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The average-t-matrix approximation (ATA) is used to evaluate complex energy bands in the
disordered alloy 0, -CuZn over a range of Zn concentrations between 0 and 30 at, %, The cal-
culations are based on the Korringa-Kohn-Rostoker equations of band theory and on the use of
atomic phase shifts obtained from renormalized-atom muffin-tin potentials. We examine the
effects of charge transfer between the atomic constituents on the basis of two empirical mod-
els. Both models involve a single free parameter whose value is adjusted to guarantee agree-
ment with the experimental shift in the optical-absorption edge as a function of Zn concentra-
tion. The effects of lattice expansion in O, -brass are also included and are shown to have a
significant effect on the energies of various states in the vicinity of the Fermi level. The
present calculations are compared with the available experimental results on O. -brass. Good
agreement is found with experiments sensitive to the real parts of the energy bands, for ex-
ample, the concentration dependence of both the splitting of the 5-eV peak in the optical-ab-
sorption spectrum and the neck radii as determined by some of the positron-annihilation in-
vestigations, The theory agrees only qualitatively with the results of measurements sensitive
to the imaginary parts of the bands such as Dingle temperatures and residual resistivities.

I. INTRODUCTION

The understanding of the electronic structure of
the disordered alloys is still not as advanced as
that of the ordered crystals. Theoretical studies
have been largely confined to model Hamiltonians'
which do not yield details, such as the Fermi-sur-
face topology of the alloy, which are now being
measured. This provides motivation for using
realistic Hamiltonians for studying the electronic
properties of disordered alloys.

One theoretical approach to the problem has in-
volved multiple-scattering theory, and in many
cases the so-called coherent-potential approxima-
tion (CPA). ' While the CPA is easy to implement
for some model Hamiltonians, calculations involv-
ing a realistic Hamiltonian are considerably more
complicated. The disorder, however, can often
be adequately treated by simpler and even more
approximate methods, such as the average-t-ma-
trix approximation (ATA), ' which have the ad-
vantage of being simpler to implement. This paper
will consider realistic alloy potentials and the pre-
dicted electronic-level structure on the basis of
this approximation. Both the CPA and ATA are
single- site approximations. The former, how-
ever, is self-consistent and the latter not. ' The
self-consistent treatment of the disorder alone is
not sufficient, since the atomic potentials in them-
selves should be treated on the same footing. Be-
cause the numerical techniques relevant to Kor-

ringa-Kohn-Rostoker (KKR) calculations in crys-
tals can be taken over directly in ATA calculations
for alloys, a more detailed application of this ap-
proximation seems warranted.

The case to be considered in this paper is the
electronic structure of the disordered alloy O.'-CuZn
and its experimental consequences. The potentials
are described within the muffin-tin approximation.
Soven" has previously considered this problem
using a similar scheme with the following simplify-
ing assumptions: (i) For calculating the proper-
ties of the conduction-band states, the d admixture
is neglected, and pseudopotential amplitudes in-
stead of f matrices are averaged; (ii) for calculat-
ing the properties of the Cu-like d states, the ener-
gy dependence of the Green's-function matrix ele-
ments (G~ in seven's notation) is neglected. Fur-
thermore, the calculations are made only for a lim-
ited number of states having pure-d symmetry.
None of these simplifications are made in this pa-
per.

The present approach to the problem differs
from Soven's in one respect: Soven calculates
spectral density functions p(k, E) for a given k and
E. We regard it easier and possibly more useful
for some purposes to present the electronic levels
in the alloy as complex energy bands. As already
noted, the calculation of the complex bands within
the ATA is very similar to that of crystalline bands
using a KKR approach. The evaluation of p(k, E)„
however, not only involves the so-called KKR
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structure functions, but also their derivatives. '"
By carrying over such concepts as the Fermi sur-
faces from the ordered crystals to the disordered
alloys, complex bands provide a more natural
means of comparing the theory with many sorts of
experiments, than do the spectral-density func-
tions.

The band structure of n-brass mas also cal-
culated by Amar et al. "and Pant and Joshi, ' on
the basis of the virtual-crystal approximation
(VCA). " In contrast with the CPA and ATA, this
approximation yields only one set of d bands rather
than the two, characteristic, resyectively, of Cu
and Zn, and gives no information about the damp-
ing of the electronic states.

The present calculation includes the effects of
the charge transfer between the constituents of the
alloy. These have not been considered explicitly
before even though they are knomn to affect the
physical properties of many noble- and transition-
metal alloys 6'8 ~' significantly. The previously
neglected""' effects of the concentration de-
pendence of the lattice constant of e-brass are
also included here.

A brief outline of the paper and some of its
principal results folloms. In Sec. II, the secular
equation for the disordered alloy is derived, using
multiple-scattering theory. " This secular equa-
tion is found to be a simple generalization of the
usual KKR equation for the crystalline bands. The
basic assumptions used in deriving this equation
involve the use of the ATA within the muffin-tin
spheres and the VCA outside. The renormalized-
atom approach ' is used for constructing the atom-
ic potentials of Cu and Zn. Charge-transfer ef-
fects are described by two different models: the
first is based on charged-renormalized-atom po-
tentials; the second involves an empirical shift of
the alloy muffin-tin constant. The magnitude of
the transferred charge is chosen to fit the experi-
mental change in the optical edge of e-brass as a
function of Zn concentration. Some of the details
relevant to Sec. II are given in the apyendices.
The relationship of the present approach to pre-
vious calculations based on model Hamiltonians
is discussed in Apyendix A. The details of the Cu
and the Zn potentials used are given in Appendices
8 and C. The numerical methods used for solving
for the complex energy bands and the Fermi-sur-
face properties of the alloy are discussed in Ap-
pendix D.

Section III presents and discusses the calculated
complex energy bands of 0',-brass. The shifts of
the real parts of various energy levels in going
from the pure crystals to the alloy with and without
charge transfer between the constituents are ana-
lyzed. The Cu d bands are found to change sig-
nificantly on alloying. This suggests that the VCA

calculations, ' ' which hold them fixed artificially,
have a serious limitation. (A literal application
of the VCA mould cause a rapid downmard shift of
a single d band in going from Cu to Zn. )

The results for the imaginary parts of the com-
plex bands obtained from the ATA differ by about
30% at the Fermi surface from perturbation the-ory
estimates. The Cu-d-band damping within the ATA
is either comparable in magnitude or larger de-
pending on hom charge transfer is introduced. The
Zn-d-band damping vanishes in the ATA because
these d states lie below the s-muffin-tin zero of
the alloy. A useful decomposition of the damping
of any state in the alloy, into its angular-momen-
tum components is described, and it is used for
discussing the anisotropy of the Fermi-surface
dampmg.

Section IV compares theory with experiment in
regard to both the real energy shifts and the damp-
ing of the states. Even though the concentration
dependence of the optical-absorption edge ' ' is
adjusted to determine charge transfer, the changes
in the 5-eV peak in the optical spectrum of Cu on
alloying provide an independent test of the calcula-
tion. The Fermi-surface properties of u-brass
are obtained in detail and are compared with posi-
tron-annihilation measurements for the radius
of the neck orbit of o,-brass, and lorn-concentra-
tion de Haas-van Alphen measurements. The
lorn-temperature specific-heat coefficient ' of
o-brass is also discussed.

The experimental information on the damping of
the electronic states in 0'-brass is rather limited
and the theoretical situation appears to be less
satisfactory. The agreement between the experi-
mental and calculated Dingle temperatures is
within a factor of 2. Except at small Zn concen-
trations, residual- resistivity measurements
can only be interpreted qualitatively without the
results of an alloy transport calculation. A lom-
concentration estimate leads to a qualitative agree-
ment with experiment. In contrast mith the real
energy shifts, damping effects appear to be far
more sensitive to the model for charge transfer.
This may be an indication that these results are
unreliable within the present scheme of calcula-
tions.

II. FORMULATION OF THE PROBLEM

A. Multiple-scattering theory

%'e assume at the outset that the alloy is de-
scribed by a muffin-tin model. The disordered
potential may then be mritten as a sum of nonover-
layping, spherically symmetric, atomic potentials,
each of which is centered at a given lattice site
R„. The single-particle Hamiltonian is
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B= p'/2m++ v"„~&(r) . (2. 1)

Within the muffin-tin spheres (i.e. , Ir- R„l&ft )
the value of

4(8&( ),A[8&(I H I)

ff ff

+ Z (t„Gpt~Gptj,&+ ..~ . (2. 5)

depends on whether an A or B atom occupies the
site n. In the region between the spheres the po-
tential is constant. The arrangement of the A and
8 atoms throughout the lattice is assumed to be
random.

The equilibrium properties of the alloy are dis-
cussed most conveniently in terms of the single-
particle Green's function

Equations (2. 2)-(2. 5) are exact and, in principle,
provide a complete description of the average al-
loy. Neglecting all contributions to (2. 5) due to
fluctuations in the effective scattering, we obtain
the present version of the average-t-matrix ap-
proximation

T=Z(t. &+ + &t. &Go&t &

(2. 2a)

and

G(E)= &(E-ff) ').

