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Small-polaron effects on the dc conductivity and thermoelectric power of the
one-dimensional Mott semiconductors
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The effects of intra (molecular) -site vibrations on the dc conductivity, thermoelectric power, and

onewlectron density of states are calculated and studied. The one-dimensional half-filled-band Hubbard

model is coupled locally in space to phonons and the approximation used assuines that the
electron bandwidth is small. The onewlectron density of states is Gaussian broadened in energy, even

for zero bandwidth and zero temperature. Consequently there is a finite density of states at the Fermi

energy (in the Mott-Hubbard gap). As temperature increases, the separate peaks in the density of states

become less discernible. The dc conductivity exhibits a rounded maximum as a function of temperature

and falls off as T "' at high temperature. At very low temperatures, below a region of thermally

activated behavior, the conductivity begins to rise and diverges as T . This behavior is shown to be a
consequence of both the electron-phonon coupling and the strong electron-electron interaction. The
thermoelectric power is formulated for the strongly interacting model system and it is found that it
vanishes —a result that appears to be a consequence of the particle-hole symmetry of the half-filled

band.

I. INTRODUCTION

The electrical properties of the high-conductivity
tetracyanoquinodimethan (TCNQ} salts~'r are not
easily understood. There are now at least four
salts3 that display a thermally activated conductivity
at low temperatures, followed by a rounded maximum
at higher temperature and then a decrease according
to some inverse polynomial in temperature. There
is no adequate microscopic description of either the
low- or high-temperature regimes of these mate-
rials. However there are several distinct models
that have been applied with limited success. 4

The roles of electron-electron and electron-lat-
tice interactions have been of particular interest.
The electron-electron interaction has been con-
sidered mainly in terms of the single-band Hubbard
model. In addition to possible structural instabili-
ties in connection with the Peierls instability, the
electron-lattice interaction is of interest in connec-
tion with intramolecular vibrations ' and small
polaron formation. '

The theory of a single electron in a narrow band,
interacting strongly with intramolecular vibrations,
has been investigated intensively by several work-
ers. The role of lattice vibrations in a half-filled
band of electrons that are strongly interacting via
the short-range Coulomb interaction has been in-
vestigated more recently '8'~o

In this paper we consider intramolecular vibra-
tions that are strongly coupled to a very narrow
half-filled band of electrons that would otherwise
be described as a Mott insulator. " (The quarter-
filled band which is associated with Ad-TCNQ and
Qn-TCNQ is not considered here. ) Although this
study is motivated by the interesting characteris-
tics of charge-transfer salts based on the acceptor

TCNQ, no direct comparison with experiment is
given here. In Sec. II the model is defined. The
displaced-oscillator canonical transformation is
applied to it and the partition function. in the atomic
limit (zero bandwidth} is obtained. In Sec. III the
one-electron spectral weight function is calcu-
lated in the atomic limit. The presence of the
coupling to the vibrational modes leads to long-
range tails in the density of states. In particular,
the density of states is finite in the Mott-Hubbard

gap. In Sec. IV the electrical conductivity is cal-
culated to second order in the bandwidth. The con-
ductivity displays a rounded maximum as a function
of temperature. At high temperatures, the con-
ductivity falls off according to T '@. At very low

temperatures the conductivity diverges as T ';
this result is discussed.

In Sec. V the thermoelectric power is calculated.
An expression for the energy current of the model
is formulated in site-space. It is found that the
thermoelectric power vanishes. This result ap-
pears to be a consequence of particle-hole symme-
try of the half-filled band. In Sec. VI, the results
of Secs. II-V are summarized and discussed.

II. MODEL

The model Hamiltonian for a narrow band of elec-
trons coupled to intramoelcular vibrations is writ-
ten as follows:

H=H i+H „+H', (2. I)

where H„ is the single-band Hubbard Hamiltonian'
given by

H„= —b Z C, C„6,+UK n„n, , (2. 2)
&r 6r&

Here C;, (C;,) creates (destroys) an electron on the
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ith molecular site with spin 0 and these operators
satisfy the usual anticommutation relations; n,
= C~, C&„U is the bare intramolecular Coulomb
repulsion; 6 is the one-electron intermolecular
hopping energy. The hopping range is assumed to
extend to nearest neighbors only and the ~ sum is
over the nearest neighbors of the ith spatial site
(the summation on f is over the entire lattice). Al-
though the one-dimensional case is of particular
interest with regard to the TCNQ salts, the results
we obtain are straightforwardly extended to higher
dimensions.

The phonon Hamiltonian H~ is taken to be an
array of dispersionless Einstein oscillators and
is written

H,„=—nZ (P, +Q';) . (2. 3)

+ VZ Qg(ng, +ng, }+—nZ (P~+Q,) .
i f

(2. 5)

Ho= Un), s(, + VQg(n;, +ng, } +an(P)+Q, }

and define

et58P &e.-&58
0

where

S =Z P, (n„+n„);

(2 3)

(2 3)

Ho is the sum of single-site Hamiltonians, and fur-
thermore its ground state and thermodynamics are
solvable as well. The method of solution is well
known from the small-polaron problem and its ex-
tension to include the first term has been given
before. "

We write

In Eg. (2. 3), n is the fre|iuency of the Einstein
oscillators and P, and Q& are the usual (dimension-
less) momentum and displacement coordinates, re-
spectively, and describe the vibrational motion of
the ith molecule. The usual commutation relations

then for

f = v/n-
b& has the form

(2. 9)

are obeyed.
The interaction between the intramolecular vibra-

tions and the electrons is contained in O'. This
is given simply as

H ' = VZ Q;(n„+n;,), (2 4)

where V is an appropriately defined coupling con-
stant with dimension of energy. The interaction
couples the electronic density on the ith site lin-
early to the displacement coordinate on that mo-
lecular site. The on-site interaction plays an im-
portant role in small polaron theories and is an
essential piece of the electron-phonon interaction
in a narrow-band system.

