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As a consequence of the degeneracy of the Ge valence bands at k = 0, the lowest Landau levels are
anomalously spaced, so the cyclotron resonances of holes under "quantum" conditions, See/k8 & 1 (8
being the temperature), give rise to complex line spectra. Vfe report here measurements of these
"quantum" spectra taken at 53 GHz and 1.2 K in samples of Ge subjected to uniaxial, compressive
stresses which lower the cubic symmetry and remove the valence-band degeneracy. The efFect of the
stress T on the positions of the quantum lines permits their identification and also provides a direct
measurement of the uniaxial deformation potentials: D „=3.32 + 0.20 eV and D„' = 3.81 + 0.25 eV.
At large stresses, as the energy surfaces assume ellipsoidal shape, the quantum lines arrange themselves
into four line series identifiable by Mz = + {1/2), + {3/2) for T II [001] and T II [111].With increasing
stress the lines converge to two series limits corresponding to the "classical" efFective masses of the two
split bands, iM~~ = {1/2), {3/2). For stress along each of the principal crystallographic directions —[001],
[111],and t'110]—the positions of two quantum lines, the "fundamental" transitions, are approximately
invariant under stress and lie one at each series limit. From measurements of these extremely sharp
lines in the geometry Ilp II T me have determined the valence-band inverse-mass parameters to a
"spectroscopic" precision: y, = 13.38 + 0.02, y2 = 4.24 + 0.03, and y3 = 5.69 + 0.02. Less detailed but
corroborative experiments were also done in the geometry Hol T. From the measurements for T II [110]
we read out directly the ratio of the deformation potentials, D„' /D„= 1.15 + 0.02. The strain
interaction between the valence band edge and the spin-orbit-split-o6' valence-band results in a small

linear shift of the fundamental transitions. Surprisingly, the deformation potentials, D = 2.31 + 0.17
eV and D„' = 2.81 + 0.20 eV, measured from this interaction are significantly smaller than those given
above which were measured directly from the gross strain decoupling of the valence bands. The
difference is ascribed to the existence of spin-dependent deformation potentials which contribute
ddFerently to the two processes. The quantum-resonance line shapes are governed largely by strain and
k 0 broadening; however, for the narrowest lines, viz. , the fundamental transitions, relaxation-time effects
are in evidence and have been briefly investigated.

I. INTRODUCTION

The cyclotron resonance of holes in the degen-
erate valence band edge of Ge becomes anomalous

at low temperatures and high magnetic fields. As

pointed out by Luttinger and Kohn, ' the spacings
between Landau levels bearing low quantum num-

bers deviate considerably from the uniform inter-
vals between the higher "classical" levels. Thus,
when the anomalous lower states are preferentially
populated under the above-defined "quantum" con-
ditions, cyclotron-resonance spectra of exceptional
complexity are observed, 8 whose interpretation
presents a formidable challenge.

In fact, our experience shows that it is virtually
impossible to unravel spectra of this kind without

having either a sure means to identify the lines or
a precisely measured set of band parameters which

would allow one to compute unambiguous theoretical
fits to the spectra. The key, we find, to decipher-
ing the quantum spectra' of Ge is the use of uni-
axial stress applied to the crystal which can de-
couple the valence bands. In the preceding paper'~

we have sketched the requisite theoretical spectros-
copy. In this paper we experimentally attack the

problem from two directions: We study the behav-
ior ' of the quantum lines in Ge as a function of
uniaxial stress in order to, first, identify the prin-
cipal quantum lines and, second, determine the
valence-band effective-mass parameters y&, y2,
and y, to high precision. With the benefit of these
results (plus the g-factor parameters a and q ob-
tained in the next paper' of this series) it will be
possible in a later paper' to analyze, in detail,
the complex spectra of unstressed or "cubic" Ge.
In addition, from these measurements we evaluate
the constants I', |", H„and H~, which represent
the individual contributions to the hole effective
masses from each of the four Iepresentations that
are connected to the valence band edge by k ~ p in-
teractions. These constants form a cornerstone
in the construction of band theories. '

By lowering the cubic symmetry of the crystal, a
uniaxial stress T splits"" the fourfold (including
spin) degenerate I's valence band edge of Ge into
two Kramers doublets which, under certain condi-
tions, may be conveniently identified in terms of
the axial quantum numbers M~ =+ 2, + &. An earlier
study on silicon done at 9 GHz emphasized in the
classical spirit the features of the energy surfaces
of the two decoupled bands. From cyclotron reso-
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nances of holes in these decoupled bands we mea-
sured the inverse-mass band parameters which
characterize the shapes of the energy surfaces for
boN the stressed and unstressed valence bands.

In the present study on Ge our aims are much
broader. Working at 53 GHz we shall examine in
detail the consequences of the uniaxial stress on
individual or quantum transitions between low-lying
Landau levels belonging to both Kramers doublets,

M~ =+2, +2, as they decouple. It will become ap-
parent that a study of this kind offers an even

greater abundance of information concerning the
structure of the valence bands.

Uniaxial stress has a profound effect on the
nature of the quantum spectra; both intensities and

positions of the lines are changed in a major way.
These characteristic stress effects make it possi-
ble for us to establish firm spectroscopic identifi-
cations of the individual resonance lines. Further-
more, from the unfolding of the quantum spectra
we determine both magnitudes and signs of the
valence-band uniaxial deformation-potential con-
stants —these measurements 0 being the first ob-
tained solely with the J= —,

' manifold. This spec-
troscopic method for measuring the deformation
potentials is essentially a definitive one based upon

the Luttinger-Kohn effective-mass description of
the valence-band structure which has been experi-
mentally well established by our cyclotron-reso-
nance studies. No further assumptions are basical-
ly necessary.

As the bands decouple at large stresses the
quantum cyclotron resonances arrange themselves
into four line series which converge upon two series
limits corresponding to the effective masses of the
classical ellipsoidal energy surfaces of the respec-
tive split bands, '

M~ = + ~, + &. Earlier attempts '
at 9 GHz to determine the effective masses for the

M~ = + ~ band in Ge, along the lines of our original
work in silicon, '9 were inconclusive. The hole
resonances were observeda' to be excessively
broadened by the Hasegawa ' mechanism, an in-
homogeneous broadening arising from residual non-
parabolicity due to incomplete decoupling of the
bands. At 53 GHz we overcome this limitation
present at lower frequencies by resolving the in-
homogeneous resonances into their component lines
from which the effective masses may be directly
determined.

For this purpose two 1ines in these series are
especially useful; they are the "fundamental" lines
corresponding to the n=O-1 transitions for M~
= —~ and —&. These lines possess unique proper-
ties: in particular, they are very sharp; their posi-
tions, to lowest order, are invariant under stress;
and, furthermore, they lie. at the series limits, the
effective masses of which are related to y„y2, and

y3 in an elementary way. Because of these proper-

ties the fundamental lines can be used to fix y„ya,
and y~ to an unprecedented precision. (The values
thus obtained differ slightly, but not insignificantly,
from the most accurate ones previously gotten from
classical measurements of the "light"- and
"heavy"-hole resonances. In the Appendix we
examine the systematic errors incumbent in the
latter technique, which if taken into account, large-
ly reconcile the differences. )

In connection with these measurements a small
linear shift with stress is observed for the M~= —~

fundamental lines. (The M~= ——,
' lines do not shift. )

This shift, analogous to one observed earlier in

silicon, ' results from the strain interaction with

the J= & spin-orbit-split-off valence band and is,
thus, proportional to a uniaxial deformation poten-
tial. Surprisingly, the values of the deformation
potentials derived in this way are substantially
sma/Eer than those more directly measured, by the
procedure mentioned earlier, within the J= —, mul-
tlplet. The resolution of this apparent discrepancy
lies in the existence, previously unrecognized, of
spin-dependent deformation potentials which con-
tribute in different ways, inside as compared to
outside the J= —,

' manifold, from the spin-indepen-
dent deformation potentials.

Our experiments clarify the confusion existing
in earlier attempts ' in unstressed Ge to locate and

identify an important quantum transition (which
turns into the M~ = —

& fundamental transition under
[111]stress) between the two low-lying quaside-
coupled n= 0, 1 Landau levels for Ho~~ [111]. (Ho is
the external, static magnetic field. ) The behavior
of the spectrum under uniaxial stress confirms a
conjecture suggested earlier to the effect that the
final state (n =1) is nearly degenerate with and,
hence, strongly admixed (for ks4 0) with two other
states; so that a weak "fundamental triplet" ap-
pears in place of the strong single line anticipated.

The line shapes of the hole quantum cyclotron
resonances are almost completely governed by k„
broadening; only for the narrowest lines, e.g. ,
the fundamentals. ines, are relaxation-time effects
clearly in evidence. Although no systematic study
of the cyclotron resonance scattering time ~ has
been undertaken, a few qualitative conclusions can
be drawn. The scattering times at 53 GHz are
shorter than at 9 GHz, and at the higher frequency
they are substantially independent of temperature
over the range 1.2 to 4. 2 'K. This behavior is
consistent with the "quantum" acoustic-phonon-
scattering process of Meyer. '

Most of our measurements in this paper were
made for Ho]] T. Because there exists a well-
defined axis of quantization, the spectra for this
case are most readily interpreted; and further-
more, the complete set of inverse-mass band pa-
rameters and deformation potentials can be deter-
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mined by measurements in this geometry. How-
ever, some corroborative but less detailed mea-
surements were undertaken for Ho~ T. The results
obtained were found to be wholly consistent with the
values of y„y2, y„and D„and D„' determined from
the Hp ~~ T experiments.

II. VALENCE-BAND LANDAU LEVELS IN Ge

A general exposition of the theoretical spectos-
copy of quantum cyclotron resonance has been given
in Paper I. In this section we specialize the re-
sults apropos of our experiments in uniaxially
stressed Ge.

