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Theory of magnetophonon structure in the longitudinal magnetothermal emf
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The magnetophonon effect, as manifested in the longitudinal magnetothermal emf (Seebeck coefficient
Q.,.), is examined analytically and numerically in the limit of no Landau-level broadening, for
combined optic and acoustic-phonon scattering of electrons in nonpolar semiconductors. In addition to
off-resonance maxima occurring at magnetic fields somewhat larger than those given by the
Gurevich-Firsov resonance condition No, = wy, N = 1,2,..., where o, and o, are the cyclotron and
optic-phonon frequencies, discontinuities in the derivative of Q,, with respect to magnetic field are
found. The slope discontinuities lie precisely at No, = w, and at 2n + 1) o, = 2w, n =0,1,..,
yielding additional structure characterized by 9|Q,,|/0B_ > 91Q,,/3B; at all temperatures and degrees of

elastic scattering.

I. INTRODUCTION

In this paper we examine theoretically the mag-
netophonon effect as manifested in the longitudinal
magnetothermal emf (magneto-Seebeck effect).
The magnetic field dependence of any transport
property in which inelastic electron scattering on
optic phonons is significant is expected to show a
characteristic oscillatory structure. Studies of
these magnetophonon oscillations have, to date,
been limited largely to the resistivity tensor, even
though the first experimental report of magneto-
phonon oscillations® showed the effect in the longi-
tudinal magneto-Seebeck coefficient @,, as well as
in the longitudinal and transverse magnetoresis-
tance. Magnetophonon studies have been reported
on the magnetothermal emf only for n-InSb, =3
n-InAs, % and n-Ge.® The results can be sum-
marized as follows: |Q,, | shows oscillatory
structure whose amplitudes are comparable to or
larger than those seen in the magnetoresistance.
The data published to date do not permit one to say
definitely whether the maxima or the minima are
the most pronounced features, to be associated
with the Gurevich- Firsov (GF) resonance condition’

Nw,=w, N=1,2,..., (1)

‘where w, and w, are, respectively, the cyclotron
and optic-phonon frequencies. However, one can
say that the maxima seem to be shifted systemati-
cally to somewhat higher magnetic fields than those
given by Eq. (1), or the fields at which the trans-
verse magnetoresistance maxima are found. The
extrema also decrease in amplitude with decreas-
ing mobility and with increasing temperature above
a certain optimum temperature. '
Two theoretical studies on the longitudinal mag-
netothermal emf have appeared to date. The first
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was by Pavlov and Firsov, ® who used the same
model as in the pioneering work of Gurevich and
Firsov’ on the magnetophonon effect in the mag-
netoresistance. This model consists of an iso-
tropic polar nondegenerate semiconductor with a
parabolic conduction band centered at k=0. Pav-
lov and Firsov treated combined scattering of elec-
trons on acoustic and optic phonons, and neglected
collisional broadening of the Landau levels. They
deduced that maxima in | @,, | should occur at or
near the fields given by Eq. (1), for all tempera-
tures and proportions of acoustic to optic phonon
scattering. Recently, Barker® has used the Kubo-
Luttinger response formalism to investigate the
magnetophonon oscillations in @,,. Considering
scattering on optic phonons in nonpolar semicon-
ductors, in the limit of strong Landau-level broad-
ening, his analysis indicates that |Q,, | would have
maxima displaced toward higher fields, in qualita-
tive agreement with the experiments. However, a
deep minimum is experimentally observed at about
w.=~ 1. 5w}, which is not contained in Barker’s re-
sults, and suggests that the strong damping approx-
imations made were too severe for an accurate de-
scription at the higher fields.