We assume that the Peierls instability is quenched
by the strong intrasite Coulomb repulsion. While
it is true that an infinitesimal electron-phonon cou-
pling will lead to a Peierls instability for a nonin-
teracting half-filled band of electrons, this is no
longer the case when the electron-electron interac-
tion is taken into account-even in one dimension. '~

Physically, the concomitant electronic charge den-
sity wave associated with the Peierls instability
forms at the expense of the short-range Coulomb
repulsion. If the latter is sufficiently large, then
the former is quenched. This is true even at zero
temperature. "

We shall consider the regime in which the hopping
parameter b is the smallest energy in JI. Accord-
ingly, we define a zeroth-order Hamiltonian by

HO=H+5 Z CJ~C„~ =Urn„ng,
f, 5, e

r =- v'/n. (2. 11)

8 is just the generator of the displaced oscillator
canonical transformation. h& is the canonically
equivalent single-site Hamiltonian written in terms
of the original electronic and vibrational coordi-
nates. 6 is chosen to eliminate the linear elec-
tron-lattice coupling. The vibrational Hamiltonian
is unchanged, but in the electronic Hamiltonian U

is replaced by U-I' and there is a shift in the one-
electron energy levels on the molecules by —&I .
(The latter represents the small-polaron binding
energy. 9)

From Eg. (2. 10) the ground-state energy E(N)
of Bo is easily calculated as a function of the num-
ber particles. The ground-state energy of the
half-filled band is

E(N, ) = —gI'N, . (2. 12)

Here N, denotes that the number of electrons is
equal to the number of sites. We also obtain.
E(N, + 1) = U —I' —~(N, + 1)1' and E(N, —1)= —

& (N
—1)l". We follow Leib and Wu~ and define

q, =E(N, +I) E(N, )=U ,'r--- (2. 13)

p& = E(N, ) -E{N, —1) = - 2 I' .
The gap related to the addition and removal of an
electron about the half-filled band was then given
by p& —p&.

In this case, we have

a, =(U —r) s„s„-—'1(s„+n&,)+ —'n(P, +q, ),
(2. 10)

with
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A
Z,„=Trexp —p —Z(Pai+Qmi) =(2cschspQ)Ns,

'W

Z„= Z Z exp[- P(U —I') n, n,
no~0 ni =0

s
+ p(li + 2 I')(II, + n, )]

(I + 2&8( nor/2) + e lKan&r-UI)Ns (2. 18)

The condition that the number of electrons is equal
to the number of sites can be expressed as (N„&
=N„where the brackets denote

Tre-""-"""'~
OP(+ss &

= .—. -INn- nN I ~Tre Og
(2. 19)

Z» factors out of this expression and one obtains

8
(iv.,& =, inz. i (2.20)

One easily sees that the number condition is satis-
fied by setting

li = s(U —2I").

Z„ is then given by

g [2(1 elKU-r}/2)]Ns

(2. 21)

(2. 22)

(2. 15)

As we expected, this gap is just the effective
electron-electron interaction on a site. The non-
vanishing of p.&

—p& in the limit N, ~ has been
used'2 as a criterion for insulating behavior in the
ground state. We shall return to this point later.

The thermodynamics of Ho is also straightfor-
ward. The ground-state partition function Z is
given by

g Tr@-8&HO g +oy) Tre-g(A- yNoy)

Here p, is the chemical potential and N, =pi(n, ,
+n;,). The last equality is obtained by using the
invariance of the trace and N„with respect to the
canonical transformation. Z is then written

(2. 16)

where

The operators evolve in time I' according to Ci,(I )
= e'"'g„e 'N' anil the brackets {,}denote the anti-
commutator.

For a homogeneous system the electronic density
of states at frequency (d is conveniently related to
the spectral weight function by

P (&U) = (2II) IA I,.(Id) . (3.2)

In the atomic limit (f/- 0), Hubbards showed that
for the half-filled band of H„[Eq. (2. 2)],

P'(IU) = -'5(~) + s5(IU —U); (3.3)

we see that the density of states is given by two 6-
function peaks, one at ~ =0 and the other at ~ = U.
This form of the density of states (i.e. , two clearly
separated nonzero regions) provides the basis for
regarding the Mott insulator as a particular type
of split-band (or two-band) model with energy gaping

U (the so-called Mott-Hubbard gap). Although the
analogy may be a useful algorithm offering some
insight, one must be cautious of the fact that the
gap in the noninteracting two-band model is pro-
duced by the electron interaction with the periodic
crystal potential and that for H, the Mott-Hubbard
gap is due to electronic self-correlation. We also
note that the existence of somewhat sharp, well-
separated peaks in the density of states with negli-
gible weight between the peaks is usually regarded
as the hallmark of the insulating state, and con-
versely that the overlapping of peaks, or existence
of substantial weight between peaks is suggestive
of a metallic description.

In this section we calculate and study the modifi-
cation of the density of states (in the limit 5- 0)
given by Eq. (3. 3) due to the presence of the elec-
tron-phonon interaction as described by Eq. (2. 1).

