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Decay of polar-optical yhonons in semiconductors
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In electrical transport in compound semicondutors, the polar optical phonons can be driven from

equilibrium by energetic phonon emission from the electrons. These phonons decay via bulk interactions
with the acoustic modes through anharmonic terms of the crystal potential and through the
second-order electric moment, or secondwrder piezoelectric, of the lattice. The relaxation rates for these

processes are calculated and applied to InSb. It is found that the second~rder electric moment
dominates the decay of the polar modes although the two processes are comparable in magnitude.

I. INTRODUCTION

In many el.ectrical transport problems in semi-
conductors, especially at low temperatures, the
energy and momentum relaxation are provided by
interaction of the electrons with optical phonons.
In compound semiconductors, the pertinent mode
is the longitudinal polar optical phonon. The emis-
sion of these phonons is the dominant energy and
momentum relaxing process for the electrons,
even at low temperatures where the optical modes
are not strongly excited. ~ The emitted phonons can
either decay to acoustic modes or be reabsorbed
by the electrons. For either of these processes,
the polar phonon distribution is driven out of equi-
librium due to the phonon emission by the elec-
trons. Experimentally, it has been verified that
the yhonon distribution is, in fact, disturbed by
the electrons. The phonon distribution itself is de-
termined by a balance between phonon emission and
absorptionby the electrons andbydecay of the polar
modes into the acoustic modes. In many applications,
the decay of the polar mode into acoustic modes can
be characterized by a lifetime for the phonons.

The decay process arises primarily from a
three-phonon interaction in which the polar phonon
is annihilated and two acoustic phonons are created
in a manner which conserves both the total phonon
energy and momentum. This interaction occurs
through the anharmonie terms of the lattice poten-
tial energy, similarly as for nonpolar modes. e A
phenomenological treatment of the decay of non-
polar optical phonons via these anharmonic inter-
actions has been given by Weinrich4 and by Kle-
mens. ' Calculations for the polar mode have been
presented by the present author, but these incor-
rectly incorporate the lattice polarization into the
interaction. In addition to the anharmonic decay
it is also possible for the polar mode to decay
through coupling of the electrical polarization of
the polar optical phonon to two acoustic phonons
by means of the second-order piezoelectric ef-
fect. In this paper, the rate of polar optical pho-
non decay into acoustic modes is calculated for

both the anharmonic interaction and the second-
order piezoelectric interaction. This rate is cou-
pled to the concept of a phonon lifetime for the case
in which it is applicale.

II. POLAR OPTKAL MODES

The polar optical mode of vibration arises in
compounds and crystals due to the ionicity of the
chemical bond. Even in covalently bonded ma-
terials, the compounds that lack inversion sym-
metry exhibit ionic bonding to some extent, char-
terized by their effective charge. This effective
charge contributes an electric polarization for the
longitudinal optical vibrational mode that is aligned
along the inter-ionic axis. The yolarization is
given byv'
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where u, and u~ are the boson annihilation and
creation operators, respectively,

i/y = ((u~()/4m) (i/e „-1/e,), (2)

ruo is the angular LO polar frequency, &„ is the
high-frequency dielectric constant, and co is the
low-frequency dielectric constant. The factor i/y
plays the role of the square of the effective charge
normalized to the ionic reduced mass, so that the
actual displacement vector is given byv
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where M is the average ionic mass of the lattice
atoms. This result is just that expected for the
nonpolar interaction. For that reason, we expect
that the anharmonic interaction will yield results
that compare favorably with the yhenomenological
results that have been obtained previously. 4

III. ANHARMONK DECAY

The polar optical yhonons do not effectively
transfer their energy to the surface, because of the
extremely small value of the group velocity of
these phonons. These phonons can decay, how-
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ever, through a three pinon interaction involving
the acoustic modes of the lattice. One of the pos-
sible three phonon interactions is due to the an-
harmonic terms of the crystal potential. To a
normal system, a cubic term in the strain can be
added to the crystal potential as3

1
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where N is the number of unit cells within the crys-
tal, in Fourier transform form, and A is the
third-order elastic-strain constant and is a third-
rank tensor. For the two acoustic modes, $ ~, 5 ~
are represented by

&f2

(8)

much as for the optical mode from Eg. (3). Re-
taining only the term involving the annihilation of
a polar mode phonon and the creation of two acous-
tic modes, E(I. (4) becomes

over q is changed into an integration as

The 8 integration is easily carried out, yielding
simply a factor of 2m. The remainder of the in-
tegral is

I= ~ p 5(8(oo —kv, q'
4m'- g« fq +ql

nv-, ~q'+q~)dq'stnede . (12)

For ease, the polar axis is taken as the q direc-
tion, so that

~

(I'+q~ = (q~+ qa+ 2qq'cos(9)'~~ .
The integration over 8 involves the 5 function and
sets limits upon the range of q . For example,
we must have

)f&u, —hv, q' —hv, (q' —q) & 0,
(14)
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or

&uo/2v, -q&q'«do/2v, +q .
where 8 is the appropriate average over the various
polarizations involved. The corresponding matrix
element is then given by

Moreover, the 5 function also requires

~C +@=&o/v —q

so that the integration over 8 yields the easily
evaluated result

(18)
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where we have used the relation ~,.=q'v, for the
two acoustic modes. The boson probability func-
tions are the normal Bose-Einstein relations
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The resulting decay rate is then

r =r, n, (n,'+I)',
where

(18)
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The summation over q" is readily accomplished
via the Kronecker 5 function for the total phonon
momentum.

