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The frequency dependence of the cross section for second-order Raman scattering in an insulator is evalu-

ated for incident frequencies below and above the gap. %'e consider both a deformation potential and the
- Frohlich interaction for the electron-one-phonon coupling and take the uncorrelated electron-hole continuum

as intermediate states. The following results compare well with recent experiments in GaP: (a) the frequency

dependence of the scattering intensity with TO(1')+ LO(I') and 2LO(l") phonons around the gap; (b) the

corresponding selection rules; {c)absolute numbers for the deformation potential and the prefactor of the

Frohlich interaction using measured intensity ratios with TO(I') first-order scattering and a pseudopotential

calculation. Calculated line shifts and widths due to phonon dispersion show a strong dependence on the in-

cident frequency around the gap.

I. INTRODUCTION

Detailed calculations for resonant Raman ef-
ficiencies as a function of the incident frequency
have been made mostly only for first-order scat-
tering. ~ Theoretical investigations of second-
order scattering are rather sparse. References
5 and 6 give formal expressions for the scattering
amplitude for deformation-potential scattering.
In Ref. 7 scattering via the electron-two-phonon
interaction is discussed quantitatively and com-
pared with experiment. The cross section for
2LD scattering has been calculated by Hamiltons

using the Frohlich interaction. The latter paper
has been criticized and its theoretical predictions
are in strong disagreement with experiment (com-
pare for instance Fig. 2 in Ref. 8 and Fig. 11 in
Ref. 7).

Second-order scattering has some advantages
compared to first-order scattering. The momen-
tum selection rule says only Q, +Qz=a for the
momenta of the two phonons and one has one non-
trivial Q integration over final phonon states.
Therefore the whole electron-phonon coupling en-
ters and its Q dependence is reflected in the line
shapes of scattered photons. Measured scattering-
intensity ratios with a first-order line allow a de-
termination of absolute values of the coupling func-
tions. The magnitude of different contributions
to the cross section can then be determined di-
rectly. From a theoretical point of view second-
order scattering expressions are still simple
enough to be evaluated without additional assump-
tions. This allows a check of the phenomenological
theory of multiphonon scattering of Ref. 9. Ac-
cording to that theory the second-order cross
section should be -g (g is the electron-phonon
coupling constant} in the frequency range 2IQ„o
&h ~ —E, & 36 QLo. Perturbation theory would

suggest a dependence -g everywhere. As a neces-
sary consequence the perturbation expression for
second-order scatterng must be divergent in that
frequency region.

To investigate second-order scattering we chose
a two-band model with parabolic bands and free
electron-hole pairs as excited states. (For sim-
plicity, in what follows, free electron-hole pairs
are also called excitons. ) This model is appropriate
for crystals like GaP if the spin-orbit splitting
can be neglected and the degeneracy of the valence
bands is taken into account by suitable averages.
The different experimental resonance behavior of
the cross section for 2LO(I'), TO(I') + LO(I'),
2LO(I'), etc. , phonons suggests that three different
electron-phonon coupling s should be considered:
(a) the Q-dependent intraband Frohlich coupling;
(b) a Q-independent deformation potential for elec-
tron-one-phonon coupling; and (c) a Q-independent
deformation potential for electron- two-phonon
coupling. Interaction (a) is the strongest one in
Gap and couples only LO(I') phonons to excitons.
It should be responsible for the sharp combination
peaks 2LO(I') and LO(I')+ TO(I'). All other peaks
are due to interactions (b} and (c). The cases (a)
and (b) will be treated in this paper; case (c)
has been discussed in Ref. 7. %e consider only
lowest-order contibutions in the photon-exciton
interaction ("bare-exciton approach" ). The dis-
cussions in Refs. 4 and 7 [diagrams (c) of Fig. I
in that paper] suggest that higher-order contribu-
tions ("polariton approach") are small.

II. EVALUATION OF THK RAMAN CROSS SKCTION

%e split the total Hamiltonian H in Ho and H'.