We write the thermal average in Eq. (3.1) as (for
brevity we write N„as N)

([~,.( )~,'..~,'.C,.( &]&

Tr&-ii(NO nN) {g (r) gt -}
T„-sIN~") ' " (3.4)

We have

(&) eisosg e-iNos g &-i(Un; ssFQI)v (3

and consequently
It is convenient to define

(r) gt } 5 e-I(Un; s+FQ;)r.ij (3 6)

III. SPECTRAL WEIGHT FUNCTION

The one-electron spectral weight function A;/(&d)
is defined' as

Al;(~)= 1 dre'"'({C;.(r), &,',}&. (3.1)

(2. 23)

(2. 24)

since these combinations will occur repeatedly in
that which follows.

in Eq. (3.6), 5;; denotes the Kronecker 5 function.
In Eq. (3.5) we have treated the time dependence

of Q, to lowest order. This short-time expansion
leads directly to Gaussian behavior in the frequen-
cy variation of the spectral weight function IInd

conductivity. Although the exact time dependence
in Eq. (3.5) can be easily obtained, the resulting
form of the frequency behavior of the spectral
weight function of the single Einstein oscillator is
somewhat pathological from the point of view of
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pofg p, (ff)4 n))] f( Un fy+V[Q (F&r'Q) (ny+n fy)])&Tre
gfh &(nt+nc)g

(3.7)

here the spatial-site indices are omitted since the
average refers to a single site. The right-hand
side of Eq. (3.7) is factored according to

(& IvQr) (&
f(UIn

~-rnid&v

) (3 6)

here we have used Eqs. (2. 11) and (2. 23) and de-
fined the averages with respect to the separate vi-
brational and electronic coordinates by

(8 f vQT) —g 1 T (@
ft(Q/2&(P +Q &&8 f vof') (3 0)

e-~( v,~ ~rn, )~q &-i »e-arri~, n;(iP) v
~ei el

x ~( Ui"-a me)y (3. 10)

Equation (3. 9) can be straightforwardly evaluated"
and gives

(8 fVQr) 8 Sv /2 (3. 11)

where

8 = 2 V coth(PQ/2) . (3. 12)

Equation (3. 10) is also easily evaluated and gives

e I'UI~-~"~ ') =[2(1+eSUI/2)]

X(1+eSUI/2 fUI'+eSU'/+' '+8 IU"). (3.13}

We now combine Eqs. (3. 1), (3.4) and (3.6),
(3. 11) and obtain

A+ (~) I/ d& 84vv-(8/2&x5. 3
I/ 2(1 88 UI/2)

y (1 + 82 Ul/2-f Ulr + 82UI/2+ I rv + 8 f U2w)

m
'~' 2V (&-co /28+&SU&/2

(1+USU«} ZS

&&
&-f~-UI& /28 + &2 UI/2&-(m+r& /2S + &-(au-U2& /28)

(3.14)
We see that the spectral weight function is tempera-
ture dependent and is comprised of four Gaussian-
broadenedpeaks centeredat~ =0, Ui, —I', and Uz.

Let us look at the spectral weight function in
some interesting limits.

describing the vibration relaxation associated with
the modes of a TCNQ molecule. The short-time
expansion is then taken to represent the relaxation
of the molecule and the energy parameters of the
Einstein oscillator should be regarded as charac-
teristically typical energies for the relevant vibra-
tional modes.

The thermal average is again a single-site aver-
age and it is also useful to perform the displaced
oscillator transformation given by Eq. (2. 6)-(2. 11).

We obtain

-g(go- pE) -i(Un~ e+VQ~)v

Tre "~0 " '

A. V~0

In the limit V- 0, we use the identity

lim(II/a)I/ e" /'=w&(&f)
o 0

and recover

(3.15)

A;/(fd) = 2&/5f/[25(&8) + 25(&d —U)], (3.16)

the result obtainedby Hubbard [Eqs. (3.2) and (3.3}].
8. T~o

For the limit T- 0 we see from Eq. (3. 12) that

limS=-, V .
0

(3. 17)

Equation (3.14) becomes

Av (v) =6 (7f/V)1/2(&-(tv-UI& /v +8-((u+r& /v )
(3. 16)

We see that the electron-phonon coupling leads to
a broadening of the ~-function peaks even at zero
temperature. One also notes that the peaks that
correspond to ~=0 and ur=U in the absence of V

are shifted by —I'. Equation (3.16) evolves with
increasing V from two well-separated Gaussian
peaks centered at ~= —I and ~= U, for V«Uto
one broad peak centered at ~= -I' for V» U. In
both of these cases the widths of the peaks [full
width at half-maximum (FWHM)] are proportional
to 8 @. In the further limit PA «1 the widths are
Pl'OPol'tloflal to (IIT)

C. g-moo

As 8-~ either through V- ~ or T-~, the spec-
tral weight function loses all distinctive features
and is comprised of a rather uniform background
on any frequency scale that is small compared to Sii~.

In addition to the two peaks centered at (d = —I'
and ur = U, in Eq. (3. 14}, two additional satellite
peaks centered at (d = 0 and (d = U, become appre-
ciable for ~PU, -1. The appearance of these peaks
can be understood simply as follows. The spectral
weight function measures the probability amplitude
of adding or removing an electron at a resultant
energy change of v to the system in thermal equi-
librium. In terms of the single-site processes rele-
vant to the problem at hand, there are four possibili-
ties: (i)addition of anelectrontoasite already oc-
cupied by an opposite-spin electron; (ii) removal
of an electron from a singly-occupied site; (iii)
addition of an electron to an empty site; and (iv)
removal of an electron from a doubly-occupied
site Process. es (iii) and (iv) will be unimportant
for AT«Ui, since doubly-occupied and empty sites
will be negligibly populated in the half-filled band.
On the other hand, processes (i) and (ii} will be
relatively important at all temperatures. The en-
ergies associated with those processes can be iden-
tified with the peak energies in Eq. (3. 14}on sim-
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FIG. 1. Spectral weight function is plotted against
frequency, both in dimensionless units and for the choice
of parameters discussed in the text. Curve {1)gives the
spectral weight at zero temperature and curve (2) is for
the case kT= Q. On the x axis, the arrow indicates the
position of the chemical potential and the heavy dots (at
x= 0 and @=1.25) indicate the positions of the ~ functions„
Eq. (3.16), in the absence of the electron-phonon coupling.

