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In this paper, we examine the optical properties of LiF. The fundamental calculations performed are a
self-consistent Hartree-Fock band-structure calculation. As has been found previously, such a calcualtion
has substantial errors when compared with experiment. Correlation corrections are needed and are
included by means of the electronic-polaron method. The usual electronic polaron is extended to include
short-range polarization corrections which the usual model neglects but which are peculiarly large for
LiF. The energy bands are evaluated directly by the linear-combination-of-local-basis-functions method
along with the crystal wave functions for 89 points in the irreducible wedge of the first Brillouin zone.
Using these results and the Lemann-Taut interpolation scheme the density of states, the joint density of
states, and the imaginary part of the dielectric function are computed. These results which neglect the
formation of excitons and “plasmons” are in poor agreement with experiment. The effect of the exciton
formation is included by a Koster-Slater one-band-one-site calculation. We find that the inclusion of
exciton effects substantially improves the level of agreement with experiment. This is in direct contrast
with recent work of Menzel et al. in which energy-band theory alone is found to account for the
optical properties of LiF. This disagreement is discussed in detail.

I. INTRODUCTION

There has been some speculation that the direct
band gap in LiF is about 10.6 eV! and that the prom-
inent absorption peak at 12.5 eV is due to band-to-
band transitions. This speculation would seem to
be highly unlikely in view of the technological use
of LiF as an optical window? in the energy range
below 12 eV. In this paper, we calculate the ab-
sorption by performing a Hartree-Fock calcula-
tion® and making the correlation corrections to the
Hartree-Fock bands. From this we calculate €,(w)
over the energy range of interest. The correlation
corrections include the electronic-polaron method, *
which is extended to obtain a local-field corrections.
The exciton effect is also included by a Koster-
Slater one-band-one-site calculation.® The oscil-
lator strength of the »=1 exciton which amounts to
approximately 40% of the absorption of the top va-
lence and lowest conduction bands was estimated
using the work of Elliot.®

The outline of this paper is as follows. In Sec.

II, the Hartree-Fock energy-band model is pre-
sented. The correlation corrections to the Hartree-
Fock bands are found in Sec. III and the comparison
with experimental results is given in Sec. IV. The
conclusions are then presented in Sec. V.

1. HARTREE-FOCK BAND MODEL
In order to obtain solutions of the Hartree-Fock
equation, a linear combination of localized basis

2

functions (LCLBF) was used. This basis set is a
generalization of using linear combination of atom-
iclike self-consistent local orbitals”!? and “free”
Slater-type orbitals (STO’s). A similar approach
has been used giving excellent results for diamond
ground-state properties but poses similar difficul-
ties with the excitations.

The one-particle Bloch orbital 3;(K, T) in terms
of this basis set is

‘pi(E’ -1:) = nzh)n anjlm (E) ‘7']];\,— ? ¢n1m(r‘ - E“) eii.ﬁ“

i 1 T_B ) ikR
+§’i bnlm(E)W l? Eum(r=R,)e (uz' .1)
In the above equation, the ¢m (f-R,)’s are the
local orbitals, with R, denoting the site, and nim
are the usual quantum numbers. Similarly, the £’s
are the free Slater-type orbitals defined as

Entm(;_ ﬁu) = ] ; - ﬁu I ™! Y’ln(;’ - izu)e-a"lﬁ-ﬁul

(2.2)
The coefficients a;,,(k) and b};,(k) are determined
by the variational theorem.

One is led to evaluating three types of matrix ele-
ments:

A=[¢G-R,)06F-R,)dT ,
B=[¢G-R,)0tGF-R,)dF ,

-

Cc=[tF-R)0(F-R,)dF

(2.3)
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5 stands either for the Fock operator I:“ or the unit
operator which determines the overlap matrix.

The set of orthonormal occupied band functions
given in Eq. (2.1) determines the first-order den-
sity matrix p(¥, ¥') which in turn gives the Fock op-
erator

p(F, ) =20 ;& ) 3 (K, ) (2.4)
jx
and
- 2z, P(F’, ') e
F®)=-v*- 272 Fowr, 2 oo
-2 f a'2EE) b, 1) (2.5)

P(F,7") is the permutation operator which changes
T to T’ before the integration is performed.