A. In the absence of stress

We begin by considering the eigenstates of a hole
in the I"8 valence band of Ge with an externally ap-
plied magnetic field Ho but without, for the mo-
ment, a uniaxial stress T. In the absence of stress
and spin-orbit interactions the valence-band state
at lt = 0 is a sixfold degenerate (including spin) P
multiplet characterized by the representation I'2~

(or I",,). Spin-orbit interaction splits this state by
A = Q. 2S eV into a fourfold degenerate I'8 state
(isomorphic to J= 2) which forms the band edge and

a twofold degenerate I", split-off state (isomorphic
to J'= &) as shown in Fig. 1(a). Ordinarily for
cyclotron resonance in Ge at, say, 53 GHz it is suf-
ficient for calculating energy levels to include in-
teractions only within the upper J = —,

' manifold.
(Interactions between J= 2 and J=2 will be con-
sidered in Sec. II C). Within the J= —, manifold the

dynamics of a hole in a magnetic field is described
in the effective-mass formalism by the Luttinger
Hamiltonian [Eq. (I.29)],

X = ——y, —-y2[(J„-3J )k, +c.p. ]
@2 Q2

2 & 2

—2y,((J,J„)fk, k„]+c.p. )

+—vJ Ho+ —q(Z, ~H+c. p. )),Sc

k = (I/f)v+ (e/hc)A.

Here 4, 4~, and 4 are the components of the
angular momentum operator J(J'= ~) referred to the
cubic crystal axes; c.p. denotes cyclic permuta-
tion, the quantities {JJ„},etc. , represent sym-
metrized products, i.e. , fJ,J„)=~(J,J, +J„J,); and
A is the vector potential of the external magnetic
field Ho. In the first three terms of +, which give
the classical energy surfaces at zero magnetic
field, the coefficients y„y2, and y3 are Luttinger's
valence-band inverse-mass parameters. 8 The
last tmo terms, which vanish for HO=0, depend
purely on "spin",' and their coefficients v and q
are related to the g factor of the free hole (see
Paper III).

The component k„of the wave vector in Eq. (2)
along Ho commutes with X~ and, hence, is a con-
stant of motion. Accordingly, the eigenvalues of
R„will depend parametrically upon k„ in a com-
plicated fashion. Peaks in the cyclotron-reso-
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FIG. 1. Valence bands of Ge near k = 0 for (a) cubic symmetry (0&) in absence of uniaxial stress and for (b) trigonal
symmetry (DM) produced by a uniaxial, compressive stress along [111]. In (c) we schematically represent the(landau
levels plus spin splitting of the bands in (b) for Holt [111].
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nance spectrum arise from critical points of the
one-dimensional joint density of states defined by
the condition

St

where E„is the energy difference between Landau
levels s and t. By symmetry all allowed transi-
tions have critical points at A~ = 0; but "noncentral"
critical points occur at 0~4 0 as well and contribute
importantly to the quantum spectra of "cubic" or
unstressed Ge analyzed in Paper IV. However,
for spectra taken under uniaxial stress, it will
turn out to be usually sufficient (and certainly more
convenient) to assume that 0„=0, inasmuch as the
strain-split bands take on an approximately ellip-
soidal shape. This assumption is not justified for
some transitions observed and will be removed
when they are considered.

The diagonalization of the Hamiltonian + pro-
ceeds along the following lines. When a specific
representation is introduced for J, K becomes a
4 & 4 matrix Hamiltonian which generates a numer-
ical secular matrix of infinite dimension. All

eigenstates of X~, generally speaking, are coupled
to one another to some order. As a result, the
eigenvectors

/=HZ a„(M~)u„~Mz) (4)
n Ng

are mixtures of all four Bloch states I M~), where
M =+ ~ + 2 and the amplitude of each contains an
infinite number of harmonic oscillator states I
with n=0, j., 2, 3, ~ .-. For Ho along a crystal
axis of v-fold rotational symmetry, the secular
matrix decouples into v submatrices (each of infi-
nite dimension) and certain restrictions are placed
on the values of n which appear in the eigenvectors
of each matrix —a property which underlies the
cyclotron-resonance selection rules. If we set
k~ = 0 the secular submatrices further decouple
into two. (Under special conditions' additional
partitioning occurs. ) To calculate the eigenvalues
we must use a computer to diagonalize the v (or
2v) fully coupled but suitably truncated secular
matrices retaining all terms in "warping"
(y, -y, ) and k„(where necessary).

The low-lying Landau levels (at k+=0) thus ob-
tained are given in Fig. 2 for Ho along the principal
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FIG. 2. Valence-band Landau levels in Ge calculated at kH=Q. The values of the band parameters were y&=13.38, y2
=4.24, Y3 =5.69, f(=3.41, and q=0. 06. As is customary we invert the sign of the hole energy; so the levels are plotted
in "ascending" order. The Landau levels are classified by (N„, E~).
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crystallographic directions: [001], [ill], and [110].
The secular matrices have been truncated at a total
dimension~ of approximately 80x 80 which assures
convergence of approximately the fifteen lowest
eigenstates in each of the four Luttinger ladders.
As customary we invert the sign of Eq. (1) so that
the hole Landau levels are arrayed in ascending
order; also the energies are given in dimensionless
units of TTSHO/mc.

In Fig. 2 we classify the Landau levels by the
scheme (N„, K') appropriate for "magnetic cou-
pling" when T =0. Two quantum numbers are nec-
essary to identify uniquely each eigenstate: N, the
Landau quantum number for the envelope function,
and its subscript n, which is Iequired to distinguish
the four states of the same ¹ Although n plays
the role of an index, it has been chosen in such a
way that we can ascribe to it a simple physical
intepretation. It essentially identifies the principal
harmonic-oscillator state" N„present in the enve-
lope function of ¹ (n corresponds to s, in Paper
I.) Noting that n» TT, we generate in a natural way
the array of levels

4q 43 42 4,

33 3P 3$ 3Q

22 2g 2Q

00

The quantum number K(K= 0, . . . , v —1) embodies
the v-fold rotational symmetry of the crystal about
the direction of HQ. m is the parity of the envelope
function. The magnetic quantum number M~ is
connected with N, n and K by the relations

N= M~+ ,'+11, K=N (mod p)— (5)

Using the quantum numbers (N„, K') it is possible
to ex~ress the cyclotron-resonance selection rules
for 81&Ho, where if, is the microwave electric
field, for HQ along any crystal orientation. If we
symbolically categorize the successive symmetry
breaking interactions

a+~aa+~a+~a
0 0 1

—where Xo is the axial Hamiltonian Xo' contains
"warping" terms proportional to y2, -y„X, repre-
sents the k~ terms; and %~a combines ys -y~ and
k~ interactions-we get a hierarchy of selection
rules as follows (see Table IV of Paper I):

Mo(XO) nfT= al, hs yes, nK=+ I,

In general, the selection rules' MC= + I [with the
understanding that hK = + (v —1) is equivalent to
dK=+ I] is the only strictly rigorous selection
rule,' the extent of the violation of the other selec-
tion rules depends upon the magnitude of the sym-
metry breaking terms in the Hamiltonian, i.e. , the
magnitudes of yz —y~ and kz.

S. In the presence of s~
When the cubic symmetry is reduced by the ap-

plication of a uniaxial stress, the J'=
& state further

splits [see Fig. 1(b)] into a pair of Kramers dou-
blets which may be identified by the axial quantum

number M~ under certain circumstances. The
splitting of the 8=-,' states at k= 0 is given by the
strain Hamiitonian'' [Eq. (I.30)]

X, = D,(«+ «~+ «„}+ -,'DJ (Zs ——,
' 8')«+c.p. )

+ ',D„'[2(—Z Z„}«~+c.p. ], (~}

where &~ are the components of the strain tensor.
D~, D„, and D„' are the Kleiner-Both valence-band
deformation potentials. " The dilatational compo-
nent D~ shifts the entire I'~5 multiplet without split-
ting the bands and may be ignored in the present
work. D„and D„' are the "uniaxial" deformation
potentials which describe the valence band splitting
for uniaxial stresses along the [001]and [ill,] di-
rections, respectively. For uniaxial stresses the
Hamiltonian 3C, can conveniently be rewritten in
terms of the direction cosines (r, 1„, r ) of the
stress T,

XN = «g +«„[(aT„-1 cT )T„+C. p. ]

+ «g[2 (cl,eT„}T,T„+C. p. ],

«d (S11+2S1I)D«T ~

«s &(S11 S18)DsT q

e 3 s44DgT y

expressed in terms of the elastic compliance con-
stants s„, s», and s«. Next, we specialize Eq.
(T) (with the dilatational part ««omitted} for the
three most important cases, T along [001], [111]
and [110], and list the eigenvalues:

r ii [ool]:

X, = «„(Z'.——.
' Z'),

3c =+ c„ for M~ = + &,
1for I&=ay.

T 11 [111].

M1(XO~)

M1(X,) ~= + 1,
M (X'~)

b m yes, hK=+1,
aE=~ j.,
hZ=+1.

X, = —'.«„'[(Z,Z„}+c.p. ],
which transforms on taldng Zs ~~ [111]into

X.= «„'(Z', —,'Z'),
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c =+a„ for M~ = a —,,
J 3

T i~ [110]:

3C, = —~ e„(J2 —
& J~) + a„'(J Z, ), (12)

which transforms on taking J~ ~~ [110],J, = 2 '
&&(Z, xiJz) (the choice of the orthogonal axes 1 and

2 is immaterial) into

X, = ~(e„+3m„')(J,' —~J')+4(E„—e„')(J",+J'), (13)

e =+ e„"= + 2(t'„+ 3f„")'~.
When T tl [001) or [111],K, is simultaneously diag-
onal with Js l~ T, so that M~ along T is a good quan-
tum number. Otherwise, when the symmetry is
less than threefold, the eigenstates are a linear
combination of M~ states. One interesting excep-
tion tothis statement occurs when e„=c„'. [Note that

the last nondiagonal term in Eq. (13)then vanishes. ]
This can be easily seen if we separate the stress
Hamiltonian (7) into isotropic and anisotropic parts

K, = e, + e„[(z ~ r )' ——,'z']

+e„(P—1)[2(JJ j7 r„+c.p. ], (14)

where P= a„'/c„ is the "splitting anisotropy param-
eter. " We note that if P= 1 (e„=a„'), first, R, be-
comes rotationally invariant; so the strain splitting
is isotropic with respect to the direction of T.
Second, if in addition we choose the axis of quan-
tization "3"along T, i.e. , J ~ T- J3, then X, is
diagonal and M~ becomes a good quantum number fox

any direction of T. In other words the condition P = 1

leads to "isotropic quantization. " Although this spe-
cial situation only roughly corresponds to the actual on~

in Ge, it is a useful limit for classification of states.
The Landau levels in uniaxially stressed Ge are
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FIG. 3. Stress depen-
dence of the ~~= 0 Landau
levels for Ho, Tll t001] cal-
culated as a function of the
dimensionless "strain pa-
rameter" x„. The values
of the band parameters
were the same as for Fig.
2. The levels may be iden-
tified at zero stress by
referring to Fig. 2. At
large stress the levels are
labelled by the quantum
numbers (n, +Mq).
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obtained by diagonalizing the complete Hamiltonian
++X,. The results for Ho, T ~I [OQ1] and

Ho, T ~~ [ill) at k» = 0 are shown in Figs. 5 and 4,
respectively. The energies of the Landau levels
in Figs. 3 and 4 as in Fig. 2 are "inverted" and
expressed in dimensionless units of 0eHO/me; 'it
is natural to express the strain energies likewise
as dimensionless "strain parameters "

X.= (15a)
heHO mc '

X.'= (15b)
eHO mc''

II
(15c)

WHO /tsc
(or generically just x). In Ge, D„, D„' &O„so for
our experiments which employ compressive stress
(T& 0) this implies x„, x„'& 0, which restricts us to
the left-half of these energy level diagrams. For
clarity the Landau levels in Figs. 3 and 4 are not

labeled at zero stress; the (H„, K') classifications
can be readily made by comparing the levels at
x=0 with those in Fig. 2.