pie physical grounds. In order to obtain these re-
sponse energies- we need to know the interaction be-
tween the added (or removed) electron and the po-
larons of the interacting system. Equation (2. 10)
provides us with the polaron-polaron interaction
and also the small polaron binding energy. The
latter gives the amount energy (-~I' per electron)
associated with the dressing of the bare electron
by the vibrational field. This fact provides us with
a method of calculating the energy change in adding
or removing an electron from the polaron system.
Namely, we add or remove aPolaxon, calculate the
energy change from Eq. (2. 10), and then, remem
bering that we are adding a bare electron, subtract
or put back one electron's worth of small polaron
binding energy. Hence process (i) gives a small

1
polaron change of U~-2I'; however, since we are
adding an electron and not a polaron, we must sub-
tract the small polaron binding energy [-(-~I')]
and obtain the energy change of just U~. In a simi-
lar fashion, we find that processes (ii), (iii), and

(iv) correspond to energies —I', 0, and U„respec-
tively. This argument makes clear on physical
grounds the origins of the various terms in Eq.
(3. 14) and will provide a helpful type of reasoning
for the analysis in the later sections.

In Fig. 1, A«(~) against &o is plotted for kT = 0
and O'K=A. The energy parameters are chosen
such that I' = 0= 4U, . These values give the be-
havior of A;. ;(u&) in an interesting case and may not
be an unrealistic value for some TCNQ salts. We
see that since U, = U —I' [Eq. (2. 23)], we also have
in this case U=50. Thus for Q-0. 1 eV, U has a
not untypical value that is associated with TCNQ
salts provided that it already includes a renormal-
ization from the electronically polarizable donor
molecules' (in particular for the highly conducting
TCNQ salts). The choice I' = 0 is rather arbitrary but

IV. ELECTRICAL CONDUCTIVITY

The electrical conductivity is calculated from

1

o(&o) = t dre "'([JJ{7)+Z(7)J]),
(4 1)

which is an expression for the real part of the elec-
trical conductivity written in symmetric form.
is the crystal volume,

Tr(e B(H PNl Je!HTde fHT)
(zz(~)) = (4 2)

and (Z(~)Z) =(ZZ(- r)). Z is the current operator,
given by

J=feb Z (R; -R;„)C~,C;„„ (4. 3)

where R;, R;,5 are components of the lattice-site
position vectors parallel to the external electric field.

If Eq. (4. 3) is substituted into Eq. (4.2), (ZZ(7'))
becomes

is representative of the interesting intermediate-to-
strong coupling regime of the small polaron model.

The spectral weight function and frequency vari-
able are plotted in dimensionless units according to

a(x) = [U,/4(7r)' ']A;,((d)

and x=(g/Uq. At kT= 0 {curve 1), the spectral.
weight function is comprised of two peaks as given

by Eq. (3.18). We see that the value of a(x) mid-
way between the two peaks (at x= 8) is approximate-
ly 0. 004 times the values at the maximum peak
heights. We note that x= 8 corresponds to {d = p, .
The FWHM for each peak corresponds to an energy
width = 0.42U, . We can define an energy gap
G(FWHM) as the energy difference between the low-
er edge of the upper peak and the upper edge of the low-
er peak, both at the half-maximum value of the spec-
tral weight function. At kT = 0, G(FWHM) = 0.84U~.

On the other hand, for AT=A, the spectral weight
function (curve 2) shows the effects of appreciable
thermal broadening. The spectral weight between
the two peaks is now much greater; a( —,')/a(1)
= 0. 191. Also the FWHM is about 0. 64U, and

G(FWHM) = 0. 55 '.
The main results of this section are that there is

finite spectral weight at the Fermi energy even at
T = 0 K, and that the peaks in the spectral weight
function broaden with temperature. This latter
feature allows us to define (but by no means unique-

ly) an effective gap G(FWHM) in the density of
states. This gap has the property that it decreases
with temperature and vanishes at a certain tem-
perature. We discuss the significance of this be-
havior of the spectral weight function in Sec. VI.
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{R R ) Tr(e B(II n)r)Ct C e(I(rCt C e Mlv)

i+5 Ig-gN)Tre
Osy
fys 0

(4. 4)

Of course, the difficulty in evaluating the traces
comes from H in the exponential. However, as we
have seen, in the absence of the electron-hopping
term, H=HO is a simply solvable problem and the
traces can be straightforwardly evaluated. The
hopping term is treated approximately and this
is in the correct spirit of the problem, i.e. , the
transport properties of the narrow-band Mott semi-
conductor. The hopping parameter b appears ex-
plicitly to second order, since each current opera-
tor in the Kubo formula is proportional to the hop-
ping parameter.

With H set equal to HB in Eq. (4.4}, the tech-
niques used in calculating the spectral weight function
inSec. III canbe usedto evaluate the conductivity. In
particular, withthehelpof Eq. (3.5) (ZJ(F)) becomes

(Zd'(V)) = eBbB 2 (R, -R;,,)(R, —RI,F)F(F), (4. 5)

Eq. (4. 8) works out to be

(n e-(& U(n n rnn-))r8( rv(e-(VIF eBVI /B)/2(I + eB UI/B)

(4. 11)
We combine Eqs. (4. 10) and (4. 11) with Eqs.