Instead of obtaining the self-consistent p(T,
iteration of the Fock equation,

Fp,, T) =e,;®)9;K,T) (2.86)

the identical p(T, ') is obtained by adding a term to
the Fock operator, namely, - pAp.%=1%12 The
ground-state density operator p is described by the
LCLBF’s and these orbitals satisfy the equation

(F = pAP) $pim(F = R,,) =€ im R, ) b pim (T - R,,)

') by

2.7
In the limit of small overlap Eq. (2.7) becomes®

(F“+Uu -z ¢,(f—ﬁu)(ju|Uu|ku>¢£(?—§u))

x¢,(F-R)=¢,®R,),F-R,) (2. 8)
In the above equation,
»r -—r
U,=2 ;zz.s ”" ,
vin Ir-R r—r |
-—p -
)
R v L TR |
Fu II‘ + ‘[ Ir-r I
Zfd*,"‘g‘—;—P(‘ -’I) s
and
pu(F, F)= 20, (F - R)¢'(F -R,) (2.9)

Self-consistent p(r, ¥’) using the above equations
and the method of Roothaan!® have been obtained for
- )

LiF.'° The density matrix p(F, ¥') expressed in
terms of the local orbitals becomes

=22 ¢;(f -R, St ®IEF -R,) .
e (2.10)
where

Siu.fvz(iUIjV>

One is now in a position to make several approxi-
mations which have almost no effect on the results
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but make the computational problem much simpler.
In making the approximations, the magnitude of
S;u,» Was treated as a smallness parameter, as
recommended by Gilbert.!* Substituting Eq. (2.10)
into Eq. (2.5) one sees that all four-center terms
can be neglected, as well as all three-center ex-
change terms involving a two-site contribution to
p(T,r’). Similarly, all two-center or three-center
Coulomb terms involving a two-site contribution to
p(T, ') are neglected. All integrals are evaluated
numerically by the Lowdin a-function expansions.
The magnitude of the off-diagonal terms of the local
orbitals was found to be very small. In the cases
of Ar and LiF, 1S;,,;1=0.05.

Since one only needed STQO’s which fall off rap-
idly past the midpoint of the nearest-neighbor dis-
tance it was necessary to include only six shells
of unit cells around the central site in evaluating
the Fock and the overlap matrix. Ions outside this
region are included via a point-ion contribution.
The convergence of the Fock and overlap matrix
due to basis functions was extremely good (s-, p-,
and d-type functions about each lattice site were
included).

The Hartree-Fock bands are given in Fig. 1(a).
As expected, the Hartree-Fock eigenvalues do not
match experiment very well. The eigenvalue dif-
ferences are much too large. For example, the
fundamental gap in this calculation is 1. 688 Ry.

It is immediately obvious from the results of this
section that correlation corrections are needed be-
fore the band structure of LiF can be used to ana-
lyze the results of experiment.

III. CORRELATION CORRECTIONS

The model we adopt at the outset is the electron-
ic-polaron model introduced by Toyozawa® and ex-
tended by one of the authors.* The true wave func-
tion of the solid is assumed to be constructed by a
simple expansion in terms of Slater determinants.
Let us define the Hartree-Fock n-electron wave
function 16) as

|6) = (N1)Y/ 2det]| | ¢;(F,)| | (3.1)

Let, for example, ¥7 be the true ground-state wave-
function. We label states such that 1<i<j=N<ac<e,
and ¢ labels occupied orbitals and a the virtual set.
Then in terms of the fermion creation and annihila-
tion operators C' and C, one has

