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The paper discusses some characteristic features of the concentration Auctuations S«and hence of
the partial structure factors (in the zero-wave-vector limit) of compound forming solutions. The
discussion is based on a phenomenological model: It is assumed that the binary mixture consists of A

and 8 atoms and their chemical associations A „8„(p„v small integers) in chemical equilibrium. The
formulation is given in general terms, but the actual calculations are made here by assuming that (a)
only one type of chemical association {one pair of p, and v) are formed and (b) the mixture of A, 8
and A „8„can be considered to be ideal. The theoretical results for S« for (p, v) = (3, 2), (3, 1), and

(2, 1) are compared mth those determined from the measured thermodynamic activity data for the
Mg-Bi, Ag-Al, and Hg-K systems, respectively. It is concluded that the agreement between the calculated and

experimental values is not unsatisfactory, although for full quantitative agreement the simplifying
assumptions (a) and (b) above are, in general, too crude. Finally it is shown that the concentration
dependence of the partial structure factors in these solutions depends characteristically on the values of
(W* v).

I. IN'rRODUCTION

Since the determination of the structure factors
in the long-wavelength limit is difficult from x-ray-
and neutron-scattering experiments, it is natural
to turn to other considerations to have information
on them (for a review, see Faber' ). According
to a recent work, ' the calculation of the structure
factors-the words "in the long-wavelength limit"
are tobe understood throughout unless stated other-
wise —for a binary fluid mixture requires theknowl-

edge of three thermodynamic quantities, namely,
the volume, the compressibility, and the mean-
square fluctuations, S«, in the concentration, as
functions of composition. A discussion of S~c on

some simple theoretical models was given in Ref.
2, and more recently Bhatia et a/. have calculat-
ed the concentration dependence of the partial
structure factors (defined below) using the model
of conformal solutions of Longuet-Higgins. '

The structure factors may be determined from
the measured thermodynamic data also.
particular, McAlister and Turner made such an

evaluation for Na-K and K-Hg systems. The model
of conformal solutions referred to above, explains
the data on Na-K, but not on K-Hg, presumably
because here the difference in forces between the
two species is too large for this model to apply. 4'5

Like the K-Hg system, there are other molten
systems, for example, Na-Hg, Mg-Bi, Ag-AL,
where the difference in the interactions between
the two species is not small. This is evidenced by
the fact, amongst others (magnitudes of molar free
energies relative to RT etc. ), that in the solid
state they form intermetallic compounds at one or
more well- def ined stoichiometric compositions.

The present paper discusses, using an approximate
model, some characteristic features of the con-
centration fluctuations S«and other structure fac-
tors in such compound-forming solutions.

For the calculation of structure factors, one
needs a theory for the Qibbs free energy G. For
the solutions under consideration, a first-principle
calculation (from statistical mechanics) of G is dif-
ficult and does not seem to be available. %e there-
fore use here a phenomenological model.

It is assumed that the mixture consists of the A

and B atoms and chemical associations of the type
A. „B„, p, , v small integers, in chemical equilib-
rium. The requirement that, at constant tempera-
ture and pressure, G be a minimum then gives the
equilibrium number of different chemical species
in terms of their chemical potentials. Although a
general formulation is given, the actual calculations
are made in this paper by making the simplifying
assumption that the mixture of diffexent chemical
species can be considered as an ideal solution.
For liquid mixtures (as opposed to gaseous) this
assumption is albeit approximate. However, it
does make the problem tractable and has been used
in the gast with a varying degree of semiquantita-
tive success to understand a variety of properties,
see for example, Bent and Hilderbrand, and

Darken, 'o where other references to the literature
may be found.

In Sec. II, we collect together the relevant re-
sults on the structure factors. In Sec. III, the
formal expressions for the concentration fluctua-
tions S«are derived, which are then used to dis-
cuss specific cases of different p and v (Sec. IV).
For comparison, S«as calculated from the mea-
sured thermodynamic data for the Mg-Bi, Ag-Al,
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and Hg-K systems are also given here. Finally,
in Sec. V, we apply these results to discuss the
variation of partial structure factors with concen-
tration.