For Ho t~ T the symmetries of X, and + are
compatible; and the diagonalization, the quantum
numbers and the selection rules discussed in Sec.
IIA are virtually unchanged as the strain is turned
on. However, when the stress is large it is more
convenient to classify the Landau levels in a
"stress-coupling" scheme (n, M~), n and M~ both
being "good" quantum numbers for Ho, T ~~ [001]
and [111]. Their connection with K in Eq. (5) re-
mains valid always. The cyclotron resonance
selection rules for S,~HO are 4n=+1 and 4M~=0
(which are, of necessity, consistent with 6K= el).
For Ge, as can be seen from Figs. 3 and 4, the
quantum number n has particular merit in that the
identity of n for each level is preserved36 in going
from zero to large stress (with allowance made for
the exchange of character in wave functions at



4226 J. C. HENSEL AND K. SUZUKI

"level crossings "). For Hc, & ~~ [110]the (n, Mz)
classification is useful only near P=1.

The situation for Ho ~ T is much more complex
and is separately discussed in Sec. IVE.

We see in Figs. 3 and 4 that there are large
changes in the positions of the Landau levels rela-
tive to one another as the bands are decoupled by
uniaxial stress. Overall the array of Landau levels
splits into two groups corresponding to the split
band edges in Fig. 1(b); the Mz —+ —,

' levels move
"up" while the M~ = a & levels move "down" for
x& 0 (compressive stress) and vice versa for x &0.
At low stresses (0& I xl& 10) where magnetic and

strain energies are comparable, the relative posi-
tions of the levels are strong functions of x result-
ing in a complex and rapidly changing spectrum as
stress is applied. At large x values we note that
the Landau levels fall into regular sequences with
uniform spacing characteristic of ellipsoidal energy
surfaces. There are, in fact, four such series
identifiable by Mz = a s and Mz = a —, for T ~~ [001]
and [111]. In the limit T- ~ the "+" lines of each
M~ asymptotically merge and approach the respec-
tive series limits AM+ I = —,', —,'. Quite generally we
can express the cyclotron-resonance effective
masses of the two series limits by

m & p'm p'm p m1 2 3

0 k 2 3 1 3 1 2
(16)

TABLE I. Zeroth-order inverse effective-mass tensor
components for the Mg =+( and +$ series limits. For
Tll [110]the states are labeled by their character +M+ at
the uniaxial limit P= I; also the effective masses are a
function of 0 and S2 defined by I)~ = (1+3p )

t ~ and R2

=P(1+3Pt) ~ t, where 8 is the strain anisotropy param-
eter. In the uniaxial cases [001] and [111], the parallel
axes of the tensor are along T. For Tll [110]we adopt
the coordinate system I II [ITO], 2II [001], and 3II [110].

[001] m/m~ = &1
—f2 m/m~= &1 +&2

m/m(i p1 +2/ 2 m/m, i
= y1 —2'

[111] m/mg =y1 —y3 m/m', = yg +y3
m/m'„= y) +2' m/m'„=y, —2y3

where m» m» and m3 are given in terms of y» y»
and ys in Table I. Here (P,P P, ) are the direction
cosines of Ho with respect to the "stress" coordi-
nate systems defined in Table I. For the uniaxial
cases, T ~l [001] and [111), we have the following
simplific ation s: m, = ms = m„ms = m„, P, + Ps
= sin 8, ps = cos8, 8 being the anglebetween Hs and T.

In principle, we could determine m» m2, and

ms and, in turn, y„yz, and y, by applying Eil. (16)
to measurements of cyclotron resonances in the

decoupled bands at the limit of large stress (strict-
ly speaking, large x values). This essentially was
the program undertaken in our earlier (classical)
work' in Si. However, this "limit" is difficult
to approach experimentally especially for the rela-
tively large magnetic fields used in quantum spec-
troscopy. Fortunately, it is quite unnecessary to
do this. In both Figs. 3 and 4 we note that the two
lowest levels in the M~ = - ~ and M~ = —2 ladders
depend linearly on x and run approximately parallel
to one another across the entire diagram. These
behave as do decoupled or "pure" M~ = —~ or —

&

states even at x=0. Thus, the two transitions,
(0, -s)-(1, -s) and (0, ——,')-(1, ——,'), have a re-
markable property —their positions (to lowest
order) are stress invariant. We refer to these
transitions as the "fundamental transitions "; they
mark, respectively, the series limits which the
rest of the + 2 and + & transitions approach asymp-
totically at large x. Thus, the high-stress limit
can be, in fact, exactly simulated at low stress by
measurements on the fundamental transitions.

The above is illustrated schematically in Fig.
1(c) which shows the lowest M~ =+ s and +-,' Landau
levels for Hs, T ~~ [111]in the limit x„'-~. The —

&

and --,' fundamental transitions are seen to be
complementary in that they give the effective mass-
es (y, -y, ) ' and (y, +y, ) ', respectively; so mea-
surements of both determine y, and y, independent-
ly. The case Hs, T ~~ [001] is the same with the
simple replacement y3-y2 being made. All three
band parameters y» y2, and y, can thus be fixed
directly from the fundamental transitions.

3 1C. Interactions between the J=
~

and J=
~ manifolds

So far we have ignored the effects of the J= a

manifold on the positions of the Landau levels in
J= & which, in view of the large valence band spin-
orbit splitting in Ge, A=0. 29 eV, might be expected
to be quite negligible. However, for the funda-
mental transitions which can be measured to high
precision they become important and must be taken
into account. Their origin can be traced quite
easily. We write the full 6X6 matrix Hamiltonian
for the valence band (including strain) as

J-—3 1
2 2

11 +12 (17)

%1 %2

where X» is the 4 x 2 matrix connecting the J= & and J
1

,

= z manifolds. The second-order energy correction
fromK, s to the J= & multiplet (I/APC, zX» contains
three types of interactiors (ignoring the indices)

mlmf ~i +~2~1 3+3/2 m/mi
[110] m/m2 =p1 —2y2g1 m/m2 =y1

m/m3 =y1 +y2g1+3y3g2 m/m3 =y1

&2&1 +3&3&2

+2728 f

Vlf 3 V3 l2

Vis&(Z= s) = (I/A)(g+ 2XsX, +X,), (18)
which cause, respectively, the magnetic-field-de-
pendent effective-mass shift, the linear strain-
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dependent effective-mass shift, and a second-order
strain splitting. The last does not directly affect
the effective masses and can be neglected.

1. Magnetic- field-dependent effective-mass shift

ew & (el i sia)DmT ~

y
= 3s44Dco

(22)

(24}

The first term in Eq. (16) shifts the cyclotron
resonance lines even in the absence of stress. The
shift of the inverse effective mass of the fundamen-
tal transition (0, -k)-(1, --,') is

a 0-[4~,' 2y, (~+1)]
&m& ceo 1
(m~& mc A

= —a~T = I'3,m, -8&'
m+

(22)

for H, ~~[001], (»)

[4~,—»(~-+I)+4(~ -~) ]
mt eHo 1

m~j mc A

for Ho ~~ [ill] (20}

[cf. Eqs. (I. 147) and (I. 146) obtained for the spher-
ical case]. A similar shift occurs for M~ = —2

transitions, but it is negligibly small at the lower
magnetic fields where these resonances lie.

2 J.inear stI'ain-depenfleni effective-mass shi ft

For the axial cases, Tl~ [001] and 7 ~~ [ill], the
admixing of the eigenstates J=2 and J=& by the
second interaction in Eq. (16) obeys the selection
rule hM~ = 0. A linear stress-dependent effective-
mass shift, then, is characteristic only for cyclo-
tron resonances in M~= +~ states, a fact which
serves. for their identification.

The theory of the strain-shifts for quantum
cyclotron resonances in the M~= +2 decoupled
states has been developed in Paper I; the results
have a formal resemblance to Hasegawa's classical
calculations for silicon. However, owing to the
larger spin-orbit coupling in Ge, one new ingredient
must be added to the theory, namely, spin-depen-
dent effects in the deformation potentials. When

spin effects are included, the "mixing" deforma-
tion potentials D„and D„' in the strain matrix ele-
ments connecting J=~ and J=& cease to be identical
to the splitting deformation potentials, D„and D„',

which appear soithin the J= & manifold. According-
ly, the inverse effective-mass shifts for the M~
=+2 series limits are (to first order in & /A)

T ~~ [001]:

m ) 4&„
~ i= —niT= "I2,m] ' A

T II [ill]:

[As an example of another, minor, spin effect, the
band parameters I'3 and I'3 in Eqs. (21) and (22) in
the matrix elements between J=- and J=2 can, in
principle, differ from y~ and y3, the band param-
eters within J= &. For Ge the distinction is probably
ummportant. ] For T ~~ [110]the formulas for the shifts
are more complicated; and having been given in Paper
I [Eq. (I. 144)], they will not be repeated here.