H=HO+H' .
HD contains the free photon, exciton, and phonon
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field:

H, =g ffcIk~ (ara„-+-', )+Z if~If(k)(b'- -b-g+ 2)
k 4&

+ Q lf A~(Q)(cttq c2II+s) .
Q, f

f
ag, bg, cg~ are creation operators for photon,
exciton, and phonons, respectively. k and Q
denote total momenta, q the internal momentum
for the relative motion of electron and hole, and

j is a branch index. We omit in this section a
photon polarimation index for simplicity. H' con-
tains the photon-exciton and the exciton-phonon
interactions:

(2)

ie 2m ~"'
H'= —

(p& Z
~

bF~gats+a „-)+c.c.
m g„. cIkl ]

co~ 5 t+Z I„I
—(a2+a 2.)(a.'2+a„")

+ 5 fg, «(Q, j)be, b;.,;,~18+c.c. (3)
e, a 2&

Qef

m is the electron mass and (p& the momentum ma-
trix element between the two bands. Explicit
expressions for the coupling function f~ «(Q, j)
are'

the firial state If& is

If& = a'gce„ch~, I
0

The collisxon operator T ~s

T(8)=H'+H'
H

H

Z Q 8 Q Z Q

(12)
In lowest-order perturbation theory the last term
in the expansion (12) must be taken. The sum over
intermediate states can be carried out by using the
explicit expression for the free-electron Green's
function:

q& )qf( ')
2 RIkI+ig —ff'q /2p, a RA„o 4vlr r I—

with

I' b /2p=ho+ig H~, I-mk&O.

Using Eq. (13) the cross section (9) becomes

dA 2 2 aPak"(RA ) a"(48)

e+1" essive8522 IF Fd I r'
fF F.(Q,j)= f dr yf(r)fg1Pr)yF. (r)

With
a2 kI1/2

f ( )=-C~ —,
~

8 IA2t2'2«'i
or

fe (r) = (CF/ IQ I) (8"dI 2 842'~ —)

'4 4ma I

Cr =25', z,oKA2, o 2 )2p Az,o

a
Q] 2I A~o ]

(4)

(5)

2

x f ;,,(r )

k, is defined by

if b, /2P =ifIAI+iq -E2 —(i —1)RA —b,zk2Q2/2M .

(14)

(»)
If j& &j2 an additional ter~ with j„j,interchanged
must be added inside the brackets in Eq. (14) and
the total expression multiplied by 0. 5.

The main problem left is the evaluation of the
i.ntegral

m denotes the reduced mass, a is a reference
length defined by K /2 pa = ifA„o, Az, o is the longi-
tudinal-optical frequency at q=0, V is the crystal
volume, and s, =mgM, s„=m, /M, where M is the
total exciton mass. qIgr ) is the wave function for
the relative motion of the electron and hole.
Equation (5) describes a deformation-potential cou-
pling for optical phonons with the constant C, Eq.
(6) the intraband Frolich coupling.

The cross section for fixed final branch indices
j&, j2 is given by

do' 2F 2

) (f(T(dAI+iq) (i& (dA Se gg

r= ~2r'($ + q), lr-r I=2r (5-&),

dr =(2r')'(g -q ), —1& I7& 1, 1& (& ~

we obtain after carrying out the r integration

elks
A(kq|T 4q, k„ki k~)=J drdr' e'"~'

r
eQ ) p' f Q3

8R2i Fd
(16)tr -r'f, r'

%'e consider first the case X& = Q. Introducing el-
lipsoida1 coordinates fox the r integration

x 5(ff(d - RId' ifA~ (Ik)) fglj ( Ik))) .
The initial state I2& is

I
&=a'F, l»,

(9) &~eF'I 4kgr 8 LAN'W
(b2 b2)

dk1 d2 8 8 (8 ~ 8 )

(17)
The r' integration can be done in polar coordinates
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and one obtains

16s ( iraq
A(0, Xgq, k, kh, kh) =

(kh kh)~ ( (
arctanl

k

SE COND -ORDER RAMAN

-A( Shxs Shxs XS Xe Xl)l

do'~ &Css& ' dx=F I I m IA(SeXs —S Xs Xls Xh XS)
dA C3 h x

444 1

(26)