For example, the spectral density p(K, E) and the
density of states p(E) are given by

p(k, E)= —)[ '1m(k ~G(E) ~k&

+ Q (t„)G()(t &G(&(t~&+ ~ ~ . ,

where

(t„&= xt„"+(1-x) t„,

(2. 6)

(2. '7)

p(E)= ~ p(k, E). (2. 2b)

Here the energy E is assumed to have an infinites-
imal positive imaginary part and the angular brack-
ets denote an ensemble average over all possible
arrangements of the atomic constituents. If, as
in Eq. (2. 1), the random potential can be written
as a sum of contributions from each site, it is
useful to introduce the average total scattering
operator T(E}. The relation between G and T is
s imply

and x is the relative concentration of A atoms.
For the purpose of evaluating the (complex}

quasiparticle energy bands, it is most convenient
to work with the momentum representation of Eq.
(2. 6), i. e. , with the quantity T(k, E) -=(klT(E) tk&.

As various authors have shown, " ' T(k, E) can
be expressed directly in terms of the matrix ele-
ments t(k, k') of the atomic scattering operators
(2. 4). Since the atomic potentials are spherically
symmetric, t(%, k') is diagonal in its angular-mo-
mentum indices and can be written in terms of the
real spherical harmonics F, (k) —= FL, (k) as

G = Go+ Go TGo (2. 8) t(k, k'} = (4&i)'Z F,(k) t, (k, k') F,(k'). (2. 8)

where Gp= (E —P j2m) ' is the free-particle props
gator. The usual equations of multiple-scattering
theory" may then be used to express T in terms
of t„,the atomic scattering matrix for the site n, t, («, «) = —«&e'") "&sin[&))(«)]. (2. 9)

In the special case, 0=k'=E' =-~, the quantities
t, (k, k') are related to the familiar scattering phase
shifts &})(«):

tA(8) A(8)(1 G vA(8))-1

The result is

(2. 4} Substituting Eqs. (2. 8) and (2. 9) into (2. 7) and
then into (2. 6), the series can be summed exactly,
and the resulting expression for T(k, E) is:

T(k, E) = (4&i) N Z F8(k)((t)(k, k)) 58,~a+ ((t(k, «))B(k, «) [1—(t(«, «))B(k, «)] '(t(«, }&k) 8]8~.F(k), (2. 10)
I 8LS

where N is the total number of atoms and the matrix elements BI,I.(k, &) are the conventional KKQ, struc-
ture functions

)),.(ic, ) (j)"[j (~r)j,.(cr')]' 5=je"' ~G(i- i )());(R)',.(F' ')&(), j()~ . (2. 11)
R %

Here j)(«r} is a spherical Bessel function and the
value of B88.(k, «) is in fact independent of r and
r' as long as both r, r' &R . '

It should be emphasized that all available in-

formation concerning the electronic spectrum is
contained in T(fc, E), and, in particular, that the
energy eigenvalues are specified by the singulari-
ties of T(k, E). For example, in a perfect crystal,



Vo=xVO+ (1-x)Vo (2. 13)

is then reasonable. On the other hand, if charge
transfer or atomic size effects cannot be neglected,
then the proper choice of the atomic potentials is
a considerably more delicate matter in the alloy
than it is in the pure crystal. This point is dis-
cussed in Sec. IIB where it is argued that the in-
corporation of charge transfer requires either an
adjustment of the value of the atomic potentials
within the muffin-tin spheres, or, an empirical
shift of the uniform potential Vo away from its
virtual crystal value (2. 13). A proper account of
atomic size effects would involve considering a
nonyeriodic point lattice and is therefore beyond
the scope of the present theoretical framework.

On the basis of a study of several tight-binding-

given a vector k in the first Brillouin zone, these
singularities occur at a sequence of real energies
E ~)(k) and determine the energy bands of the solid.
By contrast, in the disordered alloy the singulari-
ties are found at complex energies E@ ()k) =EP)(k)
+ iEz"'(k) and are associated with long lived quasi-
particle states" only if E,$)/E, (k) « I. Inspection
of Eq. (2. 10) reveals that, just as in the perfect
crystal, the singularities of T(kl E) are determined
by the vanishing of the determinant associated with
the inverse matrix in the second term, i. e. , by
the equation

«)(»,—«)»» (k «)
I I

=o. (2. 12)

This is the alloy-KKR (AKKR) equation upon
which the calculations of this paper are based. '
In a perfect crystal Eq. (2. 12) reduces to the KKR
equation of band theory. Equation (2. 12) requires
two basic units of input: First, the matrix
E».(k, ») which is determined by the structure of
the periodic lattice and second, the constituent po-
tentials v"'~' which determine both the average
scattering matrix elements (f)(», »)) [through Eq.
(2. I)] and also, the uniform muffin-tin potential
Vo in the region between the spheres.

In the present calculations th~ point lattice of the
aQoy is assumed to be periodic. The %igner-
Seitz radii of Cu and Zn must therefore be taken
as identical. The structure functions E» (k, »t)

are then evaluated exactly as they would be in a
perfect-crystal band-structure calculation. 3 Simi-
larly, if the effects of charge transfer can be ne-
glected, then the atomic potentials v"' can be
evaluated by methods identical to those used in the
pure crystals. However, the corresyonding muf-
fin-tin constants Vo and Vo will not in general be
equal, so that a further approximation is required
to specify the alloy-muffin-tin potential. In many
systems of interest Vo and Vo are nearly equal
and the use of an average muffin tin

model Hamiltonians, Schwartz et al. '3 have exam-
ined the validity of the average-t-matrix equations
in disordered alloys. These authors have shown
that in many cases the ATA provides an excellent
first approximation to the self-consistent CPA. Al-
though the results of both the present paper and
Ref. 13 are based on the approximate Eq. (2. 6),
there is nevertheless an important difference be-
tween them. %hen dealing with model Hamilto-
nians, the simplest procedure is to assume that the
Green's function Go(E) appearing in (2. 6) cor-
responds to the perfect-host lattice. It is then
possible to show that the ATA is exact to first order
in the impurity concentration x. Similarly if Go(E)
corresponds to the virtual crystal [i.e. , Go(E)
= (E —(H)) '] then the average-I-matrix equations
are symmetric with respect to the interchange of
A and 8 atoms and are correct to lowest order in
x and j. —x in the appropriate limits. Having made
these statements, it should be emphasized that the
calcu1ations discussed in Ref. 13 are tractable
only because the various Green's functions are
easily evaluated within the framework of the tight-
binding models. However, this is not the case for
the more realistic Hamiltonians under considera-
tion in the present paper. Indeed, for the muffin-
tin model, even a calculation of the yerfect-host
Green's function would involve a numerically com-
plicated integration over the Brillouin zone. Voile
it is certainly possible to formulate the AKKR
equations corresponding to an arbitrary reference
Green's function (see Appendix A), their solution
is relatively straightforward only if, as in Eq.
(2. 12), Go(E) corresponds to the empty-lattice
Hamiltonian: HO=P /2m. Given this choice, how-

ever, it is no longer true that the ATA is correct
to first order in the impurity concentration x.
Nevertheless, despite this apparent difficulty, the
results for the CuZn a11oy presented in Secs. III
and IV appear to be quite reasonable, and suggest
that this approximation is not serious for practical
calculations of many of the physical properties of
the alloy.

gAQI)( ) (2. 14a)

8. Renormalized-atom potentials and charge transfer

The renormalized-atom approach has been used
to construct I-dependent Cu and Zn potentials. For
each constituent, renormalized wave functions
))))(r), corresponding to the free-atom orbitals
Q)(r), are defined by truncating Q)(r) at the Wig-
ner-Seitz radius 8, and then multiplying by a con-
stant N to insure normalization within the %Vigner-
Seitz sphere. Thus

HAu) )yAe) )(~r) x (E
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and N"+' are constants such that

~ ~V6
(2. 14b)

(IVA(B))R (yA(8 &)2 (1 gA &8))

Self-consistent Hartree- Fock wave functions Q~(r)
are used to determine the t}t~(r) from which the
single-site renormalized-atom potentials are then
calculated. These potentials contain a full Cou-
lomb correlation hole and include exchange effects
within the atomic Hartree-Pock approximation.
Further details are given in Appendix B.

%'hile each signer-Seitz cell in a monatomic
pure crystal is neutral, this will in general not
be the case in either ordered or disordered binary
alloys. ' 3' For example, the exp].anation of the
optical properties of Ag-Au and other Au-based
alloys requires that charge be transferred between
the constituents. Since our potentials are not de-
termined self-consistently (in terms of the calcu-
lated electronic charge distribution), the incorpora-
tion of charge transfer requires an ad hue adjust-
ment of one or another feature of the neutral atom-
ic potentials described above. Two different
models to include such effects have been explored.
Each involves an empirical parameter, whose val-
ue is adjusted to obtain agreement between the cal-
culated and experimental values of the shift in the
fundamental optical edge as a function of Zn con-
centration.