In addition, one should expect on physical
grounds'® * that a proper formulation would also
contain structure at magnetic fields given by

(2n+1)w,=2wy, n=0,1,2,... . (2)

The physical reason for this “pseudoresonance”
structure is discussed below, and in detail in Refs.
11 and 12, References 8 and 9 do not contain this
structure for the reason that optic-phonon emission
processes are omitted from the analyses. Ob-
served in the longitudinal magnetoresistance at the
higher temperatures in high-mobility samples, the
pseudoresonances in @,, have not been seen to date.
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In this paper we present the results of a detailed
study in which no approximations whatever are
made within the model used, which is that of Pav-
lov and Firsov® except that we consider nonpolar
semiconductors. As emphasized previously, '3
the nonpolar form of the scattering matrix elements
greatly simplifies the mathematics, and together
with the assumption of no level broadening—the op-
posite limit to that of Barker—allows a detailed
examination of the predicted structure. Briefly,
we find that there are maxima in | @,, | as found by
Pavlov and Firsov, but that they are systematically
displaced to higher fields than those given by Eq.
(1). The amount is typically several percent and
depends both on temperature and amount of elastic
scattering. The computed displacements are ap-
parently not as great as observed experimentally,
but show that the observed displacements are not
due entirely to level-broadening effects. We also
find the deep high-field minimum mentioned above.
Our work also shows the existence of slope dis-
continuities in @,,, precisely at the Gurevich-Fir-
sov fields, Eq. (1), and at the pseudoresonance
fields, Eq. (2). These discontinuities are charac-

terized by
3|Q,,|> 9 1@, | (3)
9B- 9B,

at all temperatures and proportions of elastic scat-
tering, where B- and B. refer, respectively, to the
derivative evaluated from the low-field and high-
field sides of the field in question. Thus, addition-
al structure, tending in the direction of maxima,
occurs. However, this structure is less pro-
nounced than the corresponding structure in the
longitudinal magnetoresistance. ! This probably
explains why the pseudoresonances have not yet
been observed in @,,, although as stated earlier,
much less experimental work has been done on
Q.., and the various derivative techniques'*” !¢
so well on the magnetoresistance to reveal the
structure more clearly have not yet been attempted
for the longitudinal magnetothermal emf.

In Sec. II we give the theoretical description of
the model used, evaluate the Seebeck coefficient,
and work out the slope discontinuities at the GF
and pseudoresonance fields. In Sec. III we present
the results of computations in the form of two rep-
resentative figures, and provide some further dis-
cussion.
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II. THEORETICAL ANALYSIS

The model is that of an electron interacting with
optic and acoustic phonons in a nondegenerate non-
polar semiconductor, having an isotropic, para-
bolic conduction band centered at k=0 and charac-
terized by an effective mass m*. The interactions
are of the deformation potential type, with squared
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matrix elements given by
'Mon |2=E21<m;i(")o/z.p“'l2 ’ (4)
| Mo [2=EiRq/ 201, , (5)

where E,, and E, are, respectively, deformation
potential energies for scattering on longitudinal-
optic and acoustic phonons. The optic-phonon fre-
quency w, is taken as dispersionless, and linear
dispersion (w,=qu;) is used for the acoustic pho-
nons of wave number q. The sample mass density
is p, and p, is the longitudinal sound velocity av-
eraged over direction. Scattering on the acoustic
phonons is considered to be elastic, and equiparti-
tion for the acoustic phonons is used.

Some aspects of this model perhaps deserve
comment. The optic phonons are of course slight-
ly dispersive. Although no magnetophonon calcu-
lations have yet taken this into account, one can
see from the physical picture for the structure!’!?
that the effect will be to shift the magnetic field
positions of the various features by a small
amount; the optic-phonon dispersion will have no
tendency to smear out the discontinuities. Non-
parabolicity of the conduction band is often signifi-
cant; its effect will be to split each kink calculated
here into a group of closely spaced kinks. Level
broadening will tend to smooth out each feature,
and is more important at low magnetic fields and
high temperatures. Finally, the structure calcu-
lated here for nonpolar materials should be qualita-
tively similar to that for polar materials. The
only mathematical difference is that the scattering
matrix element varies inversely as the phonon
wave number, instead of the constant given by Eq.
(4). Further, a comparison between our nonpolar
results'! and the recent results of Magnusson'’ for
polar materials shows a close similarity of the
magnetophonon structure in the longitudinal mag-
netoresistance.