(4. 5)-(4. 8) and use Eq. (3. 11) and then obtain,
after a straightforward integration in Eq. (4. 1},

t/eBaBI&B &I
I /B tanh(B p&r))

(1+eB 'j')' 4S

&& (2eBVI/Be-((rrr r) /4B

e-(f4&- U2) /48 eg Ule-(f4)+ V)2/44&

+terms with &u- —(d}. {4.12)

In Eq. (4. 12), a is the lattice spacing and I) =NB/L.
For a single linear chain I- =N,a; for a three-di-
mensional crystal which can be regarded as being
composed of many parallel chains (e.g. , TCNQ salts)
of length N, a, L = N,aZ, where Z is the cross-sec-
tional area of the solid perpendicular to the chain axis.

Inthelimit V-O, Eqs. (4. 12) and {3.15) implythat
y(t) g-IT e-B(II()-n&(l)Ct C ei((ln) nr+FQI)F

ify i+ Ofy

e-$(Unl+~fys+V l+ W&Cl fat i+ye' y (4. 6}
qa e b

11IIIV((d) =,jl+e
and Z is given by Eq. (2. 16).

Since &0 is the sum of single-site Hamiltonians,
E(F) is equal to zero unless i+5 = I, i = I +@, and
cr=o'; that is,

e'U-1
& 2pe'U~a (o +

U

x [r(tr+ rr& r r(tr —rr&]}. (4. 13)

E(v') =Z (5„, ,5, ,„„5„.Tr(e Nv(& ""'n„(1-n„)
g ei(Uffl fy+FQl)g -f( Un) y+FQ))g) (4 7)ly

((1 „)e(& Vn), +Vq)) r)

&((n e-((Vn( n+Fq(&F)
fo n (4. 8)

Here again, the angle brackets denote the thermal
average. In particular, the first term of Eq. (4. 8)
becomes

((I n )e((Vrr) nr FQI)n)

Tr(e-B(IIQ-rr (nr+nr ))(I n )e(&Vnn+V Q&r)-l

Tre- B&//)- rr(nr+nr &)

Tre-B(B-n(nr+nr»(l n )e((Un nrV(q-(V/Q)(nr+nr)F)

T e-g(a-I (n, ~, yy

(e(FQr) ((1 n )e((V(n-n-I"nn&r) (4. 8)

((1 n )e(( V(n n rnn)r) (1+ e(UIFeBVI/4)/2(1 + eBUI/Z)

(4. 10)
The electronic contribution to the second term of

The thermal average of the electron term is evalu-
ated to be

This i.s the result obtained by Bari and Kaplan' for
the Hubbard model in the absence of the electron-
lattice coupling. Upon comparison of Eq. (4. 13)
with Eq. (4. 12), one sees that the 5-function peaks
of the former become Gaussian peaks in the latter.

The dc conductivity is given by

2 2 2 't 1/2
a=lima((d)= Bv, /B B

—
[ (2e I eSU&/2 -r /4S

j. +e

UB/4S + eBV(e U /4B) (4 14)
The leading terms at high temperature behave as

C1P —C2P (4. 15)

where

c,/c, = —,'[r + (I/', /r)]
This is to be compared with the case V= 0 (Ref.
18), for which the leading term is proportional to P

The limit 7 0 18 at first somewhat surprlsingy
namely, o -~. However, as we shall discuss be-
low, this behavior is understood quite readily in
terms of the very nature of the Mott semiconductor.

In Fig. 2, the dc conductivity is plotted against
temperature for the same values of parameters
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chosen in Sec. III (I' = 0 = 4 U, ). The following di-
mensionless variables are introduced:

u= 2PA

(4. 18)

4 taahu/2 e-Qtaahu/2
1/2

(1 4u)2

Su-25 taahu/2 ) (4. 17)

O.OR

I 52 5 4 5 I l 8 9 Io
p-I

FIG. 2. dc conductivity in dimensionless units [Eq.
(4.16)j is plotted against v = AT/0 for v & 05 10. As
v 0, 00 fx v. There is a broad minimum in the range
0510&v & 0.35 with a' 10

Except for very low temperatures, the conduc-
tivity versus temperature exhibits the same gross
features already seen in Ref. 18; i.e. , o is expo-
nentially small at low T, has a rounded maximum,
and falls off according to an inverse power-law at
high T. For the given choice of parameters the
maximum in o' occurs for O'T= 0.3Uj, slightly less
(apart from the renormalization U- U, ) than the
value obtained in Ref. 18.

The very low-temperature divergence of c is
seen [from Eq. (4. 14), (4. 18), or (4. 17)] to come
from the last term in brackets. From Eq. (4. 12),
we see that this term can be associated with optical
peaks (Gaussian broadened) at v = + U. In the limit
V- 0, we see from Eq. (4. 13) that these peaks be-
come 6 functions and do not contribute to the dc
conductivity in that case. However, for V+ 0 the
long-ranged Gaussian tails extend down to co = 0 and

give a contribution to o that is proportional to
e . The interesting point is that the contribu-
tion from this term in Eq. (4. 13) does not vanish
as T-O, unlike the contributions from the first two

terms.
This behavior can be understood as follows. In

an oxdinary noninteracting two-band model of a
semiconductor, dc current is carried by thermally
activated electrons in the upper band and thermally
activated holes in the lower band. Optical proper-
ties (&u at 0) arise from the mixing of the wave func-
tions of the lower band with those of the upper band

by the external electric field. These facts ape of

course well known. With this perspective let us
now turn to the Mott semiconductor. The analogy
between the noninteracting two-band system with

crystal structure gap between the full and empty
band and the single half-filled band with a correla-
tion (Mott-Hubbard) gap that splits off half the
states to higher energies is well known. The cur-
rent operator for the Hubbard model can be written
in a certain type of two-band notation. We are re-
ferring to the decomposition of the creation and de-
struction operators according to the projection
operators n; and 1-.n; . We write