II. STRUCTURE FACTORS AND THEIR
LONG-Vf AVELENGTH LIMIT

For a binary system there are several equiva-
lent sets of structure factors defined in the litera-
ture. A commonly used set is the set of the par-
tial structure factors or the interference functions
a (q) defined by~'~~

a.& (q)=1+(&/V) f [g.&(r) 1]—

x e"'d'r (2. 1)

a»=e+ (1/c~ —25/c+ 5~) Scc

where N is the total number of atoms in volume V,
q is the wave number, and g ~ (r) g~ (r), a, P = 1,
2, are the pair distribution functions. In the long-
wavelength limit, a ~(q-0)=—a„~ may be written in
terms of certain thermodynamic quantities as

III. EXPRESSIONS FOR 6 AND Scc

A distinctive aspect of the molten mixtures
under consideration is that in their respective
solid state, they form compounds at one or more
definite chemical compositions. It is therefore
reasonable to assume that in the molten state of
the mixture there is a strong tendency for the two

types of atoms A and B to form chemical associa-
tions of the type A„B„, where p. , v are small non-
zero integers, the precise numerical values of p,

and v depending on the mixture under considera-
tion.

To write down a phenomenological expression
for G on the above basis, consider, for definite-
ness, 1 g mole of mixture of A and B atoms, the
molar fraction of A atoms being c. I.et at any in-
stant these exist as n, g mole of A atoms, n2 of
B atoms, and n g mole of A„B„molecules,
where 0.=3, 4, . . . , m, and p, and v are again
small nonzero integers. From the conservation
of total number of A and 8 atoms, we have

—(1-c}/c,
a&, = 8+ [1/(1 —c )'+ 25/(1 —c ) + 5']

(2. 2)
(3. 1)

xScc c/(1 —c)
& (2. 3)

aga= e+ [&'- (1-2c)O/c(1 —c) —1/c(1 —c)]

xScc+ 1, (2. 4) (3. 2)

where c is the concentration of species 1 and

N 1 8Ve=-a, T~„

e~G
Scc=&&sT/(, g )r. s, N ~ (2. 5)

Here sr= V '(8V/SP}r, , is the isothermal compres-
, sibility at constant composition and G is the Gibbs
free energy. 6 simply represents the fractional
change in the volume of the mixture with concen-
tration and Scc Ã((6c) ) is the mean-square fluc-
tuations in the concentration.

The roles of 8, 6, and S«are somewhat more
apparent in the structure factors SN„(q), Ssc (q),
and Scc (q}, which are respectively associated
with the (number) density-density, density-concen-
tration, and concentration-concentration corre-
lations. ' S„N(q), etc. , are linearly related to
a z (q), and in the long-wavelength limit, for fluid
mixtures,

Scc(q 0)=Sec ~ SNN= 8+ 5 Scc~

SNc '5 Sgc ~

If 5 = 0, the fluctuations in density are independent
of those in concentration and SN~ = 0. Further,
S» is then 8, like the expression for the structure
factor of a pure fluid.

If G& denote the chemical potential per gm mole
of the species i, i = 1, 2, . . ., m, then the dif-
ferential change in the free energy G = g~n, G, is
given by (S, entropy)

dG = —SdT+ VdP+Q G( Gnat .
%'e can now regard&, @=3, 4, . . . , m as order
parameters whose equilibrium values are deter-
mined by the requirement that for equilibrium at
constant T, P, and e, G is a minimum. Hence
eliminating i}n, and 5n~ from (3. 1) and setting
(sG/sn, )r,J„,„~=0, we obtain

(3. 3}

p, G&+ v GS-G =0,

. . . , m.
(3 4)

lf G, , i = 1, 2, . . . , m, are known, Eqs. (3.4) to-
gether with (3. 1) constitute m equations to deter-
mine the equilibrium values of n„n2, . . . , n at
a given T, P, and c.