In summary, the anisotropic cyclotron resonance
effective masses in the strain-decoupled M~ =+ ~

bands (i.e. , the quantum series limits} can, for
the uniaxial cases T ~~ [001] and [111],be written

m/m*(8) =m/my(8) n(8)r-
where mg(8) is given by Eq. (16) and a{8) is given
by the expression~

a(8) =bcmf(8)
' cos'8+ ~+~ ~sin'8 (26)

2CRg 2 (X 0
m„m~)

in terms of the components a, and a„ in Eqs. (21)
and (22}. When Ho ~~ T, the simplifications mg = m~
and n = n, are obtained. Equation (25) holds for the
fundamental transitions (0, -a)-(l, -2) at finite
stresses and will be used for their analysis in
succeeding sections. Except for the eT term these
transitions are virtually stress invariant. The eT'
shifts for other transitions are almost completely
overshadowed by the much larger shifts due to
strain interactions within J=—, and will not be of
particular interest to us.

III. EXPERIMENTAL DETAILS

A. Microwave spectrometer

The cyclotron resonance measurements were
done using millimeter waves at 53 GHz. The spec-
trometer, shown schematically by a block diagram
in Fig. 5, is a balanced-bridge cavity type employ-
ing a superheterodyne detector, the sensitivity of
which is vital to the detection of the weak quantum
lines. Also essential is the ability of the super-
heterodyne scheme to operate at the low microwave
power levels Po-10 -10 W necessary to avoid
saturation of the cyclotron resonances. Since
much of the success of the present experiment
owes to the sensitivity and reliable performance of
this spectrometer, we briefly eall attention to some
of its important features. The millimeter-wave
power sources, both signal and local oscillators,
are low-power (-10 mW) backward-wave oscilla-
tors (BWO) (Bendix type TE-67). The signal BWO
is frequency locked to a harmonic (usually sixth
harmonic) of an X-band (9-6Hz) LFE 614 ultra-
stable tunable signal source (which uses an invar
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FIG. 5. Block diagram
of the microwave spec-
trometer operating in the
50-60-GHz band.

cavity for reference). The local BWO, in turn, is
locked to the signal BWO but shifted with a differ-
ence frequency hv=60 MHz equal to the signal i.f.
frequency. The over-all frequency stability of the
system holds to about 1 part in 106. The X-band
reference frequency was monitored continuously by
the Hewlett-Packard (HP) frequency-divider-fre-
quency-counter combination.

The microwave bridge and balanced mixer make
use of 3-dB bidirectional couplers rather than the
conventional "magic" tee, since the former at
millimeter wavelengths are usually better matched
and have broader bandwidths. Two modes of bal-
anced-bridge operation are possible. In the first,
the bridge bucking elements are the attenuator and
sliding-short in arm 3 of the bridge coupler. This
mode suffers from the inherent drawback that the
opposite arm (arm 2) of the bridge, the transmis-
sion line to the cavity, is electrically very long
for millimeter waves and the inevitable thermal
expansion changes and mechanical disturbances in
it result in excessive drift and noise. These prob-
lems can be mitigated by operation in the second
mode which was employed for most of our measure-
ments. Here the bridge match was achieved at the
cavity by adjustment of the spectrometer frequency
and the cavity variable coupler (the attenuator in
arm 3 having been set at ™for termination). Usu-
ally, we operated at exact match and the absorp-
tion. component of the cyclotron-resonance signal
was selected by varying the reference phase to the
60-MHz lock-in detector by means of "@' shift. "
The detected absorption signal, modulated at 100
or 1000 Hz, is amplified and synchronously de-
tected with a typical time constant of 0. 1 or 0. 25

sec. The output is displayed on a chart recorder.
The cyclotron-resonance spectrum is observed

by slowly sweeping the magnetic field linearly in
time by a sawtooth control signal fed to the magnet
power supply. The magnetic field is measured by
field markers on the recorder traces from proton-
NMR signals. Usually the spectrum was traversed
in both sweep directions, "up" field and "down"
field, to eliminate any hysteresis effects due to
finite time constants in the recorder or electronics.

The rectangular microwave cavity (see Fig. 6)
operates in the TEfof mode. This mode was chosen
to give linear polarization of the microwave elec-
tric field 8„ the orientation of which relative to
Ho governs the cyclotron-resonance selection
rules. The cavity is made in two && sections, each
"hubbed" from coin silver. Narrow slots to admit
light were cut on the cavity bottom in a way that
microwave currents were not broken.

B. Strain apparatus

The uniaxial stress is applied to the sample by
means of the apparatus pictured in Fig. 6. Rect-
angular samples of Ge of dimensions 2. 2x l. 5
&0. 2 mm were pgsitioned on their "flat" side
spaced approximately 0. 1 mm above the slotted
cavity floor, well out of the maximum 8, field at
the center of the cavity, by a sheet of transparent
Mylar. The sample was uniaxially stressed by
force applied to it from the external loading on the
split halves of the cavity. One half of the cavity
was fixed, and the other half movable, pivoting
about the top edge of the cavity split. The uni-
formity of loading on the sample ends was improved
by placing between the sample ends and cavity wall
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FIG. 6. Apparatus for application of a uniaxial stress
to the Ge sample. The tension in the phosphorbronze
wire, loaded by the spring scale, produces, by the lever
action of the "rocking stirrup, "a horizontal force against
the hemispherical boss on the cavity. The rectangular
cavity, shown in detail in (b), is made up in two sections,
one fixed and the other free to pivot about a fulcrum axis
along the upper edge of the split. The external force is
thereby transmitted via the semicircular, sapphire pres-
sure blocks to the ends of the Ge sample.

semicircular bearing sections cut from fused
quartz or sapphire —plane faces against sample
ends and "rounds" against cavity walls. Thin
"vellum" paper pieces, 0. 05 mm thick, were ce-
mented to the plane faces of the bearing spacers
to provide a "buffer" for the ends of the sample to
prevent localized-strain-concentration points. The
remainder of the cavity was filled with fine porosity
Styrofoam to exclude as much liquid He as possible
as well as to keep the sample and bearing sections
firmly in place during assembly of the apparatus.
The external force against the movable half of the
cavity is supplied by a pivoted-lever mechanism
actuated by a flexible phosphorus-bronze stranded
wire running up the cryostat and tied to a calibrated
spring balance at the top. This spring balance is
located in a vacuum-tight Lucite chamber positioned
above and connecting with the He cryostat; so it
was not necessary that the transmission of force

pass through a sylphon or grease vacuum seal,
thereby eliminating an otherwise serious source of
friction and stress hysteresis. The tension in the
spring balance-and, hence, the stress in the sam-
ple-was adjustable externally by means of a screw
shaft through an 0-ring seal at the top of the chamber.

The geometry in the above apparatus was ar-
ranged so the stress is applied transverse to the
Dewar axis, and therefore, in the plane of the dc
magnetic field Ho. Most runs were made with

Holt T and it necessarily follows (see Fig. 8) that
Ho~ S„as required for ordinary cyclotron reso-
nance. (Measurements for the geometry Ho& T
require a different apparatus which is mentioned
briefly in Sec. IVE. )

The strain apparatus was calibrated in two
ways: first, by calculation of the mechanical ad-
vantage of the system, ' and, second, by the deter-
mination of the actual force on the sample. Ke
made this measurement by substituting a piezo-
resistance strain gauge in place of the sample
within the cavity. The strain gauge, cut as an
exact replica of the sample from a single crystal
of n-type Ge (3x10 Sb/cm ) and orientated along
a [111]axis, was in turn calibrated "on the bench"
by direct loading with weights. The results of the
two calibration methods agreed within a few per-
cent. Vie calculated the strain in the sample from
the stress (determined from the above load cali-
bration and careful measurements of the sample
dimensions) using the elastic compliance constants
s„=9.37 && 10 7 cm /kg, s,a = —2. 57 && 10 7 cm~/kg,

and s«=14. 3&&10 cm /kg, from McSkimin's4'

data extrapolated to 1'K. It is estimated that the
strain would be determined by this procedure to an
over-all accuracy of about 5%. The uniformity of
strain in the samples could be estimated from the
broadening of certain cyclotron-resonance lines
which shift rapidly with stress. Throughout the
"active" central region of the sample illuminated
by light we estimate in this way the maximum
strain nonuniformity to be no more than 5% for a
typical "good" run. At the ends of the sample
where the force is applied, the strain homogeneity
is undoubtedly poorer. In spite of the most elab-
orate precautions in assembly of the apparatus,
"bad" runs were not infrequent; these were instant-
ly recognized by the seriously broadened and dis-
torted appearance of the cyclotron-resonance line
shapes and were rejected outright.

C. Samples

All of the samples used in these experiments
were cut from a single crystal nlVLP-33 of ultra-
pure Ge (ND-5X10' cm ', N„-4&&10' cm '). This
particular crystal was typical of a number of very
pure crystals tested, all of which showed well re-
solved and nearly identical cyclotron-resonance
quantum spectra. The crystallographic orientation
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of the samples was determined, prior to cutting,
to within -O. 3' using an x-ray goniometer; final
orientation of the spectrometer magnetic field with

respect to the crystal axes was accomplished
in situ by observing the electron-cyclotron-reso-
nance lines. The samples were cut to their rough
dimensions and then lapped on all sides to approxi-
mately final dimensions except the length which

was left oversize. Next, the sample was etched
in CP-4 to reduce surface recombination. As a
final operation the samples were mounted length-
wise through a rectangular slot in a flat lapping
plate, which had been precision ground to a thick-
ness exactly equalling the desired sample length;
the slightly protruding ends of the sample were
then lapped flush with the surface of the plate.
This procedure assured accurate control of the
length, exact parallelism of the end surfaces, and

eliminated the rounded corners and edges which

resulted from etching.
For our experiments the samples were in direct

contact with liquid helium at all times; measure-
ments were made at both l. 2 and 4. 2 'K.