—arctanl kI &2+ &3» (18}

From the definition (16) follow moreover the re-
lations

+A(S„X,-S„x,xl, Xhs xh) -A(Sexs Sh Xs Xls Xhs Xh)

-A(Shxs Sexs Xls Xhs Xh)l i (27)

E is a prefactor and has the dimension of an area:

A(q, 0, k„kh, kh) =A(0, q, , kh, kh, k,),
A(q, —q, k„k„k,) = A(0, q, k„k„k,) (19)

k,"k,s'1(p}I'VC'
~'(o'&o'*(ffn„o)'a's'(4w)' ' (26}

The general case X,W - X~ can be reduced to the
case A., = 0. To show that we observe that

e & dq
(2 )' " k'

Inserting (20) into (16) and carrying out the r and

r ' integrations in polar coordinates we obtain

(20)

1 1
k, —(Xlq+q ') kh —. (Qq —q')

One easily verifies that

(21)

kl-(sllq+q')I kh —(Xhq —q'} Xi+XI

with

I m+Xhk',

Xl+ L

X 1

(S-q") [k', - (qq +q'}']
x,'

(S - q "}[k*,- (~ q - q ')'] )

(23)

Comparison of Eq. (21}and Eq. (22) yields

doI
d" x IA(s x -s„x,xl, xa xs)l

0
(25)

dcTo+m E (C a)s
Sh, s, X, X„X„X,)2 & C

-A(-shXs Shxs Xls Xhs Xh)+A(Shxs Sexs Xhs Xhs Xl)

A(&,q, Qq, kl, kh kh) =~ ' A(6, Xlq, S', kh, kl)
XI+

+ I A(0, Xhq, SI~, kh, kh)
+ X2

(24)
Denoting the iterated deformation process by 2TO,
the mixed deformation pote ntial and Frshlich case
by TQ + LO, and the iterated Fr5hlich case with
2LO, we obtain the following three possibilities
for the second-order cross section:

x, xl, xh, xh are dimensionless moments x=aQ, x,
= ak] ~

III. DISCUSSION AND, COMPARISON WITH EXPERIMENT

A. Converlence properties of the cross section in the limit q ~0

The integrals in Eqs. (25}-(27)converge for fi-
nite I) & 0. Using Eqs. (18), (19}, and (24) it is
straightforward to show that all integrals converge
also in the limit g 0 which corresponds to low-
est-order perturbation theory. As a consequence
the cross section is proportional to the fourth pow-
er of the electron-phonon coupling constants C or
C~ for all four possi. bilities.

This result disagrees with the phenomenologieal
cascade theory of Ref. 9. In the cascade theory
it is assumed that the leading terms in the cross
section Eq. (9) are obtained by taking as many en-
ergy-conserving steps (that is, the imaginary parts
of the energy denominators} as possible. Momen-
tum conservation causes at least one virtual step
and correspondingly the leading terms of Eq. (9)
should be proportional to the square of C or C~ for
incident frequencie s in the electron-hole continu-
um. The discrepancy to our results can be traced
back'0 to the fact that Ref. 9 did not take into ac-
count all possible arrangements for the virtual
step and also neglected interference terms be-
tween different decay channels.

Recently Yu sf al. reported a I/I} behavior of
the cross section in CuSO." For incident frequen-
cies below the phonon-assisted 1s threshold (td

+0, ~„is the forbidden 1g exciton of the
yellow series, 0 the F;I phonon}, the cross sec-
tion is very ™II.Above the threshold (&0& a&„
+0) it iS prOpOrtiOnal tO (&sl - &sll - 0)lih/It [COrreCt-
ing a print error in Eq. (7) in that reference] and
therefore divergent in the limit g -0. The differ-
ence to our results comes from the fact that Ref.
11 uses a discrete exciton band while we deal with
the electron-hole continuum and integrate over the
continuous internal quantum number of the excitons.
Correspondingly the I/II singularity of Ref. 11 is
smeared out leading to a cross section which is
regular for g-0.

A numerical evaluation of the 2' cross section
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of 0.3h+o. This value reproduces the high-fre-
quency decrease of 2LO scattering quite well.

