

000 111
111 200
111 220
ill 222
200 311
220 311
311 222

000 200

000 220
111 $11
111 311
200 020
200 222
220 022
000 022

000 311
000 131
111 $00
111 222
200 131
220 311
220 113

000 222
111 1II
200 022

111 311
220 220

- 0.2342
0.0466
0.0308

—0.0254
—0.0199

0.0128
0.0085

0. 0000

0. 0230
0. 0171

—0.0112
—0. 0132

0.0091
- 0. 0091

0.0000

0.0615
0.0494

—0.0093
—0. 0208

0.0109
—0.0075
-0.0093

0.0967
—0.1371
—0.0094

0. 0091
0.0059

—0.2469
0.0616
0.0387

—0.0267
—0.0241

0.0145
0. 0103

0.0000

—0.0215
0.0211
0.0043
0.0000

—0.0035
0.0030
0.0000

0. 0446
0. 0149

—0, 0284
—0.0164

0.0149
—0.0210
—0.0210

0.0982
-0. 1702

0.0000

—0.0281
0.0000

In this section we discuss certain aspects of the
model of Sec. III. In particular, this model, like
the Sinha factorization scheme~ based on ERPA,
is never equivalent to the CM equation. We con-
sider our model in the appropriate limit.

As discussed by Wiser, the microscopic elec-
tric field

E(r) =+E(q K)e «~+K& ~

K
(4. 1)

E,.(r) =E (q, 0) e ". (4. &)

The various components of the polarizability are
related to the components of the microscopic elec-
tric field by

P(q, K) =NsZ n(q, K, 5)E(q, 5)

(Ns is the density of unit cells), where it can be
shown'

(4. 3)

a(q, K, 5) =(1/4&&N, )(e;;—5„-;) . (4. 4)

a(q, 0, 0) is the polarizability of a crystal, relating
the macroscopic polarization to the macroscopic
local electric field

is different from the macroscopic or average elec-
tric field

P(q, 0) =N, n (q, 0, 0) E„,(q) . (4. 5)

331
111 220
ill 222
200 131

420

333

440

111 311

ill 222
220 113

220 220

222 222

References 2 and 26.
~Reference 1.

—0.0214
0.0116

- 0.0100

0.0060

0.0134
0.0067

—0.0179

—0.0060

5.0

0.03

- 0.0110
0.0045

- 0. 0041

0.0000

0.0045
- 0. 0019

0. 0672

0.0000

5. 089

0. 03744

E„,(q) is, in general, different from the macro-
scopic average electric field, E(q, 0), giving rise
to the difference between Eqs. (1.3) and (1.5). We
will transform to real space but it must be remem-
bered that each element a(q, K, 5) is itself really
a tensor operator and we have focused on the longi-
tudinal-longitudinal component of n; Eq. (4. 4)
should be rewritten

e(q+R) ~ n (q, R, 5) ~ e(q+4) = (1/4'«)(eK „-, —5K 6),
(4. 6)

i.e. , any polarizability tensor n (q, K, 5) satisfy-
ing Eq. (4. 6) will guarantee
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%(~) =No I d r' n {r,r') X„,(r')
=c.oNOE„,(r) .

(4. 10a)

(4. 10b)

P(q, K) e(q+R) = Z [gg, 5 —5«, 5) E(q, 5) (q+5)
(4. 7)

when substituted in the vector Eq. (4. 3) (the di-
rection of f changes with r}. Using the model of
Sec. III, 0.' canbe taken'3 as

Qo

(I+«(K —6)[q+-:(K+5)]')'

~ y„(K- 5) I, (4. &)

where o'0 = (a»„—I)/4'~. The CM relation assumes
a loca/ polarizability,

e (r, r ') = n,5(r r') I— (4. &)

relative to the local effective field

= I+ (&ax I}/[I+ '
&(&ax z

=1+ 4«X n /[I+~Ã(4«N a )] (4. 15b)

(M+ 1 is the dimension of the e matrix and should,
strictly speaking, be taken as infinite), which con-
trasts sharply with the classical CM equation~~'3~

ecM = 1+ 4«Nona/[I —3 (4lfNQQQ) ] (4. 1&)

e(Q) =4ve'/CP, (4. 17)

Equation (4. 15) always lowers the dielectric con-
stant relative to that obtained by neglect of local-
field effects e(neglect) =I+4«Nooo (in fact, if one
really considers f„(5)=-1 for all 5, & „=1),
whereas the CM equation always increases the di-
electric constant relative to a(neglect). The Sinha
factorization scheme, which is exact in the tight-
binding two-band limit, reproduces Eq. (4.15) when
the electron-electron interaction is taken as

(It is then further argued for isotropic systems
that E„,=f „„+/vs; see, e.g. , Fr&hlich. ~4)

Fourier transforming Eq. (4. 9) gives

i.e. , the ERPA of A%. ' In order to retrieve the
CM relation [Eq. (4. 16)], Sinha had to remove a
self-interacting term from v(@) to account for the
exchange-correlation hole, as can be done by var-
ious methods, '

v(@) = (4«e'/fl g ) [1 -y„(@)].