The first method, the charge-renormalized (CR)
model, is physically the most natural extension
of the neutral-renormalized-atom concept. For
a given constituent, the potential is modified by
choosing the renormalization constant in Eq.
(2. 14a) such that

Here the subscripts and n refer to the charged
and neutral renormalized atoms, respectively.
This procedure leads to a net charge e 4"+' within
the A(S) Wigner-Seitz cell. To insure that the
total alloy is electrically neutral, the values of
S"+' must satisfy

(2. 15)

Typical values of 4 are, for example,
= 0. 057 (- 0. 134) at an impurity concentration of
30%. These values are comparable to the esti-
mates of 0. 075 in P-brass (ordered phase of com-
position CuL, ZnL, ) of Mott and Arlinghaus. " In-
terestingly, the former estimate was obtained
from stability considerations pertaining to the
ordered phase.

Inside the Cu and Zn atomic spheres the change
in potential brought about by the CR adjustment is
found to vary slowly as a function of r. This fact
suggests that the essential features of the CR
model could be reproduced by a simpler approach
in which the potential within the Cu (Zn) muffin-
tin sphere was simply shifted by a constant
5V "' ". Indeed, the results obtained with this
empirical shift (cf. Appendix C) are in remarkable
agreement with those of the CR model. Physically,
the transferred charge associated with the constant
shift of the potentials is confined to a spherical
shell at the muffin tin radius, its value being sim-
ply e& " '*"=5V "' "R . In view of Eg. (2. 15)
it is then clear that within this simplified frame-
work the average change in the potentials within
the muffin-tin spheres vanishes, i. e. ,

(2. 16)

Since the results of the CR model are essentially

SHIFTED IVIUFFIN TIN

(0)

Rm Rrn
I

NEUTRAL ATOM

(b)
CHARGED RENORM.

(c)

FIG. 1. Schematic rep-
resentation of the Cu and
Zn atomic potentials for the
various models of charge
transfer. The upper row
schematically shows the Cu
and Zn muffin-tin spheres,
while the 1 ower row shows
the corresponding poten-
tials: (a) shifted-muffin-
tin model {SMT), (b) neu-
tral-atom (NA), and (c)
charged- renormal ized-atom
(CR) model. Dashed lines
in Figs. Qa) and 1(c) show
the potentials for neutral
atoms. As shown in Fig.
1(c), the transferred charge
for the CH model is spread
over the whole of the muffin-
tin sphere.
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TABLE I. Complex energies, (E&, E2) =E&+sE2 in rydbergs, at symmetry points in 0;-Cu„Znt having Cu lattice con-

stants for different charge-transfer models.
Cu6, ~Z n6, 16 Cu6. 7zn6. s

State Cu
Charged reno rial ized

(caj
Shifted muffin tin

{SMT)
Charged renormal ized

(CR)
Shifted muffin tin

(SMT)
Neutral atom

(NA)

r1
ass

Xl
Xs
Xs
Xs
X4~

Ll
Ls
L$

ECU
d

Ezn

Eg

0. 0161
O. 3808
0.4510

O. 2178
0. 2580
0.4997
Q. 5165
0. 8372

0. 2347
0.3739
0.5028
0. 6193
1.0018

0, 4088

0, 6SV

(- o. ooes, o. o)
(0, 4108, —0. 0029)
(0.4705, —0. 0036)

(0.2656, —0, 0021)
(0, 3061,—0.0016)
(Q. 5119,—0. 0041}
{0.5264, —0. 0043)
(0, S124, —0.0111)

(0.2741, —0. 0042)
(0.4059, —0.0027)
(0.5144, —0.0041}
(o.59e1, —o. ooso)
(0.9728, —0, 0122)

0, 4347
—0, 254
(0.710, —0. 0091)

(-o. o396, —o. ooov)
{o.3vve, —o. o046)
(o.4394, —o. o04s)

(0, 2259, —0. 0029)
(0.270S, —0. 0035)
(o.482o, —o. oo52)
(0, 4969, —0. 0054)
(0. 7748, —O. 0015)

(0, 2398, —0. 0029)
(0.3719,—0.0042)
(0.4847, —0.0051)
(0.5495„—0. 0010}
(o.94v4, —o. oo44)

O. 4023
—0. 088
(0.677, —0, 0031)

(-o. o2ev, o. o)
(0.4398, —0. 0061)
(0.4894, —0. 0075)

{Q.3141,—0. 0044)
(0.3535, —0, 0041)
(Q. 5238, —0. 0085)
(O. 5357, —0, 0086)
(0. 7894, —0. 0163)

{O.3150,—0, 0074}
(0.4359, —0, 0060)
(0.5259, —0. OOS4)

(O. 5VSS, —O. 0112)
(o. e42o, —o. o2os)

Q. 4596
—0, 224
{0.731,—0.0147)

(-o. oe5, —o. oo1o)
{0.3743, —0. 0125)
{0.4269, —0.0133)

(0.2348, —0.0102)
{0.2825, —0.0117)
(0.4660, —0.0135)
(o.4764, —o. o13v)
(0, 712S, —0.0023)

(0.2461, —0.0098)
(0.3683, —0.0126)
{0.4659, —0.0136)
(0.4795, —0, 0014)
(0, 8923, —0.0083}

0.3953
-0.091

(o. 662, —o. oo6s)

(- 0, 009, 0.0)
{0.3824, —0. 0047)
(0.4314, —0. 0056)

(0.2691, —0. 0027)
(0.30Q1, —0. 0033)
(0.4665, —0. 0061)
(0.4788, —0. 0063)
(0. S002, —0. 0029)

(0.2743, —0. 0029)
(0.3783, —Q. 0046)
(0.4688, —0. 0062)
(Q. 5874, —0.001S)
(0.9323, —0. 0068)

0.4020
—Q. 084
(0. 723, —0. Q042)

identical to those obtained with the uniform shifts
6V, an equation of the form (2. 16) can be expected
to hold approximately for the charged renormal-
ized atomic potentials. This point is of some im-
portance since in using the CR model we are as-
suming that the individual atomic potentials are
not modified any further when the charged atoms
are put together to form the alloy. Any effects
of a Madelung potential, which [in view of Eq.
(2. 16)] may well be weak in a random alloy, are
thereby neglected.

The second approach to charge transfer, the
shifted-muffin-tin (SMT) model, involves lowering
the sP-muffin-tin constant of the alloy (cf. Fig. 1).

This adjustment has the effect of shifting all the
levels of the alloy downwards, and of lowering the
conduction band with respect to the d bands. The
shift in energy of a given state is proportional to
the fraction of its charge density residing in the
muffin-tin region. Accordingly, within the d bands,
the bonding states (e. g. , X,) are lowered more
than the antibonding states (e. g. , X,), and the ad-
justment may be thought to correspond to an in-
crease in the bonding charge, i. e. , to an increase
in the covalent character of the chemical bond. In
the SMT model the charge-transfer parameter
& " is determined by the shift of E„"arith resject
t0 a typical conduction-band state say I'„induced

0.8-
EF

K 4Q4-E "

C9

w Q2-
LaJ

O- Er,
EZfl

4

X5

Cu
Ed

Xp

Zn &

FIG. 2. Energy-level
diagram for pure crystals
and a-Cup 7Znp 3.. (a) pure
crystals and the NA alloy, .

(b) the NA, the SMT, and
the CR models. The en-
ergy zero is taken to be
—0. 8341 Ry, which is the
muffin-tin zero for pure
Cu.

PURE
Qu, Zn

NEUTRAL SMT
ATOM

NEUTRAL
ATOM

(b)



COMPLEX ENERGY BANDS IN o, - BRASS

0.8

K
&- 0.6
C9
CL
UJ

m 0.4

0.2

0—

Gu

{a)
NEUTRAL ATOM CHARGED RENORM. SHIFTED M. T.

(b) {c) {d)

FIG. 3. Calculated en-
ergy bands for pure Cu and
e-Cu() VZn(). 3 from I' X:
(a) pure Cu, (b)-(d) e-Cu(). 7

Zn(). 3 for different charge-
transfer models. The shad-
ing of the bands corre"
sponds to four times the
imaginary part of the com-
plex energies. The shad-
ing around the Fermi ener-
gy corresponds to four
times the average damping
on the Fermi surface. The
Zn 3d bands are shown as a
hatched band. The energy
zero is taken to be-0. 8341
Ry.

by the muffin-tin adjustment

gg cu E ) ncu~ (2. 17)

where F o is a Coulomb integral whose value is
typically 1 Ry. " We emphasize that Eg. (2. 1'7)

is intended to provide only a crude estimate of the
value of & " to be associated with the empirical
shift in Vz. At a Zn concentration of 0. 3, the SMT
value of & " is found to be 0. 079.

III. COMPLEX ENERGY BANDS

The results of our calculations are summarized

in Table I and Figs. 2 and 3. TaMe I gives the
real and imaginary parts of the low-lying energy
levels at the symmetry points I', X, and I for the
15 and 30 at. fo alloys. Figure 3 shows the complex
energy bands along the [100] direction for pure Cu
and Cuo 7 ZnL3. The imaginary parts of the ener-
gies are represented by the vertical lines [of
length 4IE2@'(it) i] through each band. Results both
for the neutral atom (NA) as well as the CR and
SMT models are presented. A typical plot of the
complex energy bands along the principal sym-
metry directions of the crystal is shown in Fig. 4.
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FIG. 4. Calculated energy bands for e-Cuo. 7Zn(). 3 for the charged-renormalized atom model. See caption for Fig. 3
for the meaning of the shading.
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A. Real parts of the complex bands

The qualitative features of our results are most
easily understood in terms of the behavior of the
real parts of several of the most important energy
levels of the alloy. The levels we consider are:
the bottom of the conduction band Er,, the Fermi
level Ez, the centers of the Cu and Zn d bands
E~" and E&', and finally„ the bonding and antibond-
ing states X3 and X, that determine the character-
istic width of the Cu d bands. The energy shifts
in going from pure Cu to neutral atom Cup. & Znp, g,

and subsequently to the alloy including charge-
transfer effects, are indicated in Figs. 2(a) and

2(b), respectively. The Zn d level shown on the
left side of Fig. 2(a) is that corresponding to a
hypothetical Zn crystal having the fcc structure of
Cu and the same lattice constant.