~ifr = C iei + Cieu ~

where

C;, = (1 —nt, )Ctu

(4. 18}

(4. 19)

C;, (C; ) has the interpretation that it destroys an

electron on a, site that does not (that does) contain
an opposite-spin electron. In the limit b =0 for the
Hubbard model, these operators have the further
interpretation that they destroy electrons in either
of the "bands" (lower and upper, respectively) as-
sociated with the two &-function peaks in the spec-
tr'al weight function. The interpretation is no
longer precisely correct when bat 0 (see Ref. 19
for details) but has had great intuitive appeal for
very narrow bands. In terms of the operators we
can reexpress the single-band current operator
Eq. (4. 3}as

Z=teb Z (R; -R;,5)(C;aaC;,5 „
ioe

+ C4 at C 4 A ut + C tuuC 4+5 ut + Ct at C 5+5 aa} '

The projection-operator decomposition leads to in-
terband hopping terms in Eq. (4. 20), in analogy to
the interband hopping terms due to interband dipole-
moment matrix elements in the noninteracting
case. The four terms in Eq. (4. 20) relate to con-
ductivity due to thermally excited electrons (first
term} in the upper band, conductivity due to ther-
mally excited holes (second term) in the lower
band, transitions of electrons from lower band to
upper band, and vice versa (third and fourth
terms). Of these four terms, only the third gives
a contribution to the conductivity at T =O'K. In the
absence of the electron-phonon interaction this
process requires an energy U, but due to the over-
lap of the long-range tails of the upper and lower
bands (Fig. 1) in the presence of V, the dc conduc-
tivity does not vanish as T- 0 K. We note that if
the limit T-0 'K is taken first in Eq. (4. 12), the
low-frequency conductivity goes as w ' rather than
5(tu}, the latter being characteristic of free accele-
ration behavior.
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%e now briefly study the dc conductivity in the
case of an attractive on-site interaction: U, & 0. In
this ease the electronic ground state is not the Mott
insulator but consists of doubly occupied and empty
sites. An interband transition in this case involves
the creation of two singly occupied sites.

In the limit kT« IU, I in Eq. (4. 14)
2

@~2e2b2(v/4S)l/2 e-U2/48 (4. 21)

which diverges at T'=0 K. This contribution to o.

is related to the fourth term in Eq. (4. 20) and the
conductivity mechanism is analogous to that related
to the third term of Eq. (4. 20} for the case U, &0.
Note that the concepts of upper and lower in Eqs.
(4. 19) should be reversed for U, & 0. We point out
that this mechanism for the conductivity at low T
is not a superconductivity mechanism. On the con-
trary, from the fourth term in Eq. (4. 20) we see
that it is pair breaking in the sense that the term
"pair" refers to the bound spin-paired electrons
on a given site. In the absence of the electron-lat-
tice interaction, the pair-breaking term does not
contribute to the conductivity at co =0 and explicit
pair-hopping gives the lowest order (in the band-
width) contribution to the dc conductivity.

The case U, =O is also worth noting. In this case
Eq. (4. 14) becomes

o = Pqs'e'b'(v/4S)» e »4~- (4. 22)

For kT» 0, the exponent becomes I' /4S- PI'/4
and the conductivity is thermally activated (with
activation energy given by the small polaron binding

,
energy) at these temperatures. For very low tem-
peratures o againbehaves as 1/T Also, in t.he case
of U, = 0, the spectral weight function is given by

A'((u) =5 (w/2S)'/'(e" +~+e '"'"' / ~) (4 23)

V. THERMOELECTRIC POPPER

The thermoelectric power of a solid is a useful
transport property to know, since it governs many
thermoelectric phenomena (e. g. , Peltier effect,
Seebeck effect, Thomson effect). In particular, the
Seebeck effect gives a direct measure of the ther-
moelectric power as the ratio of the electric field
in a specimen to the thermal gradient that produces
the field,

The standard derivations of thermoelectric

This also reflects the fact that the energy gap is
related to the small-polaron binding energy. The
essential content of Eq. (4. 22) is familiar from
small-polaron theory ~ and can be stated in that
terminology as follows. At low T the conductivity
is band-like; the exponential factor is the familiar
oscillator-overlap band-narrowing factor. At high-
er T the exponential factor becomes a thermal activa-
tion factor and controls the temperature dependence
of o. This is the small-polaron hopping regime.

(5. 2)

The quantum-meehanieal expression for " is

P d~(zz (7))21 (5. 2)

The only new quantity in Eq. (5. 3) is the energy-
current operator Z' (J'(q.) = e'"'J'e '"'}. We denote
4; as the energy current associated with the 1th
site such that J'=g, 8', . Similarly the energy den-
sity associated with the 1th site is written as II,
such that H=g, H, . From Eq. (2. 1), we write

H, =II,"+II~+H", (5.4)

b~H, = ——~ (C„q,c„+C„cq,q,

(5.5)

The summation over I in Eq. (5.5) gives the one-
dimensional Hubbard model. The densities asso-
ciated with the phonon Hamiltonian and electron-
phonon interaction are

(5.6)

and
Hi' = I'Q~(&i&+&)&) &

(5. V)

transport properties proceed from a Boltzmann-
equation approach which describes the behavior of
free or Bloch electrons under the influence of elec-
tric fields, thermal gradients, and weak scattering.
Gn the other hand, we have been considering elec-
trons that are strongly correlated as a result of the
dominant short-range interactions. Consequently,
the physics has been more easily described in a
site-representation rather than in terms of Bloch
waves. The application of the Boltzmann-equation
approach is therefore not straightforward and it
would seem more advantageous to calculate the
thermoelectric transport properties directly in the
site representation. The quantum-mechanical
transport theory is used and site-space analogs
of continuum quantities are formulated, %e follow
closely the method of Schotte, who ealeulated the
thermoelectric properties of a single small polaron
according to Holstein's model.