Free carriers, both holes and electrons, were
generated in the sample by white light chopped at
the modulation frequency. The sample was direct-
ly illuminated via the cavity light slots by a col-
limated (f/16) beam from a 6-V ribbon-filament
lamp (GE L4) focused through the unsilvered Pyrex
walls of the Dewar tail. As the cyclotron-reso-
nance lines, especially those for the electrons, are
broadened by excessively strong illumination, we
intentionally cut the light intensity by operating the
lamp at 4 V (filament temperature -1800 C) and

inserting in the optical path a neutral-density filter
having 25% transmission.

It is difficult to ascertain absolute carrier densi-
ties in the samples, ' nevertheless even a very
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FIG. 7. Effect of uniaxial stress on the cyclotron resonance spectrum in Ge, The recorder traces were taken at
1.2'K and S2.9 GHz with HOIl [111]. The top trace (a) shows the quantum spectrum of holes in an unstrained crystal.
The hole resonances are designated by their effective masses. Traces (b) and (c) were taken with a uniaxial, compres-
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transition appearing here are M&-—+$). The slight splitting of the high-mass electron bne seen in trace (c) is due to an
-0.3' misorientation of Ho from the [111]axis.
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rough estimate would be worth knowing. Measure-
ments of the intensity and spectral distribution of
the source plus consideration of the layout of the

optics leads to an estimate of -10 pW for the "ef-
fective" optical input power, i.e. , the fraction of
the light flux which actually reaches the sample
surface and has i'tv„s„~ &Es (the threshold for
creation of free carriers). Assuming unity quan-
tum efficiency and a hole lifetime of 10 sec (see
Sec. V D) we calculate the (steady-state) number

of holes in the sample to be - 5&10', which repre-
sents a density of -10 cm 3 within a volume de-
termined by the hole diffusion length.

IV. EXPERIMENTAL RESULTS

A. Nature of the cyclotron-resonance spectra

As the degeneracy of the valence bands of Ge is
lifted by uniaxial stress, the quantum cyclotron-
resonance spectrum for holes undergoes striking
changes. This is illustrated in Fig. 7 by recorder
tracings of He ~~ [111]spectra taken as a function of
compressive stress applied to the [111]axis of the

sample. Before tackling the data in detail, we

pause to examine the general features of these
spectl a.

In the top trace [Fig. 7(a)] taken at zero stress
is the "quantum" spectrum of hole resonance lines,
designated by their effective mass values, together
with the strong, sharp lines of the electron reso-
nances. (The less prominent resonances show up
more clearly at 4. 2 'K or at higher gain. ) The
hole spectrum in unstressed Ge is complex; the
lines do not fit into any obvious pattern. The anal-
ysis of this spectrum, in which kH effects play an es-

~ sential role, willbe the topic of Paper IV. Broadly
speaking, the lines above 4000 Oe (m*/m & 0. 2) de-
rive from the "heavy "-hole Landau ladders (start-
ing with states 3s and 2o in Fig. 2) while the lines
below 1000 Oe (me/m& 0. 06), derive from the
"light"-hole ladders (starting with states 0, and,

2,). Most lines in the intermediate region are
"harmonic" transitions from the heavy-hole lad-
ders. The weak lines at ttt*/m = 0. 117 and 0. 133
plus the stronger line at m*/m = 0. 125 constitute
the "fundamental" triplet (all three transitions
originate from the low-lying state la in Fig. 2).

The transformation of the hole spectrum by uni-
axial stress, 490 kg/cm', is shown in the middle

trace, Fig. 7(b}. In the stressed spectrum the
hole resonances fall into well-defined sequences ox

line series. The low-field resonances from the

M~ = + 2 bands have vanished because these bands
move "up" (refer to Fig. 4) under compressive
stress and depopulate „The high-field resonances
evolve, without evidencing much change in intensity,
into two line series, Mz =+a and Mz= -a. (Identi-
fications are explained in Sec. IV B.) The most

prominent hole line in the spectrum is the "funda-
mental" transition (0, —a)-(1, —a), the fixed line
which marks the T- series limit for both M~
=+ a and M~ = —a series. Incidentally, this line
does not develop, as it would seem, from the reso-
nance at me/m = 0. 125 in trace (a) but rather from
a very weak line at me/m = 0. 133. Trace (b} was
recorded near the stress where the (1, —a) and

(2, —a) levels cross (see Fig. 4), so the second
line of the M~=-a series, (1, -a)-(2, -a), is
missing (l. e. , tile/ttt ~ ~).

A typical high-stress spectrum, taken at 1900
kg/cm, is shown in the bottom trace (c) of Fig. 7;
we see that the M~ =+ a and —~ series have moved
to lower fields and overlap one another as both
converge upon the T-~ series limit at the (0, —a)- (1, —a) line. This line, we note, in both traces
(b) and (c) in Fig. 7 is much the narrowest of the
hole lines; for it is relatively insensitive to strain
and k~ effects which broaden the others.

At very low stresses, several weak lines of the
M~ = —

& series can be detected. These are shown
in a trace in Fig. 8 taken at -50 kg/cm with

He, 7 ~~ [ill]. The initial line (0, --,')- (1, —a) is a
stress-independent transition (a "fundamental"
transition) which marks the M~ = + —, series limit.
The next line (1, ——', )- (2, —a) is just perceptible
under these experimental conditions. A '*classical"
light-hole resonance also appears in the spectrum
as 50 kg/cm is insufficient to uncouple the deeper
Landau levels.

The positions of the electron lines in Figs. 7 and
8 are unaffected by uniaxial stress; however, the
intensity of the higher mass electron line in Fig. 7
diminishes sharply with applied [111]stress due to
the valley splitting effect.

B. Identification of the lines: Qs ((
7'

The deconvolution of the hole spectrum by uni-
axial stress enables us, with the aid of the energy
level diagrams in Figs. 3 and 4, to establish the
identities of the quantum lines. To do this we re-
corded spectra as a function of T in steps of - 75
kg/cms at large stresses (T &500 kg/cm ) and at
even smaller intervals at low stresses where the
lines shift quite rapidly. Data for T l~ [111]and
T ~~ [001] are shown in Figs. 9 and 10 and Fig. 11,
respectively. Measurements were made at both
1.2 'K (circles) and 4. 2 'K (points). At 4. 2 'K the
higher transitions, up to n=6 7, become observ-
able. The solid curves represent fits (for k„=0
unless otherwise noted} calculated from Figs. 3
and 4. Although the fits in Figs. 9-11 are excel-
lent, it should be emphasized that they are not
used to determine the band parameters. These
can be gotten much more accurately, as we shall
presently see, from the fundamental transitions.
The dashed curves follow experimental points in
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instances where we have not attempted detailed
calculations, e. g. , for most transitions at k~ & 0.
The transitions are labeled by N„near zero stress
and by (n, Mz) at large stress.

To facilitate the fitting of calculations to the ex-
perimental data in Figs. 9-11 we plot the data in

terms of the strain parameter x„or x„' defined in

Eq. (15). The conversion from sample loading

(i.e. , stress) to strain parameter depends on one
"adjustable" parameter, namely, the uniaxial de-
formation potenttal (see Sec. IVC). In reading ef-
fective masses against this scale one should bear
in mind that "constant x" does not imply constant
stress; the constant-stress loci are hyperbolas,
i. e. , x~ m/m*, not "vertical" lines in these
diagrams.

Having made line identifications at finite stress,
we are able to track some of the lines to T = 0.
Some light is shed thereby on the identities of the
quantum lines of the unstressed crystal. Unfortu-
nately, the procedure is not entirely definitive in-
asmuch as the spectrum near T=O is scrambled
by the overlapping of many lines in addition to the
complications introduced by k~ effects. For the
most part the correspondences made will serve as
a valuable, albeit qualitative, adjunct to the more
elaborate analysis in Paper IV.

Included in Figs. 9 and 11 are data from transi-
tions in the depopulated M~ = —~ states. As ex-
pected, these transitions are exceedingly weak and
become undetectable for stresses greater than 250
kg/cm . (Consequently, they appear in Fig. 8 but

not in Fig. 7. } We have devoted considerable ef-
fort to measuring these lines, for one of them, the
fundamental transition (0, ——,')-(1, ——,'}, is a cru-
cial link in the determination of y„y» and y, .

We will now consider the cases T ~~ [111]and
T II [001] individually in more detail Asi.milar,
comprehensive mapping of the spectrum for
T t~ [110]has not been attempted. We anticipate the

results to be qualitatively similar to the [111]and

[001] cases (and very likely more complex at low

stresses owing to the less stringent selection rules
that result from the lower twofold symmetry).

~. & Ill&J&J

First let us consider the high-stress region.
For Ix„'I & 20, we see in Fig. 9 that the lines of the
quantum spectra fall into three series. As l x„'I
-'0, two series, M~ = —2 and M~ =+ &, asymptoti-
cally converge to the fundamental transition (0, —2)
—(1, —~) while the third series, Mz= ——,', con-
verges to the fundamental transition (0, —2)
-(1, ——', ). We have been unable to detect any lines
of the fourth series, M~=+&, possibly because of
strain broadening.

At large x„' we observe an extra resonance ' in
the spectrum not attributable to any k~ = 0 transi-
tion in the M~=+ ~ ladders. Its position is given
by the data points in Fig. 9 tagged "k~ branch"
alongside the (0, --,')-(1, —2) transition. Experi-
mentally we note its following characteristics: (i)
It is first resolved near x„'- —30 as a secondary
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through data points serve as an aid to the eye.

shoulder on the high-field side of the (0, —2)
-(1, —2) ("primary") resonance. (ii) With in-
crease in stress the secondary resonance shifts
gradually away from the primary line towards
higher m /m. (iii) At fixed temperature the in-
tensity of the secondary resonance diminishes
(weakly) with increasing stress. (iv) At fixed
stress the intensity increases (roughly like the
primary resonance) as the temperature is lowered
from 4. 2 to 1.2 K. We find that the anomalous
resonance originates from a secondary critical
point associated with the (0, —2)-(1, -2) transi-
tion. To see this we refer to Fig. 12 where we
have plotted m*/m (calculated as a function of x„')

vs r=k„(eHp/Re) for the (0, —2)-(1, —2) tran-
sition. At P =0 lies the primary critical point
which remains essentially fixed at m*/m = 0. 130
independent of x„'. At x„'- —10, a secondary critical
point (a "maximum ") begins to take shape near

)=0.4. As lx„l increases this critical point shifts
to higher m*/m and r, but not until I x„' I' & 30 is it
resolvable from the primary resonance (In Fig. 12
there also exists a second noncentral critical
point, the sharp "minimum, " but it does not con-
tribute observable structure to the spectrum. )
The f shift, through the dispersion of E(g), reduces
the Boltzmann factor for the noncentral resonance,
so its intensity gradually diminishes with increas-
ing stress. To check this assignment we have
computed line shapes (from the "spectral function"
given in Paper I) which we find replicate the sec-
ondary as well as the primary resonances in the
observed line shapes. Furthermore, in Fig. 9 the
curve labeled "k~ branch" obtained from the com-
puted secondary peaks closely fits the data. This
confirms our identification.