Q(q) = Qo = const . (4. 11)

Accordingly, in order to test our model in the CM
limit, we set «-=0 in Eq. (4. &). When transformed
back into real space, the present model predicts

n (r, r') =n, p„(r) 5(r —r') I (4. iz)

(4. 1&)

In this sort of treatment the factor
1/[ lq+K i Iq+6 I] in Eq. (1.2) is modified by mul-
tiplication with [1—f„(q+K)]. This is an effect
which goes beyond the correlations of the ERPA
of A%' in which ea,ch electron responds to the
average field of every electron including itself.

The main difference between the present model
and Sinha ef af. [apart from the modification of
e(Q) ] is that f„(Q), used in this paper, refers di-
rectly to the normalized valence-charge density
only and appears in the form f„(K-Q) whereas the

(f,{Q)]used by Sinha et al. ~ are merely conven-
iently chosen functions which, even in the tight-
binding two-band limit where the scheme is exact,
represent the Fourier transform of a weighted
product of valence- and conduction-band states
and appear in the form f,( qK+) f*;{@+4}.

The bond charge model (BCM) of Freund and
Levine bears a similarity to the present model.
They have proposed

c.sc„(r, r') = o.o p~(r) 5(r —r ') I, (4. 1&)

so that the polarization at a point r due to the mi-
croscopic (not local-effective) field at r is propor-
tional to the density of polarizable valence elec-
trons p, (~). Utilizing Eqs. (4. 12) and (4. 10a),

P(r) = o.ohio p„(~) E(r) (4. Isa)
= noNO Eg„(~) . (4. 1&b)

which has a Fourier transform

&scM(q, K @=&ofa«-@ I (4. 20)

to be compared with Eq. (4. &). The BCM has pre-
dicted a scattering factor Q», an order of magni-
tude larger than that calculated by VVM. '~6 It is
easy to see why. First, since a so„(r, r') is a local
response, c.'sc„(q, R, 0) does not decrease with

q [or q+ 2(K+5)]. Secondly, pz(r) is the normal-

e«p = 5«o+ (6»~ 1)e(q+ R) e (q+ 5)
(4. 14)

This is of the same form as that considered by
Sinha eI; aE. as the tight-binding limit and is now
invertible by hand. The result is

One may further average Eq. (4. 1&b) over a unit
ceQ in order to get the relationship between the
(macroscopic) polarization and the macroscopic
local-effective field in this model. From Eq.
(4. 10) it is apparent that if the valence electrons
are uniformly spread out p„(~) -=1, then E„,= E
= E &,. The derivation of the classical CM equa-
tion assumes well localized atoms (in fact, point
atoms) with no appreciable overlap of neighbors.
Accordingly, we consider the extreme case when

p„(r) is given by a summation of 5 functions cen-
tered on atomic sites, i.e. , f„(5)-=1. (For sim-
plicity we consider a monatomic unit cell fcc or
bcc. ) The dielectric matrix of Sec. III, taken in
the limit of well separated atoms («=—0, f„=I) sim--
plifies to
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ized bond-charge density only; it is more highly
localized than the entire valence-charge density
and so fe(C) is larger than f„(b). As a conse-
quence, the dielectric matrix &„-,G based on Eq.
(4. 19) gives larger off-diagonal, and even diagonal,
elements than does Eq. (4. 8), which agrees rea-
sonably well with VVM and consequently it predicts
larger values of QK.

V. SUMMARY

We have derived a model for the dielectric re-
sponse matrix, ex, o, of Adler and Wiser' (ERPA)
for u-0. There are no adjustable parameters in
this model which has as inputs the dielectric con-
stant calculated in RPA (neglect of local-field ef-
fects) and the Fourier coefficients of the valence-
charge density. The model is in fairly good agree-
ment with the matrix calculated band theoretically
for diamond by VVM. The model, like the

ERPA upon which it is based, is never equivalent
to the classical CM relation between the dielectric
constant and the polarizability, although the situa-
tion can be remedied by the introduction of a corre-
lation-exchange factor ' in the model.
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