The transition rate for decay of the polar mode
phonon to the acoustic modes is given in terms of
the matrix element as

I' = 2
~
M».

~
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or, using the above expression for M». and sum-
ming over q
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In general, q is much smaller than q so that the
difference in the exponentials is small. We shall
neglect this effect in the n, terms. The summation

I' =kg~ V/8mM Nv (do

(e Lao i2))er 1)-1 (20)

The factor I; in Eq. (19) differs from the phe-
nomenologieal result of heinrich only in the nu-
merical factors. These are very little different
from his. However, his results do not include the
temperature variation included in the boson occu-
pation factors. There are very little data available
on the third-order elastic constants of the QI-V
compounds, especially in the case of InSb, which
we shall use as an example, due to the considerable
interest in its electrical transport properties at
high electric fields, where the optical phonon dis-
tribution may be disturbed. Moreover, the ex-
periments which tend to show this disturbed dis-
tribution were in InSb. 2 The average elastic, con-
stant .Q. is an appropriate average over the third-
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order elastic constants. A value of 3.7 X10 can
be extrapolated from the data of Drabble and
Brammer, while similarly a value of 3.8&10'2
is obtained from the work of Gubanov and Davy-
dov. ' Both values are in dyn/cm .These values
were obtained primarily by ultrasonic waves prop-
agating in the presence of an additional uniaxial
stress. A value of 3.7 x 10~2 dyn/cm2 has been
adopted for this work. The value of the other pa-
rameters used are their normal values. A result
for I; of 1.26X10' sec ' is found. The term in
n, yields a slight modification of this at higher
temperatures in addition to introducing a tempera-
ture variation of this decay rate.

IV. PIEZOELECTRIC DECAY

( a/Q)'- l.43X10' (23)

(27)
and n,' is the same as that of Eq. (20).

There is very little data on the value of the sec-
ond-order electric moment, especially in InSb.
However, its relative importance can be inferred
from the calculations of Flytzanis ~ for the relative
effects of two phonon Raman scattering. Such an
extrapolation gives the factor

In addition to the anharmonic decay discussed
above, the polar optical phonons can also decay in-
to acoustic modes via the second-order piezoelec-
tric, or second-order electric moment, interac-
tion. The potential term that is pertinent from
the total crystal potential is just

(21)
a~a ~a

in Fourier-transform format. The quantities $...
g," a,re just those of the acoustic phonons from
Eq. (5), while

I'~ =1.5X', =1.Qx10 sec

The combined decay rate then becomes

: r=r, (n,'+1)'n, ,

where

I"
o

= I', + 1"~= 3.16x 10 sec

for the values given above.

V. LIFETIME

(30)

(31)
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Retaining only the terms for annihilation of one
optical phonon and the creation of two acoustic
phonons, the perturbing potential is just
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and the matrix element becomes

1x, „5O -„-,, -,i.n, (n, , yl)(n, „pl) .
ig g

(24)

The lifetime of the excess polar optical phonons
is related not only to the rate at which they can de-
cay into two acoustic phonons, but also to the rate
at which they are generated by decay of the acous-
tic modes. ' Thus, the continuity equation for the
optical phonons may be written

' =-(r -G}

where r is given by Eq. (30) and G is the rate at
which the polar modes are generated by three-
phonon processes. The matrix element in G is
the same as that for I' since the interactions are
the same from considerations of detailed balance,
but the operators are now a, a,.a," rather than the
a, a, .a," that were used in Eq. (6). The resulting
change is in the phonon occupation numbers only,
and we may write the generation rate of optical
phonons due to the three-phonon process as

Except for the constant factors, this matrix ele-
ment has the same dependence on q', q

' as does
the matrix element for the anharmonic decay. %Ye

can therefore use this term in Eq. (9), follow the
same integration procedure, and obtain

G = r, (n, +1)(n,'}',

„,' =- r, [n,(n,'+1)'-(n, + i)(n,')'] .

(33)

(34}

r =r, n, (n', +1}',
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(25) It is easily shown that, for n, and n, given by Eqs.
(8) and (20), respectively, the term in square
brackets on the right-hand side of Eq. (34) van-
ishes in equilibrium. A steady-state phonon den-
sity therefore is maintained when the lattice is in
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thermal equilibrium. For deviation from equilibri-
um, we write

n =n o+4n

The phonon lifetime is defined from

The factor in parentheses involves a weak tem-
perature dependence upon the lifetime of the polar
modes. For example, for the numbers discussed
above, r& is 3.16&&10 ~ sec at 4. 2'K, 2. 29&10 ~

sec at VV 'K, and V. 26&10 ~~ sec at 300 'K, where
the values are seen to be mainly set by I'0. In this
temperature range, r~ changes only by about a fac-
tor of 4 for the entire range.

VI. DISCUSSION

The values of the polar optical-phonon lifetime
that are computed here are, in general, somewhat
larger than that obtained from measurements of
the linewidth of Raman scattering in InSb. How-
ever, surface phonons play a role in Raman scat-
tering, and probably mask the role of the bulk
phonon interactions. For the polar optical phonon,
the dominant relaxation process appears to be via
the second-order electric moment rather than the
anharmonic interaction, although the two processes
are of comparable magnitudes. The value of the
phonon lifetime is considerably smaller than that
required to explain the transport observations,
by two orders of magnitude, and the dominant time
constant in those experiments is probably the elec-
tron energy relaxation time. The calculations for
the disturbance of the phonon distribution by the
hot electronse depends upon the value of 7~ and
probably largely overestimates the disturbance of
the phonons if the considerably shorter lifetime
calculated here is utilized.
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