The thermoelectric power or Seebeek coefficient
n is given by the relation

(5. 1)

Here p is the chemical potential, which, in this
case is given by Eq. (2. 21). e is the eiectric
charge of the electron and is a negative quantity.
o is the dc conductivity; we shall use Eq. (4. 14).
:" is a transport coefficient related to the electrical
response associated with a thermal gradient ac-
cording to the relation
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The relation between the energy density and the
energy current density is given by the conservation
law

9H
et + dlv+ 0 (5.8)

Then from Eqs. (5. 8) and (5.9) the energy current
is calculated to be

Zf =ib uZ (C~~, C„C),C „3,)

ibUa ~+
2 (Cf+2rCle CleCI+1s)(st+1-s+nt s)-

ibVa ~+ (Cl+leC1e CleCE+is)(@l+1+1) '

(5. 10)
The calculation of:" in Eq. (5.3) is now straight-
forward and similar to the calculation of the con-
ductivity in See. IV. " is calculated to second
order in b. The first term in Eq. (5. 10) leads to
a 5 term in -" to lowest order but this term actual-
ly vanishes. The details of the calculations are
given in the Appendix and the final result is

:" = (U~/2e)c, (5.11)

where, from Eq. (2. 24), U2 ——U —2I' and c' is given
by Eq. (4. 14). Since the chemical potential p, is
equal to & U2, we see from Eq. (5. 1) that the ther-
moeleetrie power is zero.

This result is in agreement with the thermoelec-
txic power of an ordinary two-band intrinsic semi-
conduetox. It is also in agreement with that of a
single half-filled metal~~ given by the first term of
Eq. (2. 2) alone. The vanishing of the thermoelec
tric power for a half-filled band thus appears to
be a somewhat general property xelated to the par-
ticle-hole symmetry'3 of the half-filled band. If
the number of electrons is not equal to the number
of sites, the thermoeleetrie power of the non-half-
filled band metal for kT «E~ is linear in tempera-
ture, as expected, and also proportional to

Ex[1 —(Ez/25)'] '"
where E+ is the zero-temperature Fermi energy.
For the half-filled band, E~ is of course zero. e
also changes sign as a function of EJ; at EF =0.

On the other hand the thermoelectric power of
the near-half-filled band Mott insulator behaves
quite differently. Further details for this case will
be presented elsewhere. ~6

here the div operator in site space is given by

(5.9)

The time derivative of If, in Eq. (5. 8) is calculated
from the equation of motion

VI. DISCUSSION AND SUMMARY

The transport properties of a half-filled band of
electrons that are interacting strongly with each
other through the short-range Coulomb repulsion
and also with intxamolecular vibrations has been
studied. The electronic bandwidth was taken to be
the smallest parameter in the problem and the dc
conductivity was obtained to second order in this
parameter. The thermoelectric power was also
ealeulated and found to be equal to zero, in agree-
ment with the result for a two-band intrinsic semi-
conductor and is an apparent consequence of parti-
cle-hole symmetry of the half-filled band.

The one-electron spectral weight function was
calculated and it was found that the coupling to the
phonons led to a finite density of states in the nomi-
nal Mott-Hubbard gap. %ith increasing tempera-
ture the band tailing became more appreciable and

suggested a possible interpretation in terms of a
gradual semiconductor-to-nonsemiconductor tran-
sition (to the extent that the microscopic features
of the density of states of the semiconductor, name-
ly, two distinctive, appreciably nonzero regions,
became nondiscernible). Of our calculations of the
transport properties, the dc conductivity is a de-
creasing function of temperature at high T, in
qualitative agreement with the behavior found in
typical metals (but it is also consistent with the be-
havior of a semiconductor with a temperature-in-
dependent gap; see Ref. 18). The zero thermo-
eleetrie power is in agreement with the result for
a half-filled-band metal and an ordinaxy two-band
intrinsic semiconductor. However, as noted the
thermoelectric power is not typical of a metal for
the near-half -filled band.

The results for T-O are also interesting. The
spectral weight function was shown to have long-
range tails even at T'=0. As a consequence of this
tailing the dc conductivity behaved as 1/T (or 1/v)
at low T. On the other hand, an explicit calcula-
tion of p& —p& in Sec. II yielded a nonzero result in
the thermodynamic limit. p& —p& is given [Eqs.
(2. 13) and (2. 14)] by differences in exact ground-
state energies; however an electron injected into
a specimen from a battery will not in general be in
an eigenstate. In particular, Eq. (3.18) predicts
that an electron injected onto a given spatial site
can be accomodated over a continuous range of en-
ergies. In connection with these results we note
the conclusion by Leib and Wu~ that the one-dimen-
sional Hubbard model is an insulator for p &0.
Their conclusion is based on the criterion that p&
—p& is nonvanishing in the thermodynamic limit.
%'e raise the questions: is it possible that a finite
bandwidth will lead to long-xange tails in the den-
sity of states of the one-dimensional Hubbard model
and if so, will the de conductivity be nonzero~
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The dc conductivity behaves as T ' at very low
temperature. This behavior was accounted for in
terms of the form of the current operator near the
atomic limit and the long-range tails in the spectral
weight function and optical conductivity. The T
behavior was found for attractive on-site interac-
tions as well. In this case the large conductivity
was related to a, pair-breaking mechanism in con-
nection with bound spin-paired electrons on given
sites.