The Hamiltonian for this electron-lattice system
in parallel electric and magnetic fields in the z di-
rection is
_ PE+PE+ (py+m*wcx)2

i 2m*

+%, +V+eEz (6)

in the Landau gauge, where w.=eB/m* is the cy-
clotron frequency, 3¢, is the lattice Hamiltonian,
and V represents the electron scattering mecha-
nisms. The electron energy eigenvalues are

8alks)=TRE/2m*+ Mo (n+ 3), n=0,1,... .
(7)

The Boltzmann equation is adequate for this
model. Its solution, !! linearized in the electric
field in order to describe the Ohmic regime, gives
for the electron distribution function

Folk)=F (kg) + BN i) Lnke)

ok, (8)
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(This result is also obtained as a special case from
a density matrix formalism developed by Arora
and Miller. *®) Here fJ(¢,) is the Fermi function,
which becomes in the nondegenerate case

FUk,)={exp[B(8,~ £)]+1} 1~ e Bk | (g)
Also,

se_ 2173}2’2)3/2 sinh(3 grw,)

e »—ne( e Bhiw, ) (10)

where ¢ is the Fermi energy, B=1/kT, n, is the
electron concentration, and

e D aealm,

X[ o 6, + (7, Mg+ 1)0- ] (11)
Troro = [eXD(B0, )~ 1170, (12)
5,2 0[all) = Eup )£ 00, o] (13)

Spin degeneracy accounts for a factor of 2 in Egs.
(10) and (11), and a refers to the optic- or acous-
tic-phonon modes. The right-hand side of Eq. (11)
reduces to the form shown for the present model
because the apparent ¢ dependence vanishes.

We now turn to the derivation of the expression
for the longitudinal magneto-Seebeck coefficient
Q,,(ﬁ). Under the combined action of a tempera-
ture gradient and an electric field, both in the z
direction, the heat and electric currents are giv-
en, respectively, by

aT

Fzz)/zzE*_Xzz—a; ’ (14)
aT

J=0,E*— B, E s (15)

where E *=E +e ' 9;/8z. The Seebeck coefficient

is defined by

aT
E=Q,, a ’ (16)

with the subsidiary condition that J,=0. To avoid

a first-principles calculation of §3,,, since it is the
coefficient of a temperature gradient, we make use
of the Onsager (Kelvin) relation’

Yzz(ﬁ):: Tsz(g) . (17)
Thus
B e
Que= o = i (18)

To evaluate v,,, one determines’ the heat current
as

Fz=(ne/m*)(('7ce_§)pz>, (19)

where 7C, is the electron Hamiltonian, and () de-
notes an average with respect to the distribution
function (8). The electric current is given by
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Jp==nqe {b)/m* . (20)
Reduction gives
2 9 0
0=-eAZ | db, T,,(k,)( *) 8’; , @
o rk ar 0
—— +eA§)Idk,(m:) 8utn 55 » (22)
with
_Mee 2ﬂﬁﬁz>”2 o BRw,
A= . ( - sinh 5 (23)

The Seebeck coefficient thus is

¢B) 1 T.fdk, kzs Tof o
eT eT Z,.fdk 2Taf 9

The magnetophonon structure is thus determined
by the relaxation time 7,(¢,) and modified by the
other factors in Eq. (24). We display 7,(k,) for the
present model:

1 (Zm"‘)‘”z E%, ln(,h'(.u W,y
Tn \ K2 4mpp?

Qee= (24)

X E{[s,nm (n=n")+ Fwg) "1/2

n'=0

+e.y[6z+ hwc(n =n')- ﬁ‘*’o] 12

+C[8,+ Hw n —n")] V3 (25)
where
8,=H2k%/2m* (26)
y=Hhwy/kT , (27)
2 (E,\
-2 (L1 28
¢ oy <E10n> ’ (28)

and 7, is the thermal population of optic phonons,
determined by Eq. (12). Terms of the form x 12
are defined to be zero for x <0. The first term
on the right-hand side of Eq. (25) describes optic-
phonon absorption; the second term, optic-phonon
emission; and the third term, both absorption and
emission of acoustic phonons.