The solid line in Fig. 2 shows the frequency de-
pendence of iterated deformation-potential scatter-
ing, Eq. (25), using the damping 0.3'~ and the
phonon frequency ATo with Grp/A~ = 0. 91 appro-
priate for GaP. The broken line shows the fre-
quency dependence of the corresponding first-order
deformation-potential scattering. Below the gap
the increase of the two curves is similar, though
the second-order scattering expression originally
had one energy denominator more. This additional
denominator contains the phonon momentum in the
kinetic energy of the scattered exciton and there-
fore takes part in the momentum integration over
final phonon states. As a result this additional
energy denominator increases the resonance en-
hancement only weakly below the gap. The maxi-
mum of the solid line occurs about at e = (E
+2' o)/k, that of the broken line at &o = (E~
+kliGro)/K The solid line shows also that the
cross section (25) is no longer symmetric with re-
spect to the frequency where the scattering maxi-
mum occurs like the first-order cross section.
Instead the scattering intensity is substantially en-
hanced in the continuum.

The integrand in Eq. (25) decreases -1/x with

FIG. 1. Theoretical cross section I(2LO(I')) for 2LO
(I') scattering for two different exciton dampings: Straight
line calculated with 0. 180LO, dashed line with 0.38QLO.
The curves were obtained by evaluating Eq. (27).

10 -—3

2 To 1O4

shows that the maximum in the enhancement curve
which occurs at about &o =E /ji+A„o depends sensi-
tively on exciton damping. This is shown in Fig.
1 where two dampings g =0.15Q~o and 0.380Lo
have been used in evaluating Eq. (27). The be-
havior of the TO+LQ cross section for different
exciton dampings is similar. In this case the
maximum occurs at about + = E /0+2ALo and in-
creases by a factor of 3 if the damping is reduced
from 0.38ALo to O.lk+o.

B. Frequency dependence of the cross sections

As discussed in Sec. IIIA the theoretical cross
sections depend sensitively on exciton damping if
the frequency of the scattered photons is near the
band edge. Every comparison with experimental
data based on temperature tuning of the gap is
therefore difficult. In the following we use experi-
mental points of Ref. 7 which were obtained by
varying the temperature between 77 and 670 K. To
be able to make a comparison of theory and experi-
ment at all we chose a constant exciton damping g

L

L 102
Cl
0

V)z
UJ 10
z
X'
«f
X
CL

-6 -4 -2 0 2
fled — Eg

LO

4 6 8

FIG. 2. Solid line: Raman intensity for iterated de-
formation-potential scattering, Eq. (25), using g
= 0.1IQLo and the transversal-phonon frequency QTo with
QT&/Q~ = 0. 91 for GaP. Broken line: First-order
Raman intensity for TO(I') scattering in GaP.
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increasing momentum. The decrease should be
slower for incident frequencies below the gap be-
cause the increase in the kinetic energy with mo-
mentum is not very effective owing to the presence
of the other summand @~ -E~ in x2. Indeed, the
numerical calculation shows that substantial con-
tributions to the integral come from all parts in
the Brillouin zone for @v -E~&0. This means that
an adequate theoretical description needs realistic
electron and phonon dispersion curves throughout
the Brillouin zone. By introducing a suitable cut-
off one can limit the final two phonon states to what
could be described as a 2TO(I') peak. The a,rea
under this peak would increase somewhat steeper
than the solid line in Fig. 2 below the gap. The
situation is much simpler for incident frequencies
above the gap: The dominant contribution to the
integral comes from a very small region around
the zone center. The assumption of parabolic ex-
citon bands and neglect of phonon dispersion is
well justified in this case. Equation (25) and the
solid line in Fig. 2 therefore describe 2TO(I")
scattering for incident frequencies above the gap.
The width of the peak is determined by the sharp
decrease of the integrand in Eq. (25) with momen-
tum and not by phonon densities. Using the defor-
mation potential C/hALo = 0. 1 appropriate for opti-
cal phonons at I' in GaP (see Sec. III D} Eqs. (25)
and (35) predict a, theoretical ratio of about 4x10
for the maxima of 2TO(I') and 1TO(I') scattering.
This number is smaller by a factor 20 than the
experimental ratios of dominant two-phonon peaks
(owing to zone edge phonons) and the first-order
peak in GaP. This may explain why the 2TQ(I')
peak was not observed in Ref. 7.