The principal features associated with the addi-
tion of 30% Zn to pure Cu, without including charge
transfer [Fig. 2(a)] are the following: the appear-
ance of separate Zn d bands, a narrowing of the
Cud bands, a downward shift of Er, , and an in-
crease in width of the occupied portion of the alloy
conduction band, The present calculations yield
two sets of d bands due to the fact that we have
averaged t matrices rather than potentials as in
the virtual-crystal approximation (VCA). In fact,
a direct application of the VCA would predict a
single d band whose center of gravity would shift
downwards with increasing Zn concentration.
The reduction in width of the Cu d bands is associ-
ated with the fact that in a random alloy the number
of Cu atoms surrounding a given Cu site (and hence
the effective number of Cu-Cu transfer integrals)
decreases in direct proportion to the concentration
of Zn atoms. Indeed, inspection of columns one
and six of Table I indicates that the variation of
4E~"-=X,-XS is essentially linear ' in the con-
centration 1-x of Zn atoms.

In contrast to the behavior of the d bands, the
changes in the NA conductionbands are easily under-
stood in terms of a virtual-crystal model. '
For example, a linear downward shift in E~ is ex-

1
pected since the Zn yotential is more attractive
than that of Cu and the k = 0 state, having the most
uniform wave function, tends to sample the aver-
age potential in the alloy. The rise in the Fermi
level E„is simply due to the increased average
number of electrons per atom. Its magnitude,
however, is less than a Cu-based rigid-band
mode144 4~ would predict because the lowering of
E„actsto depress the entire conduction band.Fg
Next, we consider the width of the occupied portion
of the NA conduction band (Ez —Er ) as a function

1
of Zn concentration. This quantity is of interest
because earlier calculations""'6 have not ex-
plicitly evaluated E~. Instead, E~(x) was esti-

matedfrom the calculated value of Er, (x), by requir-
ing that the increase in the width of the occupied
conduction band be the same as that obtained from
a Cu-based rigid-band model. In the present cal-
culation, E~ is evaluated by a k-space integration.
For the Cu,.,Zno, NA alloy the increase in (E„
—E„)is 0.061 Ry, whereas the rigid-band model
gives an increase of 0.088 Ry. The difference is
due to the decrease in the total number of Cu d
states on alloying, and the consequent smaller ex-
pulsion of s states from the d-band region. It is
interesting to note, however, that once the effects
of charge transfer are added [cf. Fig. 2(b)], there
is a compensating increase in (E~ —Er ), and the
final results are in agreement with the earlier
rigid-band estimates.

The further changes that occur when charge
transfer is included are illustrated in Figs. 1,
2(b), 3(c), and 3(d). It was noted in Sec. IIB that
in going from the NA to the CR model the average
change in the alloy potential is small. Consequent-
ly the levels Er, and E~ are not expected to vary
significantly. By contrast, the Cu d band rises
because the Cu atomic potential is raised. [See
Figs. 1 and 2(b). ] As expected, this increases
E~ slightly. Similarly, due to the lowering of the
Zn atomic potential, E„'drops.

In connection with the SMT model, we note that
as a result of the lowering of the average sP muf-
fin tin, all levels in the alloy are depressed. The
shift in energy of a given state depends on the frac-
tion of its charge found in the muffin-tin region.
Thus, the conduction-band states, whose wave
functions tend to be more uniform, are affected
more than a typical d level. Similarly, within
the Cu d bands, the antibonding state X5 is es-
sentially unaffected, while the lowering of the bond-
ing state X3 is more apparent.

It is clear from Fig. 2(b) that, as far as the
optical-absorption edge is concerned, the principal
effect of the adjustments involved in either the CR
or SMT models is to reduce the gap between the
top of the Cu d bands and the Fermi level. In both
cases therefore, the value of the charge-transfer
parameter can be fixed by requiring agreement be-
tween the calculated and exyerimental values of the
shift in the optical edge corresponding to the transi-
tion L", -EJ, .

Voile the two models are similar in this respect,
one possibly important shortcoming may be that
the charge transfer is determined by a single gap
at one symmetry point of the Brillouin zone. Their
predictions regarding other physical properties
may well differ. For example, in connection with
the cohesive energy, the downward shift of the
bands introduced by the SMT model would most
likely lead to results different from those of the
CR model where the adjustment tends to spread
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TABLE II. Shifts in energy levels in rydbergs of Cu and Q.-C~.&Zn0. 3 vrhen the
lattice constant is increased by 2%. Complex energies are denoted as in Table I.

o,'-Cuo. 7 Zno. e

DFJ Renormalized atom

r,

r25

Xg

Xs
Xg
Xg
X4s

L$
Ls
LQ

3

Lg.
LN

0. 0374
0. 0092
O. 0148

0. 0292
0. 0248
0. 0054
0. 0040
0. 0060

0. 0268
0. 0154
0. 0052
0. 0174

—0. 0202

-0, 0027
—0. 0487
—0. 0412

—0. 0216
—0. 0278
—0. 0537
—0. 0551
—Q. 0356

—0. 0237
—0. 0401
—O. 0537
—0. 0240
—0, 0672

(- o. oo13, o. o)
(- o. o463, o. oo22)
(- o. o4oe, o. oo2o)

(- 0.0260, 0, 0022)
(- o. o313, o. oo23)
(- o. o52o, o. Do21)
(- o. o515, o. oo21)
(- 0.0326, 0, 0002)

(- o. o26e, o. oo2o)
(- o. osee, o. oo22)
(- 0. 0504, 0. 0021)
(- 0. 0210, 0. 0001)
(- 0.0641, 0. 0008)

(- o. oo19, o. o)
(-0. 0458, 0. 0019)
{-0. 0404, D. 0015)

(-0. 0262, 0. 0008)
(- 0.0315, 0. 0012)
(- Q. 0497, 0. 0020)
(-0. 0509, 0. 0019)
(- 0. 0339, —0, 0005)

(-o. o268, o. ooo6)
(-0.0400, 0. 0015)
{-0.0499, 0. 0019)
{-0.0228, —0.0002)
(-o. o635, o. ooo1)

LN

X4, -XS

—0. 0376

0. 0020

Xs-X3 —o. 0208

~Reference 47.

—O. 0432

0. 0195

—0. 0273

(- o. o4s1, o. ooo7) (- o. 0407, o. ooos)

(0. 0189, —O. 0020) {D.0170, —O. 0024)

(- 0. 0202, —O. 0002) (-0.0194, D. 0007)

the bands apart. A detailed study of this point,
of course, requires a knowledge of the complete
density of electronic states and is beyond the scope
of the present calculations. Jn addition we note
that the CR and SMT models lead to qualitatively
different predictions regarding the relative posi-
tions of the Cu and Zn d bands [cf. Fig. 2(b)]. In
the SMT model the Zn d bands lie very close to
E», whereas in the CR model they lie approxirnate-
ly 0. 2 Ry below the bottom of the alloy conduction
band. Also, the separation of the Cu and Zn d bands
is approximately 0.2 Ry larger in the CR model. X-
ray-photoemission experiments on e-brass, and par-
ticularly those that place the Zn d level relative to
E~, would help to resolve some of these questions.

Finally, we consider the influence of lattice ex-
pansion (here assumed to be uniform) on the band
structure of 0'-brass. Experimentally, the lattice
constant of u-Cuo. &Zno. & is found to be approximate-
ly Ã0 larger than that of Cu. Within the renor-
malized-atom framework, the neutral-atom poten-
tials for the expanded lattice are constructed by
renormalizing the wave functions within the cor-
responding larger Wigner-Seitz sphere, end are
used to calculate the band structures of Cu and
O,'-CuZn on the expanded lattice. Table II lists the
shifts in the energies of some of the low-lying
levels at symmetry points I', X, and L for Cu and
+-Cuo. &znLS on expanding the lattice, along with
the shifts in energy levels obtained from the cal-
culations of Davis, Faulkner, and Joy for pure
Cu. The alloy results are obtained for the charged
atoms within the shifted-muffin-tin and the charge-

renormalized-atom schemes.
Consider first the results for Cu as a function of

lattice dilation. Comparing the first and second
columns of Table II, we see that the shifts of the
energy levels obtained from the present calcula-
tions and those of Ref. 4V are very different. This
discrepancy is due to the differences in the con-
struction of the crystalline potentials. We re-
mark, however, that the behavior of the various
energy gape [e.g. , (L &- Lr ), (X~.-X,), and (X5
-X,)] for the two calculations are in reasonable
agreement. Furthermore, the results given in
Table II show that the shifts in the energy levels
obtained from the present calculations on expand-
ing the lattice are almost the same for Cu on the
one hand and a-Cu~, Zno, , (for both the charged-
renormalised-atom and shifted-muffin-tin models)
on the other. We shall assume that the same holds
if one were to start from the results of Davis,
Faulkner, and Joy for pure Cu and go to a brass
alloy calculated using their scheme for construct-
ing potentials. Therefore, for reasons pointed out
in Ref. 48, the changes in the band structure of Cu
with lattice constant mill be used to infer the ef-
fects of lattice expansion on the energy bands of
o'-brass. Thus, in comparing the present results
with various optical and Fermi-surface experi-
ments, the energy bands calculated on the undilated
lattice mill be corrected for lattice expansion sim-
ply by adding the shifts for pure Cu obtained from
the results of Ref. 4'7, which are in excellent agree-
ment with experiments concerning the pressure
dependence of the energy bands of Cu.
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of ImZ, a measure of the
damping for electronic
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l components, for the SMT
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give the total damping,
while the short horizontal
bars give the sum of the s,
p, and d components. The
diamonds, the squares, and
the crosses give the s, p,
and d components of the
damping, respectively.