Having thus assigned the "anomalous" line we

have completed the identification of all lines ob-
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served at high stress. To check the converse
statement-namely, that all predicted structure is
accounted for-we have "synthesized" the entire
quantum spectrum with k~ effects included by com-
puting the "spectral function" for x„'= -100.
(Strictly speaking, this does not quite correspond
to a physical situation; for, as we pointed out

earlier, constant "x" is not equivalent to constant
stress. It is, however, a good approximation for '

this case where all structure is clustered in one
region of the spectrum. ) The computed spectra
match the spectra recorded at large stress, so we

conclude that all transitions not seen are either
too weak or too broad to be resolved as distinct
lines.

For t s„'I& 20, the stress dependence of the hole
resonances plotted in Fig. 9 becomes rather com-
plicated. An expanded view in Fig. 10 shows a
part of this region in more detail. As I x„'I de-
creases to zero, the effective masses of the M~

FIG. 10. Expanded plot of the low-stress region in
Fig. 9 showing in greater detail the behavior of the quan-
tum cyclotron resonances as the valence bands begin to
decouple.

=+ ~ line series increase monotonically, ' whereas
the effective masses for the M~ = —~ series first
increase rapidly and then pass over a maximum

near x„'= -9 as the energy levels "pinch" together
(or cross) .The rapidly shifting M~ = —& lines are
only observed in the immediate vicinity of x„'= —9,
where m*/m is "stationary. " As x„' approaches 0,
the data deviate from the computed (ks = 0) curves
to an increasing extent as k~ effects become pro-
nounced. A number of the transitions in Fig. 10
exhibit curious behavior in the vicinity of x„'= -2
due to level crossings. In particular, in Fig. 10
the transitions 20- 3& and 33-43 appear to approach
and repel one another as the 3, and 3& levels cross
in Fig. 4. Although these levels seemingly cross
without interaction in Fig. 4 (ks = 0), actually both

are K=3 states and interact strongly when k~&0
(and the parity selection rule is broken). There is
also evidence of level-crossing effects near x„'- —2

among some higher transitions.
In addition to lines which can be followed con-

tinuously from low to high stress, there are a
number of lines in Figs. 9 and 10 which exist only
at low stress. Lines M, I', Q, A, 8, and 8 appear
in the spectrum at x„'= 0 but rapidly diminish in in-
tensity and disappear as the stress is turned up.
They do not match with any of the solid curves
which represent all low-lying transitions expected
for k„=0. In Paper IV we show that these transi-
tions are associated with noncentral critical points.
%e believe that as the bands become ellipsoidal
undex' appl1ed uniaxial stress these cx'itlcal points
at kent 0 shift to higher k„(for one example, see
Fig. 13) and "depopulate" causing the resonances
to disappear. The data in Fig. 10 show clearly
that the m~/m = 0. y50 resonance at zero stress is
composed of an unresolved triplet of lines I, I',
and 33-43 which split apart and are resolved when

stress is applied. A triplet at T =0 is predicted
by our calculations in Paper IV. (Line P can be
seen in certain samples of unstressed Ge, in par-
ticular when H() is rotated a few degrees off the
[111]axis, as a partially resolved shoulder at
m*/m = 0. 264. )

%e see in Figs. 9 and 10 that the classical cyclo-
tron resonance lines-the heavy hole, the light
hole, and the second and fourth harmonics of the
heavy hole (the third harmonic is forbidden for
Ho ~~ [111])-persist even up to substantial uniaxial
stresses (T-1000 kg/cmm for the heavy hole).
These resonances come from transitions between
Landau levels deep in the bands which are not de-
coupled until T becomes very large. Under stress
the heavy-hole resonance splits into two compo-
nents, ' the upper and lower branches seem to follow

I j,the M& = —z and +z series, respectively. The
light hole resonance also shifts with T (not enough
to be seen in Fig. 8) but does not split. As stress



QUANTUM RESONANCES IN THE VALENCE BANDS ~ ~ ~ II ~ ~ ~ 4235

0.40

3Q

3) 42(0p)~
X

CYCLOTRON RESONANCE LINES IN GERMANIUM

Ho, T II (OOI)

0.30
Ts-8s
64 75~

6 53 64~
43 54~

,- 2,-3,~
4 32-43

0.20
) 42(00) 53+
o 3r2I
4J
P. Q 53~

ELECTRON
& & &

+)—(4,+)

(I,+)—(2,+)
I

(0,+)—(I,+)

(2,+)M3,+)

Io-2t 3

O.IO, ~&

GO~II
)

O 0

Ii ~2p

CLASS 3'd HARM.

(0,-3/2) M), -3/2)
GLASS. LH

0 O ~ ~ ~ &

I

(0,-)—(I,-) l

(I,-)M2,-)~
I

(2.-)M3;)

0
0 -20

!

I,-3/2) —(2,-3/2)

-40 -60 -80 -I20 -I60

STRAIN PARAMETER, X, U

) (~OH }

FIG. 11. Stress dependence of the hole cyclotron resonances for Ho, &tl t001]. The remarks in the caption of Fig. 9
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increases the light hole effective mass, initially
m~/m=0. 0421 at T=0, first decreases to a mini-
mum value of m*/m = 0. 0416 at x„' = —14, and then
increases toward the Mz = + —', series limit [the
(0, ——,')-(1, ——,'} line].

The lines 1p-54, 1p 53 and 1p 2g comprise the
fundamental triplet [see Sec. IV D2]. The transi-
tion 10- 54 (the strongest member of the triplet at
x„'= 0) is forbidden at ks = 0; the solid curves which

fit these data in Figs. 9 and 10 were taken. from the
peaks of line profiles computed from- the spectral
function.

A few weak lines in Fig. 9 and 10 appear without
labels; the uniaxial stress experiments provide
little help in establishing their identifications.
The resonances m*/m = 0. 103 and m*/m = 0. 165,
0. 176 could be quantum fourth and second harmon-
ics, respectively. The two quantum lines near the

'

light hole at m*/m = 0. 050 and 0. 052 and a line at
m*/m = 0. 153 disappear as soon as stress is ap-
plied. More information about these lines is given
in Paper IV.

2. T )i(001j
The behavior of the cyclotron resonance spec-

trum for T II [001] in Fig. 11 is rather similar to
that just outlined for T II [111]. Here we shall
merely emphasize the more important points and
call attention to the differences.

Overall the patterns of the three main line series

M~=-&, +p, and --,' in Fig. 11 closely duplicate
those described for T II [111]. In particular, we
take note of the important "fixed" fundamental
transitions (0, ——', )-(1, -2) and (0, ——',)-(1, ——', ),
which mark the + ~ and + & series limits, respec-
tively. Again a k„branch accompanies the (0, —2)- (1, —2) transition. The transitions 3, -42(00) and

42(00) - 5, behave anomalously near x„-—4 due to
the "level crossing" of the states 00 and 42 (see
Fig. 3). [This is responsible for the switch in

labels 00 to 42(00) in Fig. 11 which is intended to
mean that the character of 42(00) is like 42 for l x„l
&4 but passes continuously to Op as x„goes to
zero. ] This effect is also responsible for the
"break" at x„-—4 in the transition Op- 1~. As
noted previously classical lines persist in the spec-
trum to moderately large stresses. The stress
dependence of the light hole is quite marked; it
decreases from m*/m = 0. 0440 at x„=0, reaches a
minimum value m*/m = 0. 0423 near x„=—20, and

then increases toward the M~ = + —, series. limit.
Lines X, Y, and 2, apparently unrelated to any of
the (k„=0) calculated transitions, are believed to
arise from non-central critical points. We are
unable to measure the stress dependence of the
lines at m*/m=0. 056, 0. 096, 0. 241, and 0. 305.

C. Deformation potentials: D„and D„

Previously, we mentioned that the fitting of the
curves in Figs. 9-11 for the T II [111]and T II [001]
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of the M~ = —2 fundamental transitions for Ho lt 7.
'

with T along [111], [110], and [001]; respectively.
On the expanded scale we see that these resonances
depend weakly on stress. This arises from two
effects. First, they experience a linear shift be-
cause of the strain interactions between the J= 2

and 8=k bands. (In order not to distort the linear
form, we have plotted the data in Fig. 13 against
T rather than x. ) Second, the resonances shift
slightly as the strain decouples the nearly "pure"
(0, -~) and (1, -~) eigenstates from the other
Landau states of J'= &. This shift consists essen-
tially of two parts: (a) a ks-dependent part which
varies as does k'„/T as T-~, and (b) a warping
part which varies as does (y, -y~)'/T as T- ~.
Part (a) causes a strain-dependent asymmetry in
the line shape and concomitant shift of the reso-
nance peak while part (b) gives rise to a strain de-
pendence in the As = 0 effective masses (except for
Ho ~~ [ill] whereupon it vanishes even at zero
stress). As T-~ both effects vanish as does 1/T,
and the effective mass asymptotically approaches
mf/m given by Eq. (18). In summary, the position
of the resonance peak will be given by Eq. (25)
augmented with small (stress-dependent) decou-
pling shift 5(T),

I m
~ -nT+5(T).