The situation for the sharp and strongly resonat-
ing TO(I')+LQ(I') and 2LO(I'} peaks is much sim-
pler. The Q dependence of the Frohlich interaction
allows only near-center phonons to participate.
This explains the sharpness of these peaks and also
justifies the use of parabolic bands and the contin-
uum approximation in deriving the Frohlich inter-
action. Figures 3 and 4 show the results of a nu-
merical evaluation of Eqs. (26} and (27} and experi-
mental points of Ref. V. We shifted the experimen-
tal points towards higher frequencies by 1SQLo in
Fig. 3 and 0. 35hQLp in Fig. 4 for the comparison.
The origin of these shifts is presently unclear
though similar shifts occur in other crystals. '~

They could be due to the neglect of the electron-
hole correlation and the presence of discrete ex-
citons or to the neglect of the real part of the ex-
citon self-energy. The agreement of theory and
experiment is quite good.

C. Selection rules

The cross sections (25) —(27) refer to a. simple
two-band model. To relate these expressions to

(QQ;I IEGp )
8V

f
(31)

for the valence bands. The indices i and l are
identical with the polarization indices and Q; de-
notes one of the three components of the optical
phonon. T& symmetry implies that all three Car-
tesian indices in (31) must be different from each
other to get a nonzero matrix element.

The Frohlich interaction between an electron
and an isotropic medium can be written as'

~ — ~ e'~'c~+c. c. ,
lQl

where r is the position operator of the electron.

(32'}

eccl

0

~]o
L
0
+

OI—

310—

210—

10

hu)-E,
5 QLp

6

FIG. 3. Theoretical cross section for TO(l )+LO(I')
scattering, Eq. (26), together with experimental points
of Ref. 7. A constant damping of 0. 3SQLo was used.
The experimental points were shifted towards higher
frequencies by 1.00&o.

the more complicated situation in GaP we observe
that the highest valence band in GaP is threefold
degenerate at the I' point if the spin-orbit inter-
action is neglected. The three components uo;
transform like the three Cartesian coordinates x,.
and belong to I'». The lowest conduction band
transforms like K', and the optical phonon like I „.
The electron-phonon matrix element for deforma-
tion-potential scattering is zero for the conduction
band and of the form
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D. Absolute values for the electron-phonon coupling parameters

A similar derivation as in Sec. II gives for the
first-order TO(I') cross section

dkTo 256m 6(h'ALo)

dA C &QTo

CV
U
Cf

~ 10-

C

O
CV

10-

-6 -4 -2 0 2

hu) —Eg
tnLo

FIG. 4. Theoretical cross section for 2LO(I') scat-
tering, Eq. (27), together with experimental points of
Ref. 7. A constant exciton damping of 0. 3KQz& was used.
The experimental points were shifted towards higher fre-
quencies by 0.35Qz,o.

Using Bloch functions gz(r) to form matrix ele-
ments, Eq. (32) becomes

CE ]q q f f
4'g, '

I
e

I Pf~.j )ci~~, 4~.u, s+ c'. c.
g, j,~, g IQI

(33)
The matrix element in (33) is

(ug„, lug. u,&=5;, (34)

neglecting the momentum dependence of the period-
ic part of the Bloch function. Equation (34) means
that a LQ phonon interacting via the Frohlich in-
teraction behaves in the selection rules like a I'&

phonon. Using Eqs. (31) and (34) the different con-
tributions to the irreducible components I"

&,

I'» of the cross section can be worked out and are
shown in Table I. '4 f(2TO), 1(TO+ LO), and I(2LO)
denote the expressions (25)-(27).