Inspection of these terms reveals the physical
reasons for the various magnetophonon structural
features (more details may be found in Refs. 11
and 12): The Pavlov-Firsov® maxima, which in
fact are off-resonance features, and the strongly
damped structure described by Barker,® are de-
termined principally by the optic-phonon absorption
term and are due to the onset of optic-phonon ab-
sorption processes ending at 2,= 0 which become
possible when the energy difference between two
Landau levels becomes greater than the optic-pho-
non energy. The effect of these processes becomes
more abrupt (though not discontinuous) as the tem-
perature is lowered, because the Boltzmann factor
favors the lowest-energy electrons. The discon-
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tinuities in slope occurring precisely at the GF and
pseudoresonance fields are the result of a “limit-
ing” or dominant scattering mechanism (a process
ending at k£,=0 which significantly affects the mag-
netic field dependence of o,, or 7,,) changing from
one type to another as the magnetic field increases
through the value in question. The change is from
optic-phonon absorption to elastic scattering at the
GF fields, and from optic-phonon absorption to op-
tic-phonon emission at the pseudoresonance
fields. 71

For easier comparison with experiment, we pre-
sent the results as AQ,,/Q,,(0). For this, one
needs @,,(0), which is obtainable either from Eq.
(24) as B~ 0, or directly from the B =0 counter-
parts to the preceding equations. The result is

_ _i_e_ _g(ﬁ - Fl('y’ 0))
sz(o)_ e ( kT FO(V, 0) ’ (29)
where
« e % n*3/2
Fuly, 0)=J; dx CxV2y (x+y)/2re(x~ VWE(3’0)

and ¢(0) is obtained from Eq. (10).

Finally, we calculate the values of the discon-
tinuities in the magnetic field derivatives of @,,(B).
These are obtained readily from inspection of the
results for the longitudinal magnetoresistance. '?
Both evaluation of the derivatives and numerical
computation are greatly facilitated by using the
transformation and resummation technique intro-
duced previously. !! One can then rewrite Eq. (24)

in the form
_k(tB) _FyH)
st(B)" e ( kT Fo(‘)’, H)) ’ (31)
where

L 1
Foly,H)=G/H) I | dyernerm
m= 0

L An0)y s

Gnly; v, H) ° (32)

H=w,/w,, (33)

An()=2 ()2, (34)
=0

m m
Guly; v, H)=C 20 (y+n) Y24 20 y+n+H)V/2
=0 N==co

m
+ve? 22 (in-HIyV?2, (35)
n=0
We shall denote the derivative discontinuities by
_0A aA
Awl=om | el |, (36)

where the - and + signs refer, respectively, to the
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derivative evaluated from the low-field and high-
field sides of the magnetic field in question. Then
from Eq. (31),

AyS=T[F(AyFg)/Fo= AyFy], (37)
where

S= sz(B )/sz(o) -1 ’ (38)

I'= k/[ng(')/, H) Q"(O)] . (39)

A 4 Fywas determined in Ref. 12, and A, F, may
be determined from it by inspection. Thus one
finally gets GF resonances (H=1/N, N=1,2,...)

AHS':'}/H l r ’ <ij;0(m+%—z)Rm(1; YyH)

o

+ 2

m=Na1l

(m+3=2)Rn(1; v, H)

5 (m + 1= 2)R,(0; 'y,H)) ; (40)

m=0

and pseudoresonances [H=2/(2N+1), N=0,1,...]
AyS=2yH |T| 22 (m+1-2)Ry(3; v, H), (41)
m=N

where
z =F1(7’ H)/["/HFO(Y’ H)] ’ (42)

Rn(y; v, H)=H 2" """ 4 (y)/Guly; v, H) .
(43)
The term containing R,,(0; v, H) in Eq. (40) is iden-
tically zero except for pure optic-phonon scatter-
ing.

To discover the signs of the derivative discon-
tinuities, we note that in the quantum limit (yH
>>1) small values of y are favored in Eq. (32).
Thus, retaining only the » =0 term, and setting
y+m+ 3 equal to 3 in F,, we see that z= 3. From
Eqs. (40) and (42) it follows that all A, S are posi-
tive in the quantum limit. At higher temperatures
or lower fields, the value of z increases, but is
not easy to estimate analytically; however, the fol-
lowing approximate argument can be used. From
Egs. (34) and (35), one sees that the ratio 4,,/G,
is of the order of unity, so that the m dependence
of R,, in Eq. (43) is principally e ™", With this
form, the summation in Egs. (40) and (41) can be
carried out. Thus, for any v and any integer N,

" H o
- emyH _ Ny H €7 +(N+v=-2z)(1-e7")
’El;v (m+v-2z)e e A=) .