It is convenient to write the chemical potentials
in the form (i = 1, 2, . . . , m ),

G, = G,@'+RT ln(n, /n)

+RT/n y, ,

where G&' ' is a function of P and T only and is just
the molar Gibbs free energy for the pure species
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i (at the pressure and temperature of the mixture)
and y~, by definition, is the activity coefficient of
the species i. The y&'s, in general, depend both
on the various concentrations n~/n and P and T.
If the mixture of different chemical species can be
considered to form an ideal solution, then aQ the
y&= 1. (This assumption, of course, does not im-
ply that the molten system considered just as a
mixture of A and B atoms forms an ideal solution. )
Substituting (3. 5) into (3.4), one has for the equi-
librium values of n~ the equations

(n,yJn )' ~ (nzygn)" ~

(n.V./s)

spect to c and I', respectively.
In order to apply Eqs. (3.6)-(3.10) to a particu-

lar system, we have to specify y s and p. , v

As already mentioned, the simplest approximation
to y& results if one a,ssumes that the mixture of
different chemical species M; (M;=A, B,A„B„),
is ideal, so that all y~

-=1. This is tantamount to
assuming that there is no interaction between the
different M& . The next approximation to y& would
then correspond to assuming pairwise interactions
~& between the different M& which are sufficiently
weak for the theory of conformal solutions to ap-
ply. For this case y& are given by

-g /RT= g (3 6)
ttt

eg& /RT

f

go= ~a&i + "a&2 'Go (3. 'I) —ZK ~ —
~&&& RT, (3. I] ))&k tl 'Pl

and the last equality defines K . Under the as-
sumption of ideality (y& = 1, i = 1, 2, . . . , m ), Eqs.
(3.6) become the familiar equations for studying
chemical reactions, K being known as the reac-
tion constants. Note that, to avoid cumbersome
notation, we have denoted in (3.6) the equilibrium
value of a n& also by n&. In the equations that fol-
low all n& signify equilibrium values.

The Gibbs free energy may now be written as

+Q n&A&, (3.6)

y cy&o (1 c)y& &

ep 1

—En J. Z, (,~') (3 9)

pq % +I 2 +&t 2

++ n, A, ,
j=i

(3. 10)

where v = (tg /SI')r„, and a prime denotes dif-
ferentiations with respect to c. Further, V,' ' and

V~
' are the molar volumes of thepure liquids A and

8, respectively. The expressions for 5 and K~

may be obtained by differentiating (3.9) with re-

where A& = RT lny& . Noting that g are independent
of the concentration, we may then obtain by
straightforward differentiations and use of (3. 1),
(3.2), (3. 6), and the Gibbs-Duhem relations for A„

Pl g= C —P.Pls 722= f —C —PRS

n= 1 —(p+ v —1)n, . (3. 12)

Further, with y, = yz= ys= 1, Eqs. (3. 5)-(3. 10)
yield

(s &/B) (n3/n )' (3. 13)

with

with &d&&
=—0, if i =j. The use of y& from (3. 11),

apart from adding a number of additional param-
eters (&d&~), makes the problem of solving (3. 6)
immensely difficult. We shall here adopt the ideal
solution approximation (A& ——0, y&

=—1) with the res-
ervation that to obtain detailed quantitative agree-
ment more sophisticated expressions for y& such
as (3.11) will have to be employed.

There are a number of binary-alloy systems
which, in the solid state, form compounds only at
one stoichiometric composition, e. g. , Mg-Bi at

3 3
cM, =-, , Ag-Al at c„,= &. In such cases one
has to consider only one pair of values for p, , v.
The same is approximately true when the com-
pounds are formed at more than one stoichiometric
composition, provided one of these is considerably
more stable than the others. For simplicity, and
also since our main purpose in this paper is to
djscuss broad features of the concentration fluctu-
ations and of the partial structure factors rather
than consider one specific system in detail, we
shall present here results of calculation assuming
that only one type of chemical associations are
formed in the molten mixture.