The last two lines in Table I can be compared
with experimental data of Ref. 7 and are in excel-
lent agreement. For instance the I'» and I'» com-
ponents of 2LO(I') scattering are about 50 times
smaller than the I', component.

jg~ -E ~ Sco -E~ —~ATo

The deformation potential C has been calculated
for Ge using a pseudopotential approach. " The
value obtained was C/KALo = 0. 111 (corresponding
to do = 30 eV in the nomenclature of Ref. 13), and

it was suggested that similar values should also
hold for comparable III-IV compounds. The Ap-
pendix generalizes this approach to GaP taking into
account also the antisymmetric part of the pseudo-
potential. Using values for the pseudopotential
from Ref. 16 we obtain for GaP C/hA„o = 0. 097.
Both coupling coefficients determined from scat-
tering data are too large by a factor of 2 compared
with the more reliable directly calculated values.
This discrepancy could easily be removed by

TABLE I. Theoretical intensities of the Raman peaks
2 TO(I'), TO(I')+LO(r) and 2 LO(I') for the three irredu-
cible symmetry components I'&, I'&2, and I'&&.

Contribution
to the

Phonons
compo-

nent

2 To(r)

To(r) + Lo(r)

2Lo(r)

g I (2To)

I (2LO)

r)2

—,
' I (2 To) I (2 To)

I (TO+ LO)

(35)
By forming the ratio (do ' /dA)/(do' /dA) and

using experimental ratios from Ref. 7 the Frohlich
coupling constant aC~ can be determined. Simi-
larly the deformation potential C can be determined
from the ratio (Ck /dA)/(dk /dA). Tables II
and III give calculated values for several incident
frequencies. The TO+ LO and 2LO scattering
cross sections were shifted like in Figs. 3 and 4
and the TO(I') cross section was corrected for
the spin-orbit interaction.

From Tables II and III we find the following av-
erage values:

aCz/AA„o =2. 42 and C/RA~o =0. 22 .
From the deviations from the mean values in Ta-
bles II and III we expect an uncertainty of about a
factor 2. Both values can be calculated in a more
direct way. Equations (7) and (8) together with
the experimental input of Table IV give

aCz/AA„o = 1.08 .
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TABLE II. Intensity ratio of the TO(I') + LO(I') peak
to the 1 TO(l") peak. The second column contains theo-
retical values, the third one is obtained by comparing the
values of the second column with experimental values of
Ref. 7.

TABLE IV. Experimental constants used in the cal-
culation. The first three values are from Ref. 17, the
fifth from Ref. 18, and the fourth, describing an aver-
aged valence-band mass, is deduced in the spirit of Ref.
15.

(~-E /8)/Q p I(TO+ LO)/I (TO) aC~/6 Q~o
Ep

O'0 La
(cm-')

1.4
1.1
0. 3
0. 1
0. 6
1.2
2. 35

0.136x10~
0.24 x 10+
0. 96 x10
0.121x 10-'
0.375x 10 2

0.4 x10 2

0.202 x10-2

1.47
1.38
2. 77
3.6
2. 28
2. 95
2. 50

10.2 8.47 0. 13 0.39 402

2g oo

dxI(x)5(II(u —h(u' —RAq (x) —RAN (x)) .

The associated cross sections which are also dif-
ferential in the scattered frequency are

TABLE III. Intensity ratio of the 2 LO(I') peak to the
1 TO(I') peak. The second column contains theoretical
values, the third one is obtained by comparing the values
of the second column with experimental values of Ref. 7.

(~-E,/e)/Q„ I(2LO/I(TO) C/8 QLO

choosing a somewhat larger electron-hole mass.
The large fluctuations in the values of Tables II
and III due to the uncertainties in the experimental
points and the not understood shifts make on the
other hand an error of a factor of 2 or, 3 quite
plausible.

The above absolute values show that the Frohlich
constant is about 10 times larger than the deforma-
tion potential. LO(I') phonons couple with electrons
via the Frohlich interaction as well as via a defor-
mation potential. Equations (23)-(25) suggest that
for LO(f') phonons and second-order scattering the
Frohlich coupling is two orders of magnitude larger
than the deformation-potential coupling assuming
the integrals have the same order of magnitude.
This is indeed correct. For instance in the case
of TO+LO scattering the cross section for mixed
deformation-potential-Frohlich scattering is about
20 times larger than for pure deformation-poten-
tial scattering for S(d =E~+2hQ~. This justifies
our assumption that the iterated deformation-po-
tential process can be neglected for TO+ LO and
2LO scattering.