\If§-|9>+E > Ag;Clelo)
j=1 a=N+1

ND>ND> Bojaas C1CHC;Cu[0) + 4+

Jyk=1a,b=n+1 (3. 2)
In the electronic-polaron model (EPM), we retain
the first three terms on the right-hand side of the

above equation and further restrict the system in
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that we permit (i) scattering internal to the band in
question, and (ii) formation of a single band of lon-
gitudinal excitons, corresponding to approximating
the atomic spectron by a single averaged level per
atom in the solid. The approximation (ii) has sev-
eral immediate consequences. These are as fol-
lows: The exciton wave vector is rigorously re-
stricted to lie in the first Brillouin zone and this
then to a great extent justifies and dictates the first
approximation, as has been pointed out by one of
us.* There is one immediate and potentially im-
portant physical consequence of all this. That is,
the EPM correctly describes correlation effects at
a large distance from the electron or hole but ne-
glects short-range correlations or polarizations. 18
This was in part seen by one of us, * and various
related and important comments on the need for
including short-range or central-cell correlations
have been elucidated by Hermanson'® and Perrot. !’
In this paper, we will use a model which is sim-
ilar in philosophy to the polarization-potential
model (PPM) introduced by Perrot, but which has
the singular advantage of avoiding the adjustable
constant which appears in the PPM. We term this
model the improved electronic polaron model
(IEPM).

The EPM which also yields the long-range cor-
relation correction for the IEPM says that the self-
energy Z for electrons and for holes is given by

| Vg(0) 12

E'l(ﬁ)=z,;>e(l?)—e—e(ﬁ—ﬁ) (3.3)
and
s _1vg()P
R T .9
where
1/2
=(0) e[2me(l - 1/e.)] (3. 5)

) VIi/ 1K1 [ %(@)e % ar]-t

Here e(K) are the Hartree-Fock band energies, € is

the average energy K independent) of a longitudinal
exciton, e is the electron charge, €. is the optical
dielectric constant, V the volume of the crystal,
and ¢ the Wannier function or local orbital for the
band in question.

Before proceeding, it is worth commenting on the
adequacy of the use of second-order perturbation
theory here. The one-electron Hamiltonian in the
EPM can be given in a polaron form in terms of the
boson (exciton) creation and annihilation operators
b' and b as

h =Z§) CkCge(®)+ € };?) bLbg

t

+ 25 VO {bg-bL}Cr 2 C (3.6)
KK

From this one develops an effective polaron cou-

pling constant a. This has been found to be

«~(aamar) e -2)

For all the alkali halides or rare gases, one finds
0.25<a<0.5.® It is well known from ordinary po-
laron theory that if the coupling constant a is of
order unity or less that the use of perturbation the-
ory to second order is valid. Hence, we conclude
that we introduce no significant errors by using
perturbation theory. The EPM is evaluated for
LiF and we find the effect is to lower the conduc-
tion band by 1.8 eV and the valence-band maximum
is raised by 2.3 eV. Thus the Hartree-Fock band
gap is reduced from 22. 8 to 18.7 eV. We show the
EPM band results in Fig. 1. The usually accepted
band gap for LiF is 13.6-13.7 eV, 1920

It is highly unlikely that the above figures are in
substantial error since the non-self-consistent Har-
tree-Fock band gap of Perrot!? is found to be 22.5
eV and Fowler finds the long-range polarization
corrections to be 4.7 eV in the band gap.?' There
are sufficient minor differences between the vari-
ous models to account for the difference of about

(3.7)
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0.5 eV or so which exist here, but not for the 4-eV
error with respect to experiment. We can only
agree with our previous analysis?*?® and with that
of Perrot!” and Hermanson'® and attribute it to the
neglect of short-range correlation which the EPM
neglects. Clearly then it is also possible to con-
sider the effects of electron-hole interaction here.
However, at present we are simply concerned with
band states (i.e., those states for which the elec-
tron and hole are spatially uncorrelated) and here
we will omit the effects of electron-hole interaction
in formulating the IEPM for band states as they are
negligible. We will, however, later consider this
question in formulating the excitonic properties of
LiF.