In the case that the polarization associated with
the vibrational motion exactly cancels the repulsive
on-site interaction, the conductivity is easily re-
lated to the concepts of small polaron theory.
Band-narrowing and thermally activated hopping
processes are easily identified.

In conclusion we have attempted to elucidate some
of the properties associated with electrical trans-
port in a strongly correlated half-filled band in the
presence of strong coupling to intramolecular vi-
brations.

n, g; e, ee

[(~i+Io'Cgo' io'C I+I o')

x[U(n„g ~ +ng, )+V(q, +Q„I)]]e ' ').
The operators indexed by n are representative of
the electrical current operator. The first term in
E&I. (5. 10) leads to a b' in ", to lowest order.
However, since the first term in E&I. (5. 10) hops
the electrons over a distance of two sites and the
electrical current operator hops the electrons over
a distance of one site, the diagonal matrix elements
of the product of these two operators is zero in the
atomic limit states.

In E&I. (Al) it is more convenient to calculate the
time evolution of the less-complicated electrical
current operator. %'e use the invariance property
of the trace and also take H =HO. We use

In this Appendix, -" is evaluated as described in
Sec. V. We start from E&ls. (5.3) and (5. 10). We

I

iHOTC el @0' —C el& Unff-e+~Q
Ne ffe

The thermal average in E(I. (Al) is now written

((Qg &" e &IU(on~1-o nn-1&+F(Qn+I Qn))o CI (, e&IV(no+I-o"nn-o&+F(Qn+1 Qn&g~)
ff+f e ffe tfe 5+1 e

x(&'g.g. (-i; Ci'o C—g,g;)[U(ng. g-:+ng-~)+V(qg, g+Qi)])= —5.~5.g((ng. g.(l-ng. )

Xe-&IU(ng+I o-ng o)+F(QI+I Qt&)o+n &I n get(U(ng+go ng o)oF(QI~I-Qg))o)
l e% l+1 ej

&&[U(n... ,+n, ,)+ V(q...+Q,)])=—25„,5„g(ng.„(I n„)-
xe-'Iv&"I I-~"I- &'"'Qi I Qg&1'[U(n„i, +n, ,) + V(Q...+Q,)]) .

In the last form in E(I. (A2), the indicated thermal average can be separated into two terms:

7 = U(n (1 n)e "—"'"I I o "I "' 'Q-t -I Q""(n„, +n, ))

V(n (I n )e i(v(ni+1 o ng o)oF(Qgog Qg)I(q +q ))

Again, we follow the method of E&ls. (2.6)-(2. 11) and write

l7l U(n j I n )( + n )e to( Vining o I ning o+FQggg Vgng y+rng o FQI ))
1 l+1 l l+1" l"

U(n n e ( «V+ ingogrngyg o))((l n )e&o(VIng o mt o)) e So
l+1 e'"l+1-e le

+ U(n e-go(Ugng+I O-rngog o))((1 n )n eio(Uing o-I'ng o))e-So
l+1 e l e l-e

8&2
[e«( vg I') + 2esUI g set ro+esUI e«(I'+UI&][2(I+""")1' '

In a similar manner, again using E(ls. (2. 6)-(2.11) we obtain

V(n (I n )e-«(Vgng I - rot+I o+FQI I Ugng - mt -FQI&(q +q ))2 l+1e l e l l+1

p(n (I n )e-«(Vining -o"I'ning o+FQI I Ugng ooI'ng o-FQI)(n +n ~n +n ))l+1 e l e l+1 e l+1-e l e

(A5)

The first term above is zero. This is seen as follows. The thermal average can be separated as (average
on l cetre)ons((qx' geg)FQI(nQn+„geQI+1)n„). We differentiate E(I. (3.11) with respect to F and obtain

(e-&FQo) pre So /2 . -
yh (A7)
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however, Etl. (A7) is also etlual to —tV(Q ' ~)~. This implies that

(qeiTvo) + (qe-i've) [ pre- s!' /a+pre sr /sj 0

Hence only the term proportional to I' remains in Etl. (A6). The last factor tt„„+it„t,+it„+ttt, in that
average can be broken up as follows: (i) the term nt, does not contribute, since (I - ttt, ) ttt, =0; (ii) the term
n„, ,+n, , implies the same thermal average encountered in T,. Hence vie f et a contribution to T~ that is
just —(I"/U)T„(iii) the remaining thermal average comes from the term n„t, and since (tt„„)=it„t we
need to evaluate

( ( ) -iv(v n -rn +vo -v n +rn -vo ))1+1 tyx J fy~

ST2

iver( itvt/2 irvt)-(1 svt/s iwvt)
[2(1 "'")l'

e- saba

(&iver(

vt- r& 2ett vt/aei~r p vtei~ & vt+r&)
[2(1+e' t/')]' (A9)

Again we find that this contribution to Tz is just —(I'/U)Tt. The total contribution to Ts is —(21'/I/)Tt. We
use this result and Eels. (A5) and (A2) to write

2
U 2I y

~ I -&U1-I ) /4s 2 AU)/2 -r /4s K'y -~/4sE
2(1+esv»)' ' ' CS

+e&e+ee
From Etl. (4. 14) we see that:" is just proportional to the dc conductivity " = (I/2e)(U-21')v.
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