It is convenient next to rewrite some of the above
formulas for the aforementioned simple case. We
denote the single type of chemical association by
A„B„and its molar amount by n, . Equations (3. 1)
and (3. 2) then reduce to
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g= -QTlnK= p, G&+)+ vG2@) —G3 ',

G =cG~e'+ (1—c)Gs@'+nsRTlnK+RT+n;in —'
&=1

V=cV, +(I-c)Vs -n,v, v= ftr-(0) (0) 8lnK~

8P j~,

(3. 14)

(3. 15)

(3. 16)

V sc, , „cV,"' +(I- c)~,"'-
n, v' (3. 1V)

+sC
(3. 16)

From (3. 13),

K )'
CC

& & )l& n
(3. 19)

Pl 1
—1 —jLPl3 y

ns= —1 —vns, n' = —(p. + v —l)n's. (3.20)

Hence remembering that K is independent of concentration, we have from (3. 13),

[(p+ v)c —p]nns
Pl 3 2n Pin s(P, + v —1) —p w n sn s —v n n ass —n n 8s s

' (3.21)

Care has to be taken in using (3.21) at c = 0 and c
= 1, since here n3 and one of n j and n2 simulta-
neously tend to zero.

Finally in evaluating 8 one needs (sns/SP)r „
which is given by, from (3. 12) and (3. 13),

rc && &i &3 &3

(p+ v —1)'
~ (3. 22)

%'e observe from the above equations that the
determination of concentration fluctuations (Scc)
requires only the knowledge of the reaction con-
stant K. An approximate value of K for a specific
system may be inferred from (3. 15) and the ex-
perimental data on the free energy of mixing

nG = G cG,"'- (1-c)Gs'.

The determination of V and 8 from Eqs. (3. 16) and

(3. 16) requires the knowledge of v and (88/8P)r,
respectively, which are related to the first and
second derivatives of K mith respect to pressure.
In practice v may be inferred from the data on
volume. 8 is usually small (-0.03) and, in the
absence of experimental data, may, to a first ap-
proximation, be linearly interpolated between its
values for the tmo pure liquids.

IV. CONCENTRATION FLUCTUATIONS Scc FOR
DIFFERENT p., v

We now use Eqs. (3. 13) and (3. 19) to calculate
the concentration fluctuations Scc as a function of

I

concentration and the reaction constant K for dif-
ferent pairs of values of p, and v.

3c"c= c (I -c), (4 1)

mhere the superscript id on S« indicates that the
binary mixture behaves like an ideal solution in
this ease.

b. K-0. The solutions in mhich molecular
formations occur to a marked degree form the op-
posite case. Here K «1, mith typical values of
10 '-10 . %e therefore consider the limiting case
K= 0, although physically K can never be zero as
it corresponds to infinitely large negative free en-
ergy of mixing [cf. Eq. (3. 15)]. We shall see
presently that the simple expression for Scc for
K= 0 corresponds closely to the S« for a nonzero
K «1.

With K= 0, (3. 13) implies that either n, = 0, so
that ns=c/p, or ns Oso that n--s= (1 —c)/v. Re-
membering that the maximum possible value of

A. Limstmg cases

If we eliminate n, and ns, using (3. 12), Eq.
(3. 13) becomes an algebraic equation of degree
p+ v in ns. Hence, except for the case p. = 1 and
v = 1, one has to solve (3. 13) numerically and then
obtain S«. Before presenting the numerical re-
sults it mill be useful first to consider certain lim-
iting cases.

a. K-~. First, if K=~, one can readily see
from (3.13) that ns=0 and also (ns)S/ns=0. Then
n, = c, ns = 1-c, and one has from (3. 19) and (3.20),
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n, is n, = (p+ v), we have

n, =e/p for 0&e~ p/(p+ v),

n, = (1 —e)/v for p/(p+ v) ~ e & 1.