In improving the EMP, we are directly interested
in including short-range correlation corrections.
We do not employ here the PPM model of Perrot
because of its use of an adjustable constant, and in
part because the model is of a somewhat ad hoc na-
ture and does not clearly fit into our concept of a
systematic first principles study of correlation ef-
fects. We therefore postulate the extension of the
EPM to the IEPM as follows. We assume here the
dominant short-range correlation effect is the po-
larization of the central-cell atom or ion by the
electron or hole on that ion. Such a model was used
by Kunz, Mickish, and Collins? in a recent study
of the soft-x-ray properties of LiF. In this model,
then, we calculate using a series of atomic Hartree-
Fock calculations the difference in energies needed
to remove an electron from the system or to add
on an electron to the system, as the case may be
from the value for this given by using the Hartree-
Fock eigenvalue (Koopman’s theorem) and from the
differences in energies for the self-consistent cal-
culations for the two states. That is, this correc-
tion ='°°* is found, for example, for the creation
of a valence hole on the 2pF" ion to be (that is, go-
ing from F~ to F)

local _ F= F= F .
Zphote=—€3p +Egp—Eyrp=~3.6 €V .

Similarly, we perform such a calculation for adding
an extra electron onto the Li*-ion site, where we
presume the conduction electron to be largely local-
ized and find this correction to be about — 1.0 eV.
With these corrections included, the band gap is
seen to reduce to 14.1 eV. The bands including
these corrections are seen in Fig. 1.

It is worth noting that Gilbert, Kunz, and Mic-
kish? have discussed this need for local-correla-
tion-polarization corrections for the soft-x-ray
absorption of the entire series of lithium halides.
In that study, the approach was purely local and
the model, which closely parallels our improve-
ments to the EPM, was developed by considera-
tion of the general valence-bond formalism. In
this calculation, crystal effects were neglected be-
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cause the excitation of interest was from the Li*

K shell to the conduction band, which is mostly Li*-
ion functions. In general, however, the IEPM
used here can either be considered a solid-state
generalization of the work of Gilbert, Kunz, and
Mickish or an atomic improvement to the EPM of
the type the author used for improving the correla-
tion results of Fowler.* Physically then we assume
the electron or hole moves slowly enough to pro-
duce polarizations on the site it is occupying which
are comparable to those of polarizing a free atom
or ion by an electronic charge. This is quite rea-
sonable since crystal electron velocities are slow
enough to permit the other electrons to respond in-
stantaneously to the position of a moving charge.
Hence, the principal limitation is the use here of
atomic rather than crystal wave functions to deduce
the effect of such short-range polarization. Pre-
sumably, in the present case, where the maximum
overlap of the local orbitals is — 0. 06, the neglect
of overlap corrections is a trivial matter. Exten-
sion of the valence-bond model?® to include such
corrections is possible and most likely computa-
tionally tractable. Nonetheless, we argue that for
the present case, LiF, the model employed is rea-
sonable.

We show our computed state density from calcul -
ations to the bonds at some 2100 points in the first
Brillouin zone for the F~ 2p band in Fig. 2. A sim-
ilar plot is shown in Fig. 3 for the LiF conduction
bands. In Fig. 4, we show the calculated value of
€, for transitions from the 2p band in LiF to the
conduction band computed in the Hartree-Fock lim-
it. Here, in both €, and the conduction-state den-

N (E) (Arb. Units)
INTENSITY (Arb. Units)

] I ] |
-20 -19 -18 -7
ENERGY (eV)

-21 -16

FIG. 2. Density of states for the occupied 2pF~ band
is shown along with a superimposed figure of the x-ray
emission data for this level obtained by O’ Brian and
Skinner (Ref. 27).
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FIG. 3. State density of the virtual levels (conduction
band) in LiF are shown in the Hartree-Fock limit.

sity, we employ an analytic interpolation scheme
of Lemann and Taut? to construct our curve. In
the case of €,, we interpolate both the band struc-
ture and the transition matrix elements. The joint
density of states (and by obvious changes, the den-
sity of states) is defined to be

J(E) = (2—,1 lb(e —e,~E)dk , (3. 8)

where 7 is the initial and j the final state, and V is
the volume of the Wigner-Seitz cell. The optical
absorption €, is seen to be

fi; (k) -
€,(E) = - ,§(2n) LJ—e,-e 5e; —e; - E)dk
(3.9)
and
2
f®) = M.N_ 3.10)

e;—¢€;

The f; (k) are evaluated at 2100 points in the first
Brillouin zone using our Hartree-Fock band eigen-
functions.