8. Imaginary parts of the complex bands

The magnitude of the damping of conduction-band
states obtained from the present calculations is
consistent with the results of an elementary per-
turbation- theory estimate. The potentials seen
by the conduction states in pure Cu and in a hypo-
thetical crystal of Zn on a Cu lattice are not very
different. A typical dimensionless parameter
characterizing this difference is ( E„",- Eqr}/( occu-

pied conduction bandwidth) = (Er"—Erz')/1 Ryj 1
= 0. 0(I'2 «1. Accordingly perturbation theory
may be used to estimate the average damping on
the Fermi surface of O.-brass. If we define the
scattering potential as 5V= (v*' —v ") and assume
that the conduction band of pure Cu can be repre-
sented as a free-electron band with 4„=0. 72 a. u.
then, to lowest order in x, the imaginary ye, rt of
the energy of a state at the Fermi level is"

E2(k„)=x „Z(2l+ 1) sin~(5, (E„)). (3. 1)
2vtf'n
Pl g $0

Here 5, (Ez) is the Lth phase shift (evaluated at the
Fermi energy) corresponding to the potential iiV,
m is the free-electron mass, and n is the number
of Cu conduction electrons per unit volume. Using
the neutral-atom Cu and Zn atomic potentials to
e valuate 5 V and then 5„Eq.(3. 1)gi ves Es(kz) = 3.0
x 10 Ry/(at. % Zn). This result is to be compared with
the average Fermi- surface damping calculated in the
ATA: E2(k~) = 2. Ox 10 Ry/(at. $ Zn).

In order to discuss the results of ATA calcula-
tions for the imaginary parts of several typical
energy levels in the alloy, it is useful to introduce
a decomposition of the damping of a given state
into its angular-momentum components. For this
purpose, the 1th component of the damping is de-
fined as the balue of Em(k) obtained by solving the
AKKR equation with all of the impurity phase
shifts except the 1th set equal to those of the host.
These components are easily calculated and re-
sults for states at several of the principal sym-
metry points in the Brillouin zone are shown in
Fig. 5. The results obtained for the SMT model

are shown, and they are typical of the NA and the
CH models also. First, in all cases the damping
of each state is found to be equal (within the nu-
merical accuracy of our calculations) to the sum
of @,P, and d components and second, the rela-
tive strength of each component of the damping re-
flects the angular-momentum character of the as-
sociated state. ~'4~'~~ ~ Thus in the pure d states
I'» and ~25 only the l = 2 component of the damping
is nonvanishing, while for the P states X4. and
I-a only the l = 1 component contributes. Note al-
so, that along a series of states (conduction-band
states of symmetry 4, are shown) changes in the
weighting of the damping components track the
variation in the angular-momentum components
of the corresponding wave functions. For example,
as the symmetry point X4. is approached, the d and s
components decrease while the p component increase»

Finally, we consider the anisotropy of the damp-
ing on the Fermi surface. Results obtained from
the CR and SMT models are shown in Fig. 6. It
is evident from column five of Table I, that in the
SMT model the damping of s or P states (e. g. ,
I', or Lz.} is an order of magnitude smaller than
that of the pure d states (e. g. , I',z and F2;). Ac-
cordingly, in this model the anisotropy of the
damping is expected to reflect variations in the

).7—
CR MOOEL

NECK

FIG. 6. Anisotropy of the damping of the Fermi sur-
face of O, -Cuo. vZn0. 3 for the SMT and CH, models.
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d character of the states on the Fermi surface.
Thus the damping along the symmetry direction
K is the largest, because the d admixture is the
greatest in this direction. By contrast, theanisot-
ropy of the damping obtained from the CR model
is much less marked. As we noted in Sec. IIB,
the SMT adjustment does not change the value of
the difference potential (v

' —v "), whereas in the
CR model this difference is increased by a con-
stant. This increase in the scattering potential is
confined to the interior of the muffin-tin spheres,
a region that is more easily accessible to wave
functions of low angular momentum. The CR ad-
justment therefore tends to increase the damping
of the s and P states, thus reducing the relative
importance of the d component and the concomi-
tant anisotropy. As noted in Sec. III A, further
experimental evidence is required in order to
understand what kind of charge-transfer model
is the most realistic. Dingle-temperature mea-
surements for different orbits on the Fermi sur-
face would be useful in providing detailed maps of
the Fermi-surface damping, ' ' thereby helping
to resolve this question.

IV. COMPARISON MTH EXPERIMENT

A. Optical properties

The results of the present calculations are sum-
marized in Figs. 7(a) and 7(b) whose discussion
forms the principal topic of this subsection.

The inset in Fig. 7(a) shows the dominant fea-
tures of the experimental optical-absorption spec-
trum and how they change with concentration. '
The optical-absorption spectrum of pure Cu, given
by the dashed line, shows an edge at approximate-
ly 2 eV and a large peak at 5 eV. The solid line
shows that on alloying with Zn the edge moves to
higher energy and the peak splits. The dominant
portion (referred to as "Lower" ) moves to lower
energy faster than the "Upper" rather more diffuse
peak. Earlier results of Bionde and Rayne agree
with the observed shift. The splitting, however,
was not observed in their work.

In the present comparison the shift of some of
the principal optical transitions as calculated using
the shifted-muffin- tin and charge- renormalized
models are compared with those observed experi-
mentally. Even though the large peak in the ob-
served optical structure may arise from relative-
ly large regions of the Brillouin zone, ' ' for the
present purposes these transitions will be associ-
ated with gaps at high-symmetry points. In Cu at
least, these gaps lie energetically close to the
peaks. ' It is to be emphasized that we compare
here the shifts of the optical structure with con-
centration rather than absolute magnitudes. The
observed absorption edge, corresponding to the
I z-E& transition is actuaBy predicted to occur at

2. 6 eV for Cu by the potential used here, which is
higher than the experimental value by about 0. 5
eV. This kind of discrepancy is not unusual in
first-principles calculations. " 6 In the present
calculations, the magnitude of the transferred
charge was chosen to reproduce the correct con-
centration dependence of the principal edge for the
two models discussed in Sec. IIB. This is pos-
sible, since the results of Sec. IIIA showed that
the Cu-Zn charge transfer reduces the gap be-
tween the upper d-band edge and the Fermi level.
For zero charge transfer, the theoretical shift of
the edge is approximately 1 eV greater than the
experimental value. Previous authors"' ' have
not included the effects of charge transfer ex-
plicitly. 6 '6 As in the present NA calculations,
the shift in the optical edge was found to be greater
than the experimental value.

Although our potentials have been adjusted to
guarantee agreement with the experimental optical-
absorption edge, the behavior of the 5-eV peak
provides an independent test of the present calcu-
lations. In contrast with the edge, the interpreta-
tion of this peak has been controversial in Cu.
Current views hold that the transitions associated
with this peak arise from a large portion of the
Brillouin zone and may be classified broadly as
d-band - conduction-band and conduction-band- conduction-band trans itions. These include
the transitions X, X4. , I, Ez, and I z.- I »
where the superscripts l and u refer, respective-
ly, to the lower and upper I y levels.

Turning to Figs. V(a) and 7(b), we examine the
shifts for the charge-renormalized-atom and
shifted-muffin-tin models with and without lattice
dilatations. The effects of lattice dilatation are
indicated by the vertical arrows in Fig. 7. They
are seen to be sufficiently large that they must not
be neglected in realistic calculations. Both mod-
els predict the X,-X4. and I ', -EF transitions to
move to lower energy faster than the I z. -l", trans-
itions. As indicated in Fig. V(b), the SMT model
appears to agree with the experimental shifts
rather well after lattice-dilatation effects have
been included. However, its superiority with re-
spect to the charge-renormalized-atom model in
this connection may well be coincidental.