(44)
For yH sufficiently small, this expression is posi-
tive. Thus, although this approximate argument
does not of course constitute a proof, we conclude
that all A4S are positive at most, if not all, val-
ues of T, B, and amount of elastic scattering. All
of our numerical investigations further corroborate
this.
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III. RESULTS AND DISCUSSION

The results of a computer evaluation of @,, are
presented in this section. Figure 1 shows the
magnetophonon structure at three temperatures
(Bwy /T =6, 3, and 1.5) for pure optic-phonon
scattering. The Pavlov-Firsov maxima dominate;
they are seen to decrease in amplitude and shift a
few percent toward higher fields as the tempera-
ture increases. Pseudoresonance “maxima” are
observed, whose positions are indicated by arrows
in the figure, and are slightly more pronounced at
the higher temperatures. The slope discontinuity
at the N=1 GF field can be seen in the inset, but
is small at all temperatures. Figure 2 shows the
magnetophonon features at 7w, /kT =3, and three
proportions of elastic scattering [b = (E ;,,/E,)?= 6,
60, and «]. One observes that increasing elastic
scattering causes the Pavlov- Firsov maxima to
decrease in amplitude and shift toward higher
fields by several percent at b =6, which is a rep-
resentative value'® (b = 3. 5 for p-Ge, a nonpolar
material).

The two figures show that the discontinuous
structure at the GF fields and pseudoresonance

0.20

0I3

AQ,, 010
a0 °

W / Wo

FIG. 1. Relative longitudinal magneto-Seebeck coeffi-
cient as a function of magnetic field for pure optic-phonon
scattering of electrons at three temperatures. Numbers
on curves are values of 7=h’w°/kT. The arrows lie at
the pseudoresonance fields. The inset shows the region
near w,=wg on an expanded scale; the y=1.5 and 3 curves
are translated upward by the amounts shown in parenthe-
ses, to separate the curves.
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FIG. 2. Relative longitudinal magneto-Seeback coeffi-
cient as a function of magnetic field, at a temperature
corresponding of %w o/kT =3, and three amounts of elastic
scattering. Numbers oncurvesarevalues of b = (E,, /Ey)?;
the b=6 and 60 curves are translated upward by the
amounts indicated in the parentheses, to separate the
curves. The inset shows the region near w,=w; on an
expanded scale.

fields is considerably smaller than in the longitudi-
nal magnetoresistance at the same temperatures
and degrees of elastic scattering. ! When the
smoothing effects of level broadening are consid-
ered, it is clear that these structures will be cor-
respondingly harder to observe experimentally.
The structure at the GF fields will likely never be
resolvable from the Pavlov-Firsov off-resonance
maxima. The pseudoresonances are more likely
to be observed, particularly the one at w, = 2w, be-
cause of its isolation from the remaining structure.
Finally, we call attention to the high-field mini-
mum lying at about w,/wy= 1. 2-1. 4 in the figures.
Its amplitude and extermal position vary with tem-
perature and elastic scattering in the same manner
as the Pavlov-Firsov maxima.

In summary, our analysis of the longitudinal
magneto- Seebeck effect in the limit of no Landau-
level broadening in nonpolar semiconductors,
shows the general magnetophonon structure which
has been observed experimentally to date—including
maxima shifted to the high-field sides of the GF
resonance fields, the pronounced high-field mini-
mum, and decreasing amplitudes with increasing
temperature and increasing competition from elas-
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tic scattering. The shifts of the maxima are not
as great as those observed, however, and level-
broadening considerations, such as those of
Barker, ® likely have to be invoked to explain the
differences. In addition, extra maxima are pre-
dicted, which take the form of kinks at the GF and
pseudoresonance fields in the no-level-broadening
limit. These have yet to be observed, although it
may be worth noting that Puri and Geballe® stated
that they observed small kinks in addition to the
large Pavlov- Firsov maxima in their work on

n-InSb. It is of interest to see whether the more-
sensitive derivative measurement techniques !4~ 1®

used with the magnetoresistance, but not used yet
with the longitudinal magnetothermal emf, would

reveal this structure.
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