E. Line shapes of the scattered photons due to phonon

dispersion

The cross sections (25)-(27) have the form

da'

dA
dxI(x) .

d'o I(y' ~')
d Qd(d

(36)

with

MgqMgq (u'+ Ay, (0)+ Agm(0)

p(Mq, +Mq ) ALo

The line shapes of the scattered lines are there-
fore intimately connected with the momentum de-
pendence of the coupling functions. Figure 5 con-
tains plots of Eq. (36) for several incident frequen-
cies in the case of TO+ LO scattering. Figure 6
shows the corresponding linewidths and shifts.
Similar results hold for 2LO scattering. Most in-
teresting is the strong dependence of line shapes
due to phonon dispersion on incident frequencies.
This allows one to differentiate in an experiment
the constant intrinsic anharmonic linewidth from
the linewidth due to phonon dispersion.

The symmetric shapes of the theoretical curves
in Fig. 5 are typical for the Frfihlich interaction:
The Frohlich coupling first increases sharply with
momentum, goes through a maximum, and then de-
creases slowly. Figure 6 shows that the line shift
is large far away from the band edge and decreases
dramatically if the incident frequency approaches
the band edge. The linewidth is large for incident
frequencies well below the band edge and becomes
rather small in the electron-hole continuum.
These predictions agree at least qualitatively with
experimental observations in CdS.

Using a parabolic approximation for the momentum
dependence of optical phonons:

hAq(x) = KAq(0) —I x /22Mqa~,

we obtain

—1.4
—1.1
—0. 35
—0. 1

2. 35
3.9

0. 82x10
0. 154
0. 814
1.38
0. 56
0. 023

0. 194
0. 163
0.313
0. 36
0. 195
0. 121
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FIG. 5. co' dependence
of the differential cross
section for TO(I')+ LO(F)
scattering for different in-
cident frequencies: Straight
line, Sfg=E~ —3hQLp dashed
line, Scg =Eg-hQ~p, dot-
dashed line, S&=Ez+hQLp,.
dotted line, Sfa =Ez+35'Q~.
The curves describe the
line shapes of the scattered
photons. We used the fol-
lowing phonon masses, taken
from Ref. &9; MTp/M=
MLp/m=720; m is the free
electron mass.
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APPENDIX: DETERMINATION OF THE DEFORMATION

POTENTIAL C BY A PSEUDOPOTENTIAL CALCULATION

We generalize in the following some formulas
given in Ref. 13 to the case of GaP, where the
pseudopotential has also an antisymmetric part.
Restricting to plane waves with reciprocal lattice
vectors (2»/ao) I GI =3 or 4, the I'» valence bands
are obtained by diagonalizing a 3&& 3 matrix. The
associated basis vectors have the form

1'» —a[111]r&» + p[111]r&2& +y [200],
1

where, for instance, [111]r&» denotes the basis
15,Xvector X of the first I"„representation in the space

of the eight plane waves with wave vectors (2v/
ao) IGI =3. Using the pseudopotential values of
Ref. 14 one obtains for GaP n =+0.637, P
= —i0. 324, y=0. 699.

The deformation potentials for optical phonons
give the change in band energies due to the sub-
lattice shift & =(ao/8)(1+f&, 1+0, 1+5). For 0&0
the I'» representation splits into a A, and A2 rep-
resentation and

1
&/g (X F)

2

can be taken as one of the two basis functions for
the A2 representation. Using the definitions of
Ref. 13 the deformation constant do is obtained
from

= —4»/MS(( ~o,
~

' —
~

fI ~')(V,' —V,',)

+ ny&2(V3 —Vf, ) —&2iPy(V3 —V,",)j

=26. 3 eV .

-2.5 2.5

hbl- Eg
hALp

From that follows for our deformation potential C:

FIG. 6. Shift 6, and width 6 of the line shape for TO(I )
+LO(I') scattering using the same masses as in Fig. 5.

ma

2@~p &8 Tp p, Q
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