It seems plausible that the motion of the "Lower"
peak to smaller energies in the experimental opti-
cal spectrum is due to changes in the d-band- con-
duction-band transitions, as monitored in the pres-
ent case by L', -E~ and X~-X4.. The "Upper"
peak, on the other hand, may result from con-
duction-band —conduction-band transitions (e. g. ,
J.;-L",). Contributions to this structure may also
arise from d-band - conduction-band transitions,
particularly from the lower Z, band to the Fermi
level, which are found to be practically unaf-
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FIG. 8. Neck and belly radii in 0,-Cu„Zn~~ as a function of the Zn concentration: (a) without lattice expansion, and

(b) including the lattice-expansion effect using the results of Ref. 47. The solid lines and the dot-dashed lines refer to
the &MT and the Cs models, respectively, while the dashed lines give the results for the rigid-band model with the Cu

density of states. The experimental data points (Ref. 26) for the neck radius are also shown.

properties of 0'-brass.
Figure 8 also shows that the various dimensions

of the Fermi surface are insensitive to the choice
of the model for charge transfer. The Fermi sur-
face of Cu is seen to expand rather uniformly in

all the directions in k space. This feature is il-
lustrated more clearly by Fig. 9, which shows
the intersections of the Fermi surface of Cu and
o-Cuo. &Zn0, 3, with a few symmetry planes. The
shading in Fig. 9 corresponds to six times the un-

certainty in momentum on the Fermi surface of
the alloy. The uncertainity in momentum, &It, of
a given state of momentum, k, is related to its
damping, ImE(k), by, 5k= ImZ(k)/Kvr, where the
Fermi velocity v„is estimated by assuming a free-
electron band for the alloy.

The calculated values of the principal Fermi-

surface radii in +-brass are presented in Table
III. The average dampings on the Fermi surface,
the neck, and the [111]belly are also listed. As
discussed in Sec. IDB, the primary difference be-
tween the CR and the SMT models is once again
seen to be in the magnitude of the damping. The
results for the damping are compared with experi-
ment in Sec. IVD below.

Chollet and Templeton have measured the neck
de Haas-van Alphen (dHvA) frequency, and the ratio
of the [ill] belly to the neck frequency in a-brass,
for low concentrations of Zn. The experimental
fractional increase in the neck radius of Cu [ob-
tained by drawing a straight line through the CuZn
data of Coleridge and Templeton (cf. Ref. 2V)] is
2. 0% per at. % Zn, which is to be compared with
the calculated increase of (2. 6+ 0. 4)% and (2.2

(a}

Cuo, yZ

HEXAGONAL
FACE

(c)

FIG. 9. Intersections of
the Fermi surface of Cu
(unshaded) and of O.-Cuo. v

Zno. e (shaded): (a) with a
(1, 0, 0) plane, (b) with a
(&, 1,0) plane, and (c) with
the hexagonal face of the
Brillouin zone for the SMT
model. The shading corre-
sponds to six times the un-
certainty in momentum on
the Fermi surface of the
alloy.
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TABLE III. Fermi-surface properties for o. -Cu„Zni
„

having Cu lattice constant for different charge-transfer
models. The Fermi-surface radii are given. in units of
2m./a, where e is the cube edge of the fcc Cu lattice.
Average value of ImZ on the Fermi surface, [111jbelly,
and the neck is given in rydbergs.

CIIo.ss Zno. is Cuo. i Zno. 3

CR

&i,o,o

~i,i, o

&w~
Im Z (FS)
IIZ

([111jbelly)
Im Z (Neck)

0. 815 0. 858
0. 744 0. 782
0. 155 0.225
0. 0 —0. 0032

0. 855
0. 783
0.216

—0. 0091

0. 902
0. 818
0.283

—0.0068

0. 897
0. 820
0.268

—0. 0147

0.0 —0. 0034 —0. 0090 —0. 0074 —0. 0150
0. 0 —0. 0028 —0. 0087 —0.0065 —0.0141

+ 0. 2po per at. % Zn for the CR and the SMT mod-

els, respectively. Similarly, the experimental
fractional decrease in the ratio of the [111]belly
to neck radius [obtained by drawing a straight line
through the CuZn data of Chollet and Templeton
(cf. Ref. 2V)] is 2. 2% per at. $ Zn, which compares
reasonably with the calculated decrease of (2. 3
+ 0. 5)% and (2.8+0.25)% per at.$ Zn for the CR
and the SMT models, respectively.

C. Other properties

In this subsection, we discuss the measurements
of the Dingle temperature and the residual re-
sistivity, which are related to the lifetimes of the
electronic states in the alloy and hence to the
imaginary parts of the complex band energies. The
specific-heat measurements on &-brasses are also
discussed briefly.

The Dingle temperature x(k) is defined"'~'

x(k) = Im&(k)/vk; ImZ(k) = 8/2v; (4. 1)

where k is the momentum of the state under con-
sideration, k~ is the Boltzmann constant, and 7~
is the lifetime corresponding to the damping
ImZ(k). The de Haas-Van Alphen experiments,
which are possible only for very dilute alloys,
measure an average of x(k) over an extremal orbit
on the Fermi surface, rather than x(k) for a specif-
ic k. However, a complete map of x(k) on the
Fermi surface can be obtained by inverting the
de Haas-van Alphen data on a series of extremal
orbits. ' Unfortunately, such detailed experi-
ments have not, as yet, been done on cy-brass.

The theoretical map of x(k) on the Fermi sur-
face of the alloy is obtained from the complex
band structure, by using Eq. (4. 1). The Dingle
temperature corresponding to a given orbit, which
is to be compared with experiment, is then ob-
tained by averaging x$) over the orbit in question.
In o.'-brass with a maximum Zn concentration of
0. 1 at. %, Coleridge and Templeton experimental-
ly obtain values of 20 and 15 'K/at. % Zn for the

Dingle temperatures x& and x& of the neck and the
[111]belly orbits, respectively. The correspond-
ing results of our calculations may be summarized
as follows: for the SMT model, x„=8.4'K/at. %
Zn„xs= 11.1'K/at. % Zn, and x„/xs--0.'f6; for
the CR model, x„=29.2'K/at. % Zn, xi= 30. 2'K/
at. % Zn and xN/xs = 0. 96. The theory and experi-
ment are seen to agree to within a factor of 2. In

viem of the sensitivity of the Dingle temperature
to defects such as dislocations, ' it is difficult to
interpret the experimental value of Dingle tempera-
ture as an intrinsic effect due to alloying alone.
In addition, as already pointed out, the reliability
of ImZ obtained from the present calculations is
open to question because of its sensitivity to the
atomic potentials of the constituents.

In contrast to the Dingle temperature, the resid-
ual resistivity is not related directly to the one-
electron lifetime of the electronic states in the
alloy. An actual evaluation of the conductivity
lifetime 7, for the nondilute alloy will not be at-
tempted here. However, an estimate of the resid-
ual resistivity in the lose- Zn-concentration limit is
easy to make if the Fermi surface is assumed
spherical and the necks are neglected. It is use-
ful in providing insight into the va1.idity of the phase
shifts for Cu and Zn used in this paper for various
models of charge transfer. Assuming the conduc-
tion electrons in the host tobe free-electron-like,
the residual resistivity may be obtained from the
usual formula

p= (2. 732/k~n, fq) Fi (I+ 1)sin (5, —5„,), (4. 2)
l=0

where p is given in the units pQ cm/at. /0 impurity,
Im|'„ is the Fermi momentum in atomic units, and
n,« is the number of conduction electrons per
atom in the host. Several authors' have estimated
the residual resistivity for alloys using Eq. (4. 2),
with the phase shifts ~& obtained by associating a
square-mell potential with the impurity, where the
depth of the square well is chosen to satisfy the
Friedel sum rule. One may alternatively associ-
ate the difference of the equivalent Cu- and Zn-muf-
fin-tin potentials with the impurity, and calculate
the phase shifts 4& from it. Su"h a calculation for
the present case yields for the SMT and the CR
models a residual resistivity of 0. 33 and 0. 99
pQcm/at. % Zn. Morgan and Coleridge'6 have
sho~n that in the low-concentration limit, the dif-
ference of the impurity and the host phase shifts,
5& = (qI —q, ), should be associated with the scatter-
ing properties of the impurity. However, the ef-
fect of deviations from a spherical Fermi surface,
which are neglected here, also play an important
role in their results. Using 5, = q&

' —g&
" in Eq.

(4. 2) gives, for the SMT and the CR models, re-
spectively, residual resistivities of 0. 23 and 0. 46
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p, & cm/at. %%uoZn . Theseestimatesa, re tobecom-
pared with the experimental value Qf 0, 335
p, Qcm. As expected, the CR model yields a high-
er value in both cases.

The ratio P= v', /v'~ is expected to be greater than

unity. ' Here v, is the resistivity lifetime, de-
fined to be v, =m "/ne p, and ~n is the Dingle-tem-
perature lifetime given by Eq. (4. 1). For sim-
plicity, we take m*= 1.45 m, the optical mass of
Cu. The experimental value of the ratio P, ob-
tained from experimenta1. measurements of residual
resistivity and the Dingle temperature is 2. 32-
3. 06, where the bounds on J3 correspond to using
the experimental belly and neck Dingle tempera-
tures for calculating the lifetime v~. The theo-
retical value of P (independent of the value of the
effective mass m~) is model dependent and varies
between 1.6 and 4. 2, which is in reasonable agree-
ment with experiment. It should be emphasized
again that the estimates of the residual resistivity
above are qualitative rather than quantitative, be-
cause of the approximations involved in the use of
Eq. (4. 2) for calculating p.