(4. 2)

(4. 3)

The concentrations c = 0 and e = 1 are excluded
from the ranges of e in (4. 2) and (4. 3). Here n,
= 0 so that the left-hand side of Eq. (3. 13) has the

form 0/0 and it needs special consideration to
which we come to presently.

When (4. 2) is valid, one has

e «(K/+)il (y-1) (4. 12)

Notmg that (4. 10) and (4. 11}are correct to the

power of c exhibited in them, and using Eqs.
(3. 1.2}, we can readily expand the expression
(3. 19) for (S«) ~ in powers of e. One finds, for
p. = 1,

Sc'c=e '+1+2v/(1+K)+O(e), p= 1 (4. 13}

Equation (4. 11) is clearly valid if (e/K')' «e, or

ng = 0, na ——1 —e —ep/p, (pgq)~/s = 0

n = 1 —(p, + v —l)e/p. .
Hence using (3. 19) and (3. 20) one obtains

Scc = (e/i)[~ e(V—+ ~)]

x [p, —(p, + v- 1)e],
0&e —u/(i + ~)

Similarly when (4. 3) is valid,

(4. 4)

(4. 5)

Scc = e + 1 —K p(p —1)e~

+O(e' '),

For comparison,

(Scc) '=e '+1+e+e'+. . . .

(4. 14}

(4. 15)

From (4. 13) and (4. 14), we have, to order c,

S«-e —e~ —[2v/(1+K)]e~+ 0(e~)„p, = 1

=Ksgl —(p, + v —1)n3]"'" (4. 7)

Consider first the case «&1: Then noting that ns
is necessarily less than or equal to e/p, , we have,
to leading order in small quantities,

(e —JLNg j —Kng

ol

(4. 8)

where

y=(us )"" K'=(Kli )"'
For p = 1, (4. 8) gives

y=n~= /(1 eK) +for p= l.

(4. 9)

(4. 10)

For p. & 2, we can neglect, for sufficiently small
e, the first term in (4. 8) compared to the second
term and hence

y =e/K' or nm™e"/K, p. &2. (4. 11)

Scc = [(1—e)/v][v —(1 —e)(p. + v)]

x[v —(1 —e)(p, + v —1)], g/(0+v) ~e, &1.
(4 6)

Note that (4. 6) may be obtained from (4. 5) by re-
placing everywhere in (4. 5) c by 1 —e, p by v, and

v by p. Since (4. 5) is, in general, not valid at
e = 0, it cannot be used to calculate the slope of

Scc at c =0, and, in fact, gives incorrectly this
slope except when p. = 1 (see Eqs. (4. 16)—(4. 18)
below). Similar remarks apply to (4. 6) at e = 1.

c. f- «1, K«1. To obtain S«and its slope
near e = 0 and e= 1, let us go back to Eq. (3. 13)
with Ka0 and rewrite it in the form, using (3. 12),

(e —pn~)" (1 —e —v ne}'

Sec =e —e + (2/K)e +O(c3), p= 2

(4. 16)

(4. 1V)

Scc=e —e~+O(e~), p &3. (4. 18)

Presslons for Scc and "'cc near c = 1 are
simply obtained from Eqs. (4. 13)-(4. 18) by re-
placing everywhere c by 1-e, p. by v, and v by p..

8. Discussion and numerical results

Equations (4. 13)-(4.18) show first that in every
case as c - 0, S«-c, as it should. Second, as
e increases from zero (but still e «1), Scc in-
creases and lies below the ideal value if p. = 1 and

above it if p, &2. With further increase of c, Eq.
(4. 5) shows that Scc has a maximum at some con-
centration, say, e~ (e~& p/p+ v), and then drops
to zero at e = p/p, + v. S«has a discontinuous

slope at this point, since as e increases further,
Eq. (4. 6) takes over and S«rises again to a max-
imum, at the concentration cz, say, and then de-
creases to zero, the limiting behavior near c = 1

being governed by whether v= 1 or v &2 in accor-
dance with equations similar to (4. 13)-(4.18).