Sl0
(28)

In the analysis45 of experimental data in this
section we do not assume any functional form for
5(T); instead we determine it numerically from the
shift of the peaks of computed line profiles from
their unperturbed position at mg/m (computed). '

It should be noted that the demands on accuracy
for 5(T} are not severe, since 5(T) is quite small
[except close to T= 0, 5(T) & 1% of m/mf]. The
line shapes are calculated as a function of T from
the spectral function using a trial set of band pa-
rameters (those estimated from the raw data in

Figs. 13 and 14 would do). We obtained the best
fits of the computed line shapes (including the ks
branch) to the resonances recorded at 1.2 K by
assuming 7-3.2&10 '0 sec for the Lorentzian com-
ponent lines and an effective temperature (see Sec.
IVD) of 6*=2.5 K. (The optimum value of 7 de-
pended slightly upon stress while the relative am-
plitude of the primary line to its k~-branch was
found to depend upon 0*.) This estimate of 5(T)
is not very sensitive to the initial choice of values
for the band parameters (nor to the value assumed
for 0*). The entire analysis could be iterated, of
course, for greater accuracy; but we found this
unnecessary.

Substituting these estimates for 5(T), we fit the
data with Eq. (28) and evaluate mf/m and n The.
fits obtained are shown by the solid curves in Fig.

13; the linear part of Eq. (28), which defines the
M~ = + 2 series limit, is represented by the dashed
lines having slope —(mf/m) a and intercept mf/m.

Our analysis for T t~ [001]and T ~~ [111]deter-
mines m, /m, a, and m,'/m, n,', respectively, for
M~ = —2 which we list in Table III. The effective
masses m,' and m, in Table III have been corrected
for the magnetic shifts d, (m*/m) = —0. 00015 for
T ll [ill] and &10 4 for T Il [001], estimated from
Eqs. (19) and (20). The experimental effective
masses m,' and m, give

yg —ys = 7. 692 + 0.010,

yq —y2 = 9. 141+ 0. 018

(2&)

(30)

0.0580

(a )HO, TII [0011

u
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FIG. 14. Stress dependence of the Hall T fundamental
transitions (0, —g) (1, —32). The effective masses mere
measured at 1.2 K from the peaks of the resonances.
The fits to the data determine m~/m (given in figure) and
n (0. ~ 0 for both Tll t111) and t001)).

from the relations in Table I.
The data for T ~l [110](Ho II T) in Fig. 13 can be

fully analyzed only in conjunction with measure-
ments for the (two} "transverse" cases for Ho& T.
%e defer this to Secs. IVE and IVF.

The experimental data for the M~ = —2 fundamen-
.tal transitions measured at 1.2 'K are shown on
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TABLE III. Components of the effective-mass tensors (in units of the free-electron mass
m) and the linear effective-mass shift parameters (in units of cm /kg) for Ge subjected to a
uniaxial compressive stress along the principal crystallographic directions.

Mg=+gl

My=pa

T II [001]

m ~= 0. 1094+ 0. 0002
m„=o. 0458~0. 0004

a!&
= —(10.8 y 0. 8) x 10"~

QH +(24 +5) x 10

m J 0 ~ 05662 + 0.00020
~ 0

T II [111~

m j = 0.13000+ 0.00015
m f,

= 0.0403 + 0. 0003

n'i=- (10.5 +0. 7) x10+
n'„=+(17+5) x10

mg = 0.05242 y 0.00005
ng- 0

Ttl [110]

mg =0.117+0.001
m2 =0.126 +0.001
ms =0.0420 +0.0003

0.
&

= —(11.7+2.0) x10+
0.'2=-(6.4+1.9) x10 ~

0.'3 =+ (25.9 +5.5) x 10 5

r&+r3 =19.077 ~ 0.018, (31)

with the help of Table I.
The excellent convergence of the M~ = —

& transi-
tion for Ho II [ill] to the series limit in Fig. 14(b)
warrants some comment. This behavior is unex-
pected a priori since the two participating Landau
states (0, ——', ) and (1, ——', ) are not decoupled states.
A clue can be found in Fig. 4 which shows that
each lies between the pair of states which perturb
it, (0, +~), (2, —~) and (1, +~), (3, —~), respec-
tively, such that the interactions partially cancel
one another. This cancellation is essentially re-
sponsible for the rapid convergence of 5(T) to zero
as stress is applied and accounts for the nonmono-
tonic behavior of 5(T) near zero stress.

To be more definite it is instructive to derive

expanded scales in Figs. 14(a) and 14(b) for
Ho, T II [001] and Ho, Tll [111], respectively. The
experimental uncertainties indicated by the error
flags increase at higher stresses reflecting the
worsening cyclotron-resonance signal-to-noise
ratio as the M~ = + & bands depopulate; accurate
measurements of the M~= —

& resonances became
impossible for T& 230 kg/cm .

The first case we consider is TII [ill] in Fig.
14(b). The analysis for the Mz ———~ transitions is

1
similar to that discussed above for M~ = —~. Equa-
tion (28) again applies except we do not anticipate
a contribution from the linear term eT inasmuch
as the M~ = ——,

' states cannot admix with states in

the J= ~ band. Having computed 5(T) as before we

fit the data with Eq. (28) to determine mo*/m and

n. The fit is shown by the solid curve in Fig.
14(b); the dashed line is the series limit, given by
the first two terms of Eq. (28). We see that the
series limit has zero slope as expected, i.e. ,
n = 0. Also we note that (at large stresses) the

M~ = ——,
' resonances approach the series limits

from below —opposite to the M~ = —~ fundamental
lines. The intercept of the series limit gives
m', /m (M~ = ——', ) = 0. 05242 + 0. 00005 from which we

get the relation

by perturbation theory the decoupling shift 5(T) (we
neglect the k„-dependent part) for the M~ = --,'
fundamental transition for Ho, T II [111]. Except
for its rapid change near zero stress [cf. Fig.
14(b}], we find that 5(T) is elsewhere bounded, and
at

—«„'(max) = (y, —y, )+—,'~

+(~3/9~)(r, +2r, ) +2 v3y,

[«„(max) = —27 for Ge], it reaches an extremum
(minimum effective mass) which fixes an upper
bound

(32)

5. = k(~. -~.)'02 ~3)

~[(2/8«)(r, + 2&,)'+ r, )}-', (33)

for the shift of the inverse effective mass from
m/mf at k„=0. [Numerically Eq. (33) gives an
effective mass shift of —(mf/m)'5 = —l. l3&10',
compared to the more "exact" result -1.71&10
from eigenvalues obtained on the computer. ] The
expression for the upper bound in Eq. (33}suggests
that the convergence will be rapid whenever the
warping y3 - y2 is small so we conclude that th'e
transition (0, ——,)-(1, ——,) may have rather gen-
eral applicability for band parameter measure-
ments.

Turning now to the T II [001]case in Fig. 14(a)
we discover that unfortunately there is interference
from a nearby transition, the classical fifth har-
monic of the heavy hole, making an accurate de-
termination of the position of the fundamental tran-
sition (0, ——,'}-(1, ——,} impossible. The expected
location of the fifth harmonic is roughly indicated
by the dashed curve in Fig. 14(a). Near «„-—5
two lines can be seen; but elsewhere the fifth
harmonic component is unresolved. An effort to
correct the measurements for this contribution
seems too uncertain to us to be worthwhile. Never-
theless, to get a rough idea of the effective masses,
we fit the data with Eq. (28) [ignoring the fifth
harmonic contribution to 5(T)] and obtain m~/m (Mz
= --', }= 0. 05662+ 0. 00020 and n -0. This gives y,
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+y2 = 1V. 662 + 0.060. Within its rather wide error
limits this overlaps the value 1V. 624 + 0. 030 ob-
tained from Eqs. (29)-(31)which assures us that
the [001] data are not inconsistent with the rest.

Summarized below are the precision values of
the valence band inverse mass parameters for Ge
evaluated directly from Eqs. (29)-(31):

y, =13.38~0.02,

y2 = 4. 24 + 0. 03,

y =5.69+0.02.
(34)

X'~D = 9. V9 + 0.60 eV,

I',D„'=16.0+1.0 eU

(38)

(38)

based on the value47 4 = 0.290 +0.005 eV for the
spin-orbit splitting. Making the approximations

4

The signs of all three parameters are Positive. In
Sec. VA we shall compare these values with the
results of previous cyclotron-resonance experi-
ments.

b. Signs of y2, y~ and D„and D„'. In our discus-
sion so far we have consistently taken positive
signs for y~, y3 and D D„', this choice for the latter
being equivalent to the order e,» & c„&2 [Fig. 1(b)]
for the strain-split valence-band states. It is
worthwhile to pause at this point to outline the
arguments which have led to these assignments.

By themselves the mo/m values of the fundamen-
tal transitions just determined give only the magni-
tudes of ya and y3; further experimental informa-
tion is required if the signs are to be defined.
First, the relative intensities at low temperatures
of the "high-mass " and "low-mass " fundamental
transitions can decide from which of the strain-
split states each originates. For both T ~~ [001] and
[111]the low-mass fundamental transition derives
from the band that depopulates with increasing com-
pressive stress (see spectra in Figs. V and 8)
which implies that y2D„& 0 and ysD„' & 0. Next, the
existence of the linear effective-mass shift (n v 0)
of the stronger fundamental resonance (high mass)
(and conversely the absence of a linear shift for the
weaker transition) establishes the ordering e,«
& &,3& or, equivalently, D„, D„' & 0. It follows that
ya and y3 are both positive. Another line of rea-
soning leads to the same conclusion. The nature
of the quantum cyclotron-resonance spectra in
Figs. 9-11near and at zero stress is consistent
only with the signs yz, y3&0. (Hence, D„, D„'&0.)
An entirely different quantum spectrum would ob-
tain if either or both ya and ys were negative.

c. Spin-dependent deformation potentials. From
the parameters n~ and n', summarized in Table III
we can determine the "mixing" deformation poten-
tials D„and D„', respectively. Using Eqs. (21)
and (22) we obtain

I'3 = yz and I'~ = y~ and using Eq. (34) we evaluate
the deformation potentials

D = + 2. 31+ 0. 1V eV,
D' =+2. 81+0.20 eU. (38)

As a cross check let us consider the "redundant"
case 8 T ~~ [110]for which the linear mass shifts are
completely defined in terms of D„and O'. Using
the numbers in Eqs. (3V) and (38) we calculate48
the linear shift coefficient for Ho, T ~~ [110]to be
n(110) = —(10.2+0. 7) X10' cm'/kg which is consis-
tent with the experimental value n(110) = —(9.4
+ 1.1)&& )0 ' cm2/kg from the data in Fig. 13(b).