The coefficient of the electronic specific heat

y, which is directly proportiona1. to the density of
states p(E~), at the Fermi level @~ is:
= 3v esp(E~), where its is Boitzmann's constant. Our
calculated value of y=0. 61 mJmole ' K for Cu
is comparable with the experimental value 9 of
(0. 690 + 0. 002) m J mole ~ 'K 2. The discrepancy
has been attributed to the electron-phonon inter-
actions. The low-temperature specific heat of
o-brasses has been measured by Veal and Rayne,
and more recently by Mizutani et a/. These ex-
periments show that the specific heat of Cu in-
creases only by a small amount on alloying it with

Zn, the maximum increase being about 3. 3% of the
specific heat of Cu. A calculation of y requires
knowledge of p(Er) which has not been evaluated
explicitly in the present paper for the alloy. We
can therefore only comment on other theoretical
efforts.

We note that the rigid-band model with the Cu
density of states cannot explain the experimental
results on specific heat of O.-brasses, because

this model predicts a linear decrease with in-
creasing Zn concentration, amounting to 10% of
the specific heat of Cu for a-CuL, ZnL3. Stern'
has attempted to explain the experimentally ob-
served increase in y for the Cu- and Ag-based
alloys in terms of the enhancement of the density
of states at the Fermi level, resulting from the
presence of screening electrons around impurity
atoms. Haga" has estimated the effect of the
d-band broadening on the specific-heat coefficient
of o-brass, using average Cud-band damping
ImZ(d band) as an adjustable parameter. To fit
his theory to experimental results, he requires
a value of ImZ(d band) = 0. 015 Ry for the 30-at. %%up

Zn alloy. This is comparable with the correspond-
ing calculated value of 0. 013 and 0. 008 Ry for the
typical d-band damping for the SMT and the CR
models, respectively, and suggests that the broad-
ening of energy levels has an important effect on
the specific heat of e-brasses.
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APPENDIX A

In this appendix we examine two formal aspects
of the average t-matrix-KKR equations. We begin
by establishing the relationship between Eq. (2. 12)
of the present paper and the (tight-binding) model
Hamiltonian version of the ATA considered in Ref.
13. The generalization of Eq. (2. 12) to the case
of a virtual-crystal reference Hamiltonian is then
discussed.

Equation (2. 12) is the angular-momentum repre-
sentation of the average-t-matrix secular equation.
As Ziman has shown, this equation can be trans-
formed into the more familiar reciprocal-lattice
representation

ll(lk-K. I'-E)3. +E (k, E)II=0, (»a)

where

z.. (k, E) = «(IV/fl) ~ (2&+ Iui(lk- K„lft)c~(E)A(lk-K„lft)P (cosS.. ) (A lb)

and

oq(E) = (ti(E)) [I+Gi (ft, R)(ti(E))] (Alc)

Here R is a constant usually taken to be the muffin-tin radius R, K„and K„.are reciprocal-lattice vectors,

(t~(E))-=( t~(&, &))/A'(xft),
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and G', '(R, R) is a spherical matrix element of the free-particle Green's function

G(, ) (R, R)= f F (r) [5(r —R)/R ]G (Ir- r' I)[5(r' —R)/R ] F (r~)d»rd'r'

= —((j»((((R) [i —n((xR)/j((((R)], (A2)

and j& and n& are the spherical Bessel and Neumann
functions, respectively.

Equations (Al) may be thought of as secular
equations for a periodic lattice of effective poten-
tials. Following Ziman and Soven, "these effec-
tive potentials can be interpreted in terms of non-
local 5-function shell-model potentials:

H =S7+Q[vA~)(r) - V„(r)],

where

ff = p'/2m+ +V„(r)

v(r)-=xv"(r)+ (1-x)v (r).

(AVa)

(A7b)

(A Ic)

"+)(E)=t"+'(E)[1+6( '(R,R}t", '(E)] (A4)

In view of this relation between v, (E) and t, (E), it
is clear that the quantity Z„„(k,E) in Eq. (Alb) is
simply the matrix element (between plane-wave
states 1k+ K„)and I%+K„.)) of a periodic array of
potentials of the form (AS), where the effective
parameter v&" is chosen to reproduce the average
scattering matrix at each site, i. e. ,

vt (E) = (t, (E)) [1+G( ' (R, R)(t, (E))] =—o((E). (A5)

This result is the present version of the more
general average-t-matrix expression for the self-
energy operator,

E(E)= &o.(E),
n

&.= «0(I+Go(t.)) ',
employed in Ref. 13; and shows, once again, that
the present calculations are based on an average-
/-matrix approximation relative to an empty-lat-
tice reference Hamiltonian.

As indicated in 3ec. IIA, a more reliable aver-
age-t-matrix calculation is obtained if we begin
with a virtual-crystal reference Hamiltonian. The
alloy Hamiltonian is then written

v" ~ ()r, r')=Z [5(r-R)/R']
I

)(F (r) vA(B)(E)F (r')[5(r' —R)/R'],
(AS)

where the energy-dependent parameters v", +' are
chosen to guarantee that the model potential (AS)
reproduces the proper scattering phase shifts"

(t) =xt "+ (1-x)t (A9)

where t "+)are the scattering matrices for A(B)
atoms with respect to the VC Hamiltonian, and
are given by

tA(B) A(B)(1 G-VA(B)) 1- (A10a)

where

v" '(r)=-[v" '(r)-V(r)]. (A10b)

Equations (A&)-(A10) can be solved easily pro-
vided we use 5-function shell-model pseudopoten-
tials of the form given by Eqs. (AS) and (A4). For
example, Eq. (A10) gives

t A(B)(E) vA(B)(E)[1 G (R R) A(B)(E)]-1- (All)

where V(+)(E) are chosen to reproduce the scat-
tering phase shifts of the difference potential
v" ' —V, and G»». (R, R) is the angular-momentum
component of the VC Green's function,

V(r) is the atomic potential corresponding to the VC
Hamiltonian (all quantities referring to the virtual
crystal will be denoted by a bar). Beginning with

Eqs. (AV}, the scattering operator T(E) [cf. Eqs.
(2. 6) and (2. t)] may be rewritten

T=~(t.& ~(ta«t. &

n n

+ Q (tQ G(t & G(t)&+ ~ ~ (AB)

m4fn
p4 fn

G»». (R, R)= f f F»(r)[5(r —R)/R ]G(r, r')[5(r' —R)/R ] Y».(r')d'rd'r'. (A12)

G»». (R, R) can be computed conveniently by using the formulas given by Soven [cf. Eqs. (48) and (49) of
Soven's paper].

Using Eqs. (AQ)-(A11), the summations in Eq. (AS) can be carried out simply. This leads to the secular
equation,

I 15»» —(t(((( (()&R»» ~ (k &)
I I

= o, (A13)
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where

and &=&'=R.

Bz~.(k, x)= [j,(xR)j,.(a'B)I 'g e '+G(r+ R„,r') Y~(r}Yz.(r')dA„dQ„.
a„xo"

(A14)

Etluations (A13) and (A14) give the AKKR equa-
tion with respect to the VC reference Hamiltonian.
It should be emphasized that the assumption of a
~-function shell-model potential is necessary in
order that the series (AB} can be summed explicit-
ly. By contrast, this assumption is not necessary
to sum the series (2. 6) which involves Go instead
oft.

APPENDIX B

This appendix presents the details of the Cu and
Zn potentials used in this paper.

The lattice constant for Cu is taken to be 6. 8309
a. u. ~ The renormalized-atom potentials (see
Sec. IIB for an outline of the method) of Cu and
Zn were generated on the Herman-Skillman mesh.
This method yields the spherically symmetric
crystalline potential, defined within the %'igner-
Seitz sphere. The l-dependent muffin-tin zero
is calculated by averaging the potential between
the muffin tin and the Nigner-Seitz sphere radii.
The s and the d muffin tins, V~ and Vo, for Cu are
—0. 8341 and —0. 9456 Ry. The corresponding val-
ues of Vo and Vo for Zn are —0. 8128 and —1.0449
Ry, respectively.

The muffin-tin zero for the alloy is taken to be
the average of the s-muffin-tin zeros of the con-
stituents, i. e. ,

Vo = xVo (Cu) + (1 —x) Vo ( Zn).

As discussed in Sec. IIA, this corresponds to the
use of the VCA outside the muffin-tin spheres. The
use of the s, rather than the d muffin tin, is nat-
ural because the s-P-like electrons, due to the ex-
tended nature of their wave functions, sample the
muffin-tin region much more than the tight-binding
d -like electrons.