1t is absolutely clear from our results as given
above, and also from our results in Fig. 4 that we
do not find it possible to interpret the optical spec-
trum in LiF in terms of band structure, as was pos-
sible in the calculation of Menzel et al.®

Since it is not possible to interpret the spectrum
of LiF directly from our band structure, we decided
to attempt a highly approximate inclusion of the ex-
citon in our calculation. In what follows, we com-
pute only the fundamental » =1 exciton and freely
acknowledge that the effect of the n =2 excitons are
present and important. As a first approximation,

OPTICAL PROPERTIES OF LiF

4465

one might wish to use the simple effective-mass
approximation. This method has its defects, how-
ever, in that it is only good for excitons of radius
much greater than the dimension of a unit cell,
where, as one finds using this model, the radius of
the exciton is smaller than but comparable to the
nearest-neighbor distance. This suggests.to us that
an alternate model may be possible. This would

be based upon the one-band-one-site model of Kos-
ter and Slater.® We chose to apply this model in
the way used recently by Scifres et al.?'? for stud-
ies of the spectrum of N in III-V compounds.
Clearly the Coulomb attraction of the valence hole
is long range and hence seems to violate the one-
site nature of the model; however, the results of
effective-mass theory suggest that the conduction
electron is so closely bound to the hole that it is
quite irrelevant as to whether the potential extends
to infinity or is only a Coulomb potential extending
from the center of the cell to the cell boundary and
then is set equal to zero. There is a great dividend
available for using the results of the one-band—one-
site model over simple effective-mass theory.

This is, we permit our exciton’s electron to draw
its wave function from all parts of the band rather
than from just a single minimum, which in this
case would be at I'. In view of the computed state
density shown in Fig. 3 for the conduction band, and
the experience of Scifres ef al., we anticipate that

25 30 35 40 45
ENERGY (eVv)

FIG. 4. Theoretical Hartree~Fock calculation of the
imaginary part of the dielectric function is shown for
LiF over an extended energy range. The transitions are
from the 2p valence bands and the transition matrix ele-
ments are calculated from the actual Hartree-Fock crys-
tal wave functions.
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this may be important in practice.

In the one-band-one-site model, we assume that
for our potential V the matrix elements in terms of
Wannier functions are given by

(R, 7| V|R,, m)=V0,,0,=¢0p=c (3.11)

Here c stands for the conduction band. The ﬁ,, and
n are site and band indices for the Wannier states.
The probability that the electron is in the cell con-
taining the hole, [9;(0)[2, is given by

Lo = |1-va®) |, (3.12)

A@):gang_: dtN(E)|E -t +i5)] (3.13)

N(E) is our computed state density for the conduc-
tion band. In order to proceed, it is necessary to
estimate or compute the value of V. If one simply
removes an electron from a F~ site to a nearest
Li* site and includes an optical dielectric constant,
the Coulomb attraction of electron and hole is found
to be about 4.0 eV. This is clearly a crude esti-
mate. It is possible to further refine the estimate
by doing simple atomic-type calculations, that is,
to evaluate the electron affinity of a fluorine atom
(F~ ion with a hole on it) sitting at the bottom of a
Madelung well and screening the interaction by the
dielectric constant €.. Such an estimate places a
value of about 5.0 eV for V; and is the value we
chose to use for our calculation. Doing this, we
find the exciton is formed about 1.8 eV below the
bottom of the conduction band or at 12.3 eV. Itis
interesting to note that the use of simple effective-
mass theory also yields this result.

It is clear from a comparison of our band struc-
ture in Fig. 1 and the conduction density in Fig. 3
that for the first band the principal contribution
comes from states at the L point which furnish the
large shoulder and peak in the state density some
3 eV above the onset of the conduction band. It is
states which are pulled off from L not I' which we
find by our calculation to be responsible primarily
for the exciton in LiF. This state lies below the
conduction-band minimum rather than being a res-
onance in the conduction-band structure because of
the size of V,. In the cases considered by Scifres
et al.?'® this was not always the case. It is pos-
sible then in our model and, in fact, clearly likely
that higher exciton lines will exist as resonances
above the band edge and convergence on the shoul -
der in the state density at the L point. In the Sec.
IV, we will postulate that such states are, in fact,
seen experimentally.