We note that D and D' are significantly smaller
than the corresponding deformation potentials D„
and D„' in Eq. (27). [In comparing these, we hasten
to point out, the uncertainties of the differences
are somewhat less than the absolute uncertainties
of either, since we measured both on the same ap-
paratus (and in some cases during the same run);
so the most uncertain factor, the magnitude of the
strain, is partly removed from the comparison. ]
As mentioned earlier this difference can be ex-
plained by the existence of spin contributions to
the deformation potentials. We can decompose D„,
D„' and D, D' into spin-dependent and spin-inde-
pendent components using the relations

1 1D„=pD2+E2, D = p(Dq -E~),
D„'= pD~+Eq, D' = p(D3 -Eq)

to get (in eV)

gD =2. 65+0. 18, E =0.6V+0. 13,

p D3 = 3. 14 + 0. 22, E3 = 0. 6V + 0. 15 .
Further discussion follows in Sec. VB.

(39)

(40)

2. Fundumenful tripkt

It is well known that for Ho ~~ [111]two low-lying
Landau states in unstressed Ge, 10 and 2~ in our
nomenclature, decouple from the rest of the mani-
fold at k„=0 and have the eigenvalues (in units of
hejfo /mc)

'E(n) (yf y3)(n + ) — K —~qq, n = 0, 1 . (41)

Corresponding to the cyclotron resonance transition
10-2, (n = 0- 1), we would expect a line to appear
in the spectrum at m*/m = (y, -y~) '; this coincides
with the position of the high-stress fundamental
transition (0, -4)- (I, —~), which evolves from
lo-2, as a [111]stress is applied (see Fig. 4).
The simple connection between the line position
and the quantity y, -y, would make the 10-2, tran-
sition useful for the determination of the band pa-
rameters. However, experimental efforts ' ' in
the past to locate and identify this line in Ge have
proved to be unexpectedly difficult. The problem
is simply this: At approximately the predicted posi-
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Hp ll [111]fundamental triplet lp —2~, 54, 53. The experi-
mental traces were taken at 49.95 GHz and 1.2'K. The
effective masses of the three quantum resonances at T
=0 are listed under trace 4).

tion of the resonance, m*/m=0. 133, indeed a line
does appear; but it is broad and very weak —little
resembling the low-lying allowed transition sought.
On the other hand, a much stronger transition is
observed nearby; but its position, m~/m = 0. 125,
cannot be reconciled with the known values of the
band parameters.

We have resolved this quandary by studying the
spectra for Ho ~i [111]as very small uniaxial stress-
es are applied. The results are illustrated in Fig.
15. In Fig. 15(a), a trace taken at zero stress,
we see the prominent line at m*/m = 0. 125 men-
tioned above. Careful examination also reveals
two additional very weak lines, one on either side,
at m~/m = 0. 117 and 0. 133. These three lines to-
gether comprise the "fundamental "triplet. In

Fig. 15(b) we see the effects of a small uniaxial
stress 30 kg/cm applied along the [111]axis. The
line originally at m*/m = 0. 133 has dramatically
increased in amplitude and has shifted slightly to
m*/m = 0. 131, precisely the location of the funda-
mental resonance; whereas the line originally at
m*/m =0. 125 has decreased in amplitude and has
shifted to lower mass m*/m = 0. 120. We were un-
able to.track the m*/m = 0. 117 line in Fig. 15(a)
when stress was applied. In the trace in Fig. 15(c)
taken at higher stress, 120 kg/cm', the upper line
maintains its position at m*/m = 0. 131 as it be-
comes still narrower and stronger, ' the lower line
continues to shift to m*/m = 0. 118 while becoming
broader and weaker (it eventually vanishes as the
stress is increased further). The positions of
these lines are plotted as a function of x„' in Fig.
10. From the evolution of the spectra in Fig. 15,
we establish that the weak line at m*/m=0. 133 in

unstressed Ge is, in fact, the one which develops
into the fundamental resonance under applied
stress, thus identifying it as the line 1p 2g, But
the questions remain, why is it so weak at zero
stress and what is the origin of the other two lines~

To answer this question let us examine the energy
level diagram for Ho II [111]in Fig. 2. We note
that the final state 2, of the transition 1p-2, is
nearly degenerate with two other states 53 and 54

of the same character K=2. Owing to the decou-
pling peculiar to the Ho ~~ [ill] case, these states
cannot admix for kH = 0 and, consequently, the tran-
sition 1p-5„54 in Fig. 2 are forbidden. However,
for k„+0 the strict selection rules are broken, and

the three K=2 states admix strongly. In this case
all three 4K= 1 transitions lp-2„5„54 are al-
lowed giving rise to the fundamental triplet.

The behavior of these transitions as a function
of f is shown in Fig. 16 for three cases, x„'=0,
—2, and —8, which correspond to the experimental
traces in Fig. 15. For x„'=0 the transition 1p-2,
has at f = 0 a "cusplike" critical point representing
a very low joint density of states. The nature of
the "dispersion" of m*/m near r = 0 would suggest
that this cyclotron resonance should be broad, weak
and k~ shifted to a higher effective mass, all of
which fit our observations on the m*/m = 0. 133
line. The transition lo- 54 (forbidden at t' = 0) has
a high joint density of states in the region f = 0.2

to 0. 4 which is responsible for the line observed
at m*/m =0. 125. When uniaxial stress is applied,
x„'= —2 or —8, we see in Fig. 16 that the cusplike
critical point of the lp-2& transition flattens re-
sulting in a stronger and sharper line. At the same
time the noncentral critical point for 1p 54 shifts
and loses strength (and eventually disappears) with
increasing stress. The position of the transition
10-5~, (not shown in Fig. 16) changes even more
rapidly as a function of stress which explains our
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For experiments with Ho~ T the apparatus pic-
tured in Fig. 6 cannot be used because rotation of
the magnet about the dewar axis to the "90'-posi-
tion" results in the wrong electric field polariza-
tion S, i~ Ha for cyclotron resonance. Instead our
measurements were made on the apparatus designed
for the combined resonance experiments in Paper
III (where a more detailed description is given) in
which thy cavity electric fields were linearly po-
larized 8, ~~ T; so that having set Ho~ T we auto-
matically obtained the correct polarization 8~ ~ Ho.

The notation (n, M~) used so far to classify the
(high stress) Landau states must be modified when
we deal with Ho& T. A large stress decouples (at
least for the uniaxial cases T ~~ [001] and T ~~ [111])
the manifold M~ = + & from the manifold M~ = + ~,
where M~ is the projection of J along T. In an
orthogonal magnetic field the eigenstates within the
MJ = + ~ manifold are not the states with either M~
= ~ or —~ but their linear combinations

(42}

0,09
0

l

i 5

FIG. 16. Effects of a weak tl11] uniaxial stress on the
dispersion of bvo transitions 10 2~ and 10 54 in the
fundamental triplet (cf. Fig. 12).

inability to follow this line.
The above analysis is confirmed in detail by

matching spectra calculated from the spectral func-
tion, shown by the dashed curves in Fig. 15, to the
experimental resonances. The amplitudes of the
theoretical curves were normalized to the peak of
the 10-2, transition in Fig. 15(c). The calculated
and experimental line shapes agree quite well (as
does the 11116 positloll glvell 111 Figs. 9 RIld 10). No
attempt was made to include strain broadening
which might account for some of the minor dis-
crepancies in the fit.

E. Experimental results for Ho l T

Up until now our discussion has been restricted
to measurements made in the geometry Ho]I 7.',
which from the standpoint of simplicity of interpre-
tation and sharpness of the observed spectra is
unquestionably the optimum experimental arrange-
ment. We have found it also worthwhQe to investi-
gate the spectra for the transverse geometry
Ho l 7, which can provide important checks on the
values of the band parameters and deformation po-
tentials, as well as assist in the determination of
the strain anisotropy parameter P. We briefly
summarize our results in this section.

It may easily be seen that of the two (if II & 0), the
(+) stRtes 118 Rbove the (-) stRtes (ill ihe lllvel'ted
scheme used for hole Landau levels). In this sec-
tion we shall employ the labeling scheme (n, a),
where + has the connotation suggested by Eq. (42)
and n is the usual Landau quantum number. The
M~ = + —,

' transitions have not been measured for
Ho~ T; and they are not discussed here.

The Hot T cyclotron resonance transitions (0, -)
-(1, -) are plotted in Figs. 17 Rnd 18 for T ~~ [ill],
T ~l [001], and I'

~~ [110], respectively. These tran-
sitions, analogous to the fundamental transitions
for Ho ~~ T, depend only weakly on stress and lie
close to the series limits. These series limits
[see Eq. (16)]depend upon the longitudinal com-
ponents of the effective-mass tensor, the measure-
ments of which, in principle, could give an inde-
pendent set of values for y„y„and y, (although,
in fact, to somewhat lesser accuracy, for the
Ho~ ~ resonances are found as a rule to be broader
and more stress sensitive than those for H(} ~] &).

%'e analyze the data in Figs. 17 and 18 using Eq.
(28). Consistent with the lower level of precision
involved here, we opt for a simpler, approximate
method to estimate &(T). We calculate" the Landau-
level energy shifts from the second-order (II /T)
projection of the Z= —, Hamiltonian ++3C, onto the
2&&2 subspace of (+}; i'urther, we neglect il„effects
and their contribution to the line shape. For a
tl'RllsltloI1 (II, +) (II + 1, +}~ 'the decoupllIlg shift
(}I»= 0) ls glV811 by

6(T) =(1/2~~~) [m(&+I)+2fl],
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First, consider the band parameters. Using the
H, ll T values of y„yp, and yp [Eq. (34)] we can cal-
culate the Ho l T cyclotron resonance effective
masses:

(m„m, /m')'n(c ale) = 0. 07075 + 0.00015

for T ll [001],
(m'„m,' /m ) ~(cale) = 0. 07247 + 0. 00015

for T ll [111].
These are in very close agreement with the mea-
sured values given in the caption of Fig. 17. (We
treat the T II [110]effective masses in Sec. IV F. )

Next, we consider the deformation potentials as
represented by the linear-shift components. Prom
the Ho ll T experimental values for e, and 0.,' in
Table III we can use the relations e„=—2m~ and
n('I = —2o~ to calculate the parallel components rele-
vant to Ho~ T experiments:

0.070'