It is interesting to remark here that the fact that
(for K-0), Scc = 0 at e = p/p+ v and has a V-shaped
variation with concentration near e = p/p+ v is
similar to the behavior of the concentration fluctu-
ations in a perfectly ordered solid alloy near the

appropriate stoichiometric composition. ' For
the latter at the stoichiometric composition itself,
of course, S«(q)= 0 for all wave vectors q except
for the spikes which correspond to Bragg reflec-
tions due to the formation of the superlattice. In

a compound forming molten solution at the chemi-
cal composition, Scc(q) may then be expected to be
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TABLE I. The positions (c& and c2) and heights of the
peaks in S&c for the limiting case E-0 for some pairs
of p, v. For comparison the value of SP~ = c(1 —c) at
each of the concentrations is also given.

QQ' 0 t I I t I ~ I

2 1
3 2
4
5
9
5 3

1 0.212 0. 096 0. 167
1 0.261 0. 232 0, 193
1 0. 283 0. 379 0.203
1 0.294 0. 52 0. 208
1 0.310 l. 111 0.214
2 0.221 0. 295 0. 172

j + v I v cf Scc~&f}

0. 788
0. 87
0.906
0. 926
0.96
0.853

0. 096
0. 058
0. 042
0. 033
0. 0174
0. 131

0. 167
0. 113
0. 085
0. 069
0. 038
0. 125

SCC (C2) SPC(C2) CC

0.2

Q. l

ca= 1- (v/y)f(y),

Scc(c t) = (p/y )'f(y)(1 f('y))-

(4. 19)

much smaller than Sc~& for small q, have a peak
higher than Sz~ at some higher q, and then oscil-
late about Sc'& with progressively damped ampli-
tude [see definition and sum rule on Scc(q) given
in Ref. 2].

Returning to Eqs. (4. 5) and (4. 6), we may de-
duce from them that the positions e

&
and c& of the

two maxima in S«and their heights are given by

c =(p/y)f(y),

0

FIG. 1. Concentration fluctuations Szc as a function
of concentration in a binary mixture forming chemical
associations of the AB type (JLf = v=1). The different
curves are for different values of the reaction constant
K as marked; the curve E=~ represents SCC=Sc~~c=c(1
—c).

&& [y+f(y)(1-y)],

Scc(ca) (p/i ) Scc(c1))

where y = p, + v and

2y —1 —(y'-y+ 1)"'
)=

3(y —1)

(4. 20)

(4. 21)

(4. 22)

The data on free energy of mixing for this alloy at
the temperature concerned suggests that K-10 6-
10 . %'e see that the experimental S«has a min-
imum and two maxima at approximately the right
concentrations and their heights are of the right
orders of magnitude.

Figure 3 similarly shows the experimental val-

s =1:(1—e)/ ) ~ c( )
= c(l —c) 1 —(1 c) lny~

SC ~.sJ
(4. 23)

%'e note that the heights of the two peaks are in

general unequal being in the ratio (t)/)t) . Table 1

gives values of c,„cz and the heights of the peaks
for some values of p, and v.

For a nonzero K, but K «1, the position and
heights of the peaks would still be roughly given

by Eqs. (4. 19)-(4.21), while the V-shaped behav-
ior near c = it/()t+ p) will get rounded into a mini-
mum. %'ith further increase in K, the two maxima
mill gradually merge into each other in accordance
with the limiting behavior Scc =c(1—c) for K-~.
These features are illustrated in Figs. 1-4, mhere
we give the results of numerical calculations for
Scc for different values of ff' for the cases (it, v)
= (1, 1), (3, 2), (3, 1), and (2, 1).