Table IV shows that for O.-CuQ VZnL3 the com-
plex energy levels for the CS and the CR models
agree with each other to within a few hundredths
of an electron volt. In view of this, most of the
calculations in this gaper for the CR model were
actually done by using the simpler CS model. The
agreement between the two models can be clarified
by considering the shift in potential 6V(r) -=v, (r)
—v„(r)(cf. Fig. 10) associated with constructing
charged- renormalized atoms. The subscripts c
and n refer to the charged-renormalized and the
neutral-atom potential, respectively. The top
curves in Fig. 10 are for Cu, with 4 "=+0.08,
while the lower curve is for Zn, with 4 '= —0. 226.
Only 4s charge transfer is considered. The shifts
6V(r)=e rc" 'z"/It corresponding to the CS model
are also shown. Figure 10 shows that the shifts
in potential associated with CR model are rather
smoothly varying as a function of r, particularly
in the "d region" around 1 a. u. , which is of pri-
mary concern to the d-band properties. This im-
plies that the net effect of the adjustments in the
CR model is to merely shift the d bands of Cu up-
wards and those of Zn downwards, in a manner
similar to the CS model. However, it should be
emphasized that even though the final energy bands
for the two models are quantitatively similar, the
magnitude of charge she" ' ", required to obtain
agreement with the experimental optical edge is
different for the two models. The CS and the CR
models require 4 "of 0. 072 and 0. 057, respec-
tively, for n-Cuo ~Zno. 3. This difference may also
be understood by a reference to Fig. 10, which

TABLE IV. Comparison of the complex energy levels
for the CB and CS models for o. -C~ 7Zno 3. Complex
energies are denoted as in Table I.

APPENDIX C State Charged renormalixed (CB) Charged shell (CS)

In this appendix, we show that the charged-re-
normalized (CR) model gives numerical results
for a-Cu„Zn~„,which are very close to the re-
sults for a model in which the transferred charge
is assumed to be confined to a shell placed at the
muffin-tin radius. This model has been briefly
discussed in Sec. IIB. Since this charged-shell
(CS) model involves a constant shift of the potential
inside the muffin-tin sphere, it is much simpler
to implement than the CR model, which requires
an actual calculation of a new potential correspond-
ing to the charged atoms.

Xg

X3
X2
X5
X4.

gl
LN

{-o. oavs, o. o)
(o.439v, —o. ooss)
{0.4892, —0.0076)

(o.3123,—o. o042)
(o.3sao, —o. o041)
(0.5240, —0. 0085)
(o.s36o, —o. oo88)
(0.7904, —0.0143)

(0.3134,—0. 0068)
(0.4355, —0. 0060)
{0.5262, —0.0085)
(o.svv1, —o. ooe8)

{-o. oaev, o. o)
(o.4398, —o.oo61)
(0.4894, —O. 0075)

(O. 3141,—O. OO44)

(0.3535, —0. 0041)
(o. sass, —o. ooss)
(o.s3sv, —o. oo86)
(0.7894, —0.0163)

{0.3150,—0.0074)
(o.43se, —o. oo6o)
(o. s2se, —o. oo84)
{0.5758, —0.0112)
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shows that for a given magnitude of dP" ' ", the
shift of the potential in the "d region" for the CR
model is larger than that for the CS model. Hence,
in order to bring about a given shift in the position
of the Cu d band (determined so as to give agree-
ment with the experimental optical edge) a smaller
value of 6 " ' "is required in the CR model.

Finally, we remark that the changes in the poten-
tialfor the CR model (i.e. , 5V, ", 5V,*', and (iV~') are
given very well by the electrostatic potentiai in a
uniformly charged Vifigner-Seitz sphere, with
total charge 4 " ' ". This is expected, since the
4s charge is rather uniformly spread out within
the %'igner-Seitz sphere. 6Y~" differs from 5V, "

(or from the electrostatic potential in a uniformly
charged Wigner-Seitz sphere with a total charge 4 ")
by a maximum of only &%, at the Wigner-Seitz radius,
and much less in the "d region" around 1 a.u.

APPENDIX D

In this appendix the methods used for calculating
the complex energy bands and the Fermi energy for
&-brass are discussed.

The real crystal bands are considered first. The
KKR determinant, E(E, k), may be written

F(E, k)= II&- (k, E)+(E)'"cote (E)&- II, (»)
where AI I,. are the real structure functions, and
r), is the Ith phase shift. Equation (Dl) explicitly
shows that E(E, k) is real for E & 0. It also shows
that E(E, k) is real for E & 0, because for E & 0,
(E)' and cotrl, (E) are both pure imaginary, and
hence (E)'~' coty, (E) is real. We calculate the
structure functions A». using the method described
by Ham and Segall. " The roots of E(E, k), for a
given k, are located by fitting E(E, k) to a monomial
of the form (const)(E —Eo)", in the neighborhood of an
n-fold-degenerate root at energy Eo. The roots are
calculated to an accuracy of approximately 10~ Ry.

The k-spa. ce integration method is used to cal-
culate the Fermi level in Cu. This method is
especially suited for Cu, because the Fermi sur-
face of Cu consists of a single sheet. In this
method, a number of directions (45 in the present
calculation) are chosen in the basic wedge in k
space, which comprises $th of the Brillouin zone
of an fcc lattice. In each of these directions, the
energy eigenvalues for four different )t|' values are
calculated. The 4' values are chosen in such a way
that the corresponding energy eigenvalues enclose
a range of energies around the Fermi energy.
These are the only roots (180 in the present cal-
culation) calculated for obtaining the Fermi sur-
face and its properties. For a given energy, the
radius k(E) of the constant-energy surface in the
direction k, is obtained by interpolation, using
the four 4' values, and corresponding energy eigen-
values that were calculated for this particular

-=—x '(coty —i) ', (D2)

where tc= (E)'~ Equa. tion (D2) can be rewritten
in the form

e~h /R

0.05—
-008

I

1

1.0
1

2.0
r (Atomic Units)

Rws

I

I

3.0

-0.10—

= -0.226

e5 /Rm

-0.20—

F&G. 10. Shift in potential, 6V(~) =—v~(r) -v„b),where
the subscripts c and I refer to the charged-renormalized
and the neutral-atom potentials, respectively. The top
curves give ~Vs (solid) and &V& (dashed) for Cu, with dF"
= 0. 08; the bottom curve gives 5Vs and 6V@ for Zn with
g~ =- 0. 226. The square wells correspond to e g " ~'/
R, which represents a constant shift in potential corre-
sponding to a shell of total charge LE" ~' placed at R
[referred to as charged shell (CS) model in the text).
Only 4s charge transfer is considered.

direction in k space. In order to improve the ac-
curacy of the k-space integration method, we car-
ry out further interpolations to obtain 516 points
on the constant-energy surface from the starting
45 points. An accuracy of 10 Ry is expected in
the evaluation of the Fermi energy. The same set
of roots is also used to calculate the density of
states in a small range of energies around E„.

The preceding discussion for Cu will now be
used to consider the AKKR equation [cf. Eq. (2. 12)]
which is obtained from Eq. (Dl) by replacing q, by
g„where g, is the phase shift corresponding to the
average I matrix (f),

(t) =xf"+ (1—x) t

= —x 'x(coty" —i) '- x '(1-x) (cotqs —i) '
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[x(coty"-i) '+ (1 -x)(cotn —i) '] ', (»)
where coty and therefore the determinant E(E, k)
of the AKKR equation are in general complex func-
tions of the energy. %e solve the AKKR equation
for complex E, as a function of real k. Although
it is conceptually equivalent to consider complex k
as a function of real E, it is not clear how one
can do this within the framework of the AKKR
equation, because the structure functions AI.L, , are
not defined for complex R. By contrast, Ai, l, . are
well defined33 for complex E. To evaluate E(E, k),
one needs the phase shifts of the constituents at
complex energies in addition to the structure func-
tions. The phase shifts are well defined for corn-
plex energies; the t matrix is, in fact, an analytic
function of the complex energy E, except, for poles
corresponding to the bound-state energies. In the
present calculation, the value of t matrix for a
complex E is obtained by making a Taylor series
expansion around the real part of E. The deriva-
tives of the function needed in the Taylor series
expansion are calculated by using the values of the
t matrix along the real energy axis. The roots of
the function E(E,k) are calculated by using methods
very similar to those discussed above for the real
case. In particular, the complex roots are located,
once again by fitting T'(E, k) to a monomial of the
form (const) (E —Eo)", where Eo is now a complex

number.
For calculating the Fermi energy of the alloy,

the imaginary part of the complex energy bands is
neglected. Once this approximation is made the
calculation of the Fermi surface of 0(-brass pro-
ceeds in a manner identical to the corresponding
calculation for Cu. The Fermi level Ez for the
alloy is determined by requiring that the volume
enclosed by the constant-energy surface k(E~) be
such that it can accommodate (3-x) electrons/
atom, where x is the concentration of Cu atoms.
As already noted, a correct evaluation of Ez re-
quires a calculation of the density of states, p(E).
However, for the CuZn system the maximum
broadening of the energy levels at the Fermi ener-
gy is comparable to the thermal broadening at
room temperature, and may to a good approxima-
tion be neglected in calculating Ez. Furthermore,
the separation between the Fermi energy and the
center of gravity of the Cu d bands (Ez-E, ") is
much larger than the average damping of the Cu
d bands, ImZ~". In fact, even for Cuo, Zno 3

(E~ —E~ ")/ImZ~ "=30.

Consequently, even though the Cu d states broaden
on alloying, most of the weight of their spectral
density is contained below E&. Hence, our evalua-
tion of E„is not expected to be affected seriously
by the broadening of the d bands.
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