IV. COMPARISON WITH EXPERIMENT

One obtains the density of states of the 2p valence
band given in Fig. 2. The calculated results given
contain only the Hartree-Fock density of states;
however, the effect of adding the electron polaron
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did not change the structure very much. One sees
that the experimental results obtained from x-ray
emission measurements?’ has the same form. The
experiment shows, in fact, that the bands are a
little wider than that calculated. If one compares
this with the results obtained by local-density ap-
proximations for the exchange term given in Ref. 1,
the valence density of states is 30% too small. This
trend of a too narrow valence-band density of states
obtained from the local-density exchange approxi-
mation not only is true for alkali halides®® but is
found in most of the semiconductors® also.

In Fig. 3, the density of states of the conduction
band is given. It is interesting to note here that
the energy differences between the bottom of the
conduction band (the T',, energy) and the minimum
at L (the L,, energy) are approximately the same
in the corrected Hartree-Fock calculations and the
results of the local-density approximation. Thus
the lower structure of the conduction-band density
of states should not be too different in the two cal-
culations. The imaginary part of the dielectric
function, €,, for the uncorrected Hartree-Fock
bands is shown in Fig. 4. This should be compared
with Fig. 3 of Ref. 1. This figure of Ref. 1 is the

Theory
— —— Experiment

ENERGY (eV)

FIG. 5. Results of the measurements of Stephan (Ref.
20) for the imaginary part of the LiF .dielectric function.
Also shown are the results of our present calculation for
this quantity. In obtaining the theoretical results the
Hartree-Fock bands are corrected by the IEPM. How-
ever, owing to the computed small admixture of other
wave functions in the Hartree-Fock one-electron orbitals
in the IEPM calculation, the Hartree-Fock wave functions
were used to compute the matrix elements (i | 1—; 1f). The
effects of the n=1 exciton are also included. This exci-
ton is computed as described in the text and the transi-
tion strength into the band-to-band region is reduced to
allow for the transition strength into the exciton.
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imaginary part of the dielectric function where
Slater’s approximation to the exchange term?® was
used in deriving the electronic band structure. It
should be made perfectly clear that Slater’s ap-
proximation is for the exchange term and only the
exchange term. One finds a difference of approxi-
mately 1 Ry in the band edge. There is a factor of
30 difference in the peak heights due to the L re-
gion of the BZ. These differences are the results
of the fact that Slater’s approximation is not at all
accurate in simulating the exchange operator in
this material. It is often said that the local-density
approximation for the exchange term has somehow
gone beyond the Hartree-Fock approximation. How
is left to the imagination of the reader. It has been
shown by Hedin and Lundquist®!'®? that the next-or-
der terms beyond Hartree-Fock lead to a screened
exchange term plus a Coulomb hole. The combin-
ation of these terms in the free-electron-gas sys-
tem appears to behave as a local density but the
coefficient is % to 4 the Slater value. This would
result in the electronic structure being even fur-
ther from experiment than it is now.

The corrected Hartree-Fock results (described
inSec. IOI) for the imaginary part of the dielectric
function is displayed in Fig. 5. The first main
peak at 12. 3 eV is due to the exciton. The oscil-
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lator strength was estimated by using the theory of
Ref. 6. It was calculated to be approximately 40%
of the total oscillator strength into the first band
and the amplitude of the first band €, is reduced
here to reflect this. The structure at 15 eV in the
experimental curve looks like the envelope of the
higher exciton states which also overlap the lower
conduction band. This structure was not included
in the theory. The third structure matches ex-
tremely well and is the result of a high joint den-
sity of states around L in the BZ. This is an en-
tirely new interpretation of this structure in €,.
The last main broad peak in the experiment at 22.5
eV has been shown to be a scattering state of the
electron polaron by two of the authors!® and is well
understood.

V. CONCLUSIONS

It has been demonstrated that one can match ex-
periment by including exciton effects and correcting
Hartree-Fock bands as outlined in Sec. III. This
leads to new interpretation of the structure; name-
ly, that structure is associated with the L region
of the BZ. It has also been pointed out that the lo-
cal-density approximations one generally uses for
the exchange terms are not applicable to this kind
of crystal.
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