In Fig. 2, we also give the experimental values
of S« for the Mg-Bi system mhich is known to
form the compound Mg3Bi2 in the solid state.
These were obtained from the data on the activities
tabulated in Hultgren et al. ,

' by noting that if y„
is the activity coefficient of metal A (concentration
c) in the binary solution, then

S„

O.l-

0.5
C

FIG. 2. Scc as a function of concentration c of A
atoms in a binary mixture forming chemical associations
of the A382 type (p = 3, v = 2). (—) theoretical for dif-
ferent values of the reaction constant K; (—-) experi-
mental from data of Ref. 13 (see also Ref. 8) for the
Mg-Bi system with c=cM .
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early with c between the two pure metals. 6 may
be inferred from the data on volume as a function
of concentration, which, if the simplified version
of the model is valid, should be given by (3. 16),
in which we need only to fix the parameter v (and,
of course, V,

' ' and Vz ') from the obsemed data
In this connection we should note that according
to (3. 16), the excess volume hv, i. e. , the ac-
tual volume of the mixture minus the volume ob-
tained by l neo. r interyolation between the values
for the two pure liquids, is given by

n V= V-cV,"'-(1-c)V,~" = n~. -
Hence j 4 V ) is maximum when n3 is maximum,
that is, at the concentration c = p/p+ v. For
many cases n V/V is at most a few percent and
we have not been able to verify this conclusion
for lack of sufficient data. (In these cases, 6 cal-
culated by assuming the linear dependence of vol-
ume on c, forms a reasonable approximation).
For the amalgams discussed earlier, HgK and
HgNa, the observed maximum in lnvi (-0.24V
and 0. 18 V, respectively)"' occurs near c = 2.
We have already mentioned the reasons why the
simplified version of the model taking p = 2 and
v= 1 is not quite adequate for these systems.

When the tendency to form chemical associa-
tions A„B„is strong (K «1), the variation of a&&

with concentration depends markedly on the values

t s l

0
I I

0.5
C

I.D

FIG. 6. Partial structure factors a&& as a function of
concentration c of A atoms in a binary mixture forming
chemical associations of the type &3+2
(——) 0=-0; (—) 6, as explained in the text. For values
of a&) near c = 0 and of a22 near c = l, not shown in the
diagram, see text following Eq. (5. 10).

of p. and v. To illustrate this feature and to see
how this variation is affected by 6, we depict a&&

versus concentration curves for a few cases in

Figs. 5-7. For simplicity we have throughout set
8= 0 and drawn all the curves for K= 10 . As will

0

04
C

4
0 0.5

C
I.G

FIG. 5. Partial structure factors a&& as a function of
concentration c of A. atoms in a binary mixture forming
chemical associations of the A„B„type. (——) p = v=l;
(—) @=3, v=1. Both sets of curves are for 6=0 (equal
partial molar volumes for the two species).

FIG. 7. Partial structure factors a&& as a function of
concentration c of A atoms in a binary mixture forming
chemical association of the type A.Q~ (@=2, v= l). (——)
theoretical with 6 =0; (—) theoretical with 6 as explained
in the text; (—-) experimental from Ref. 6 for the Hg-K
system with c = cH .
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be clear from the inspection of Figs. 1-4 for 8«,
a smaller value of K does not affect the results
qualitatively. (For K-~, Scc-Scc [=c(l—c)],
and the concentration dependence of a&& is quite
different from that depicted in these figures; for
example, if 6 = 0, then all a, &

= 8- G. 03. )
Figure 5 gives the results for the cases (p. , v)

= (1, 1) and (3, 1) taking 5 = 0 (equal partial molar
volumes for the two species at all c). The curves
for (p, v) = (1, 1) are qualitatively similar to those
given in Faber. ' The dashed curves in Fig. 6
show the concentration dependence of aq& for p, = 3,
v = 2 case taking 6 = 0, while the smooth curves are
drawn by assuming that the volume varies linearly
between the volumes of the two pure constituents.
The numerical values for the volumes were chosen
appropriate to the Mg-Bi system, so that 5(c) var-
ies monotonically with concentration from —0. 29
at c = 0 to —0.4 at c = 1. These values of 5(c)
should be correct to about 10% for this system
since 4 V=O. 02V at the composition Mg,Bi2.

Last, Fig. 7 gives the results for p, =2, v= 1

case. The curves with long dashes are again for
6 = 0, while the smooth curves are drawn using
5(c) obtained from the measured data on volumes
for the K-Hg system. ' [6(c) first decreases from
6 (0) =- l. 3 to 5(2) = —l. 5 and then increases mono-
tonically to 6(l) = —0. 7. ] For comparison the val-
ues of a, &

obtained by McAlister and Turner from
the measured thermodynamic data are also given.

I

uaa= —0/~

uu-+ I
~ [c= ~/(~+~)] . (5. 2)

The values of a&& for E= 10 given in Figs. 6 and
'7 are close to these values at e = -', and c = 3, re-
spectively.

Second, it is of interest to give explicit expres-
sions for the values of a~& (c) at c = 0 and c = 1. If

we substitute the expansions (4. 16)-(4. 16) for S«
into the Eqs. (2. 2)-(2. 5) and take the limit c 0
(or c - 1 as the case may be), we obtain [a,&(c = 0)
—= a,&(0), etc. ]

Considering the limitations of the model discussed
earlier and the uncertainty in determining 8« from
the measured activity data, ' the agreement be-
tween the two is not unsatisfactory.

The results presented above need two further
comments. First, we observe that in Figs. 6 and

7 the dashed (6 = 0) and smooth (54 0} curves for
each a~& come very close to each other near the

appropriate chemical composition. This is not

surprising if we refer to Eqs. (2. 2)-(2.4) for a, &

and consider the limiting ease K- 0. Then since
now S« = 0 at the stoichiometric composition c
= p, /p+ v, the partial structure factors become in-

dependent of 6 at this composition, and are given

by (with 8=0)

and

n»(1) = 8(1), u„(0)= 8(0)

a, (0) = 8(0) —6(0), a, (1) = 8(1)+ 6(l)

a»(0) = 8(0) —25(0) —2v(1+K) '

= 8(0}—26(0)+ 2/K

= 8(0) —25(0)

a za(I ) = 8(1}+ 25 (1)—2p (1+K) '

= 8(1)+26(1)+ 2/K

=- 8(l)+ 26(1)

for a11 p and v„

for all p, and v,

for p. =1,

for p=2

for p. ~3,

(5. 3)

(5. 4)

(5. 5)

(5. 6)

(5 '7)

(5. 9)

(5. 10)

Thus, for example, in Fig. 6 (u= 3, v= 2), the
dashed curve for a» starts from zero and steeply
rises with small increase in the concentration, has
a large maximum (-33, not shown in the diagram)
at 4 =0.01, and then follows the curve as in the

diagram. In contrast, a~, near c' = 1, continues
to rise to the value aaa(1) = 2/K ~ 2000 in accordance
with (5.9). It may be seen from Eqs. (2. 4) and

(2. 5) that a„(0) and aaa(1) depend on the curvature
of Scc, i. e. , d Scc/dc, ate = 0 an c = 1, respec-
tively, so that their determination from experi-
mental Scc is difficult. The limits given in Eqs.

t

(5. 5) to (5. 10) may therefore serve as useful guide-
lines where the model is applicable.

Note added in proof: Since the submission of the
manuscript, two higher approximations have been
applied to the calculation of 5«, etc. These cor-
respond to assuming that the mixture of A, , B and

A„B„can be treated (i) in the conformal solution
approximation, Eq. (3.11) for y, , a.nd (ii) in Flory's
approximation for mixtures of monomers and

polymers. See A. B. Bhatia and %. H. Hargrove,
Nuovo Cimento Lett. (to be published), and A. B.
Bhatia. and W. H. Hargrove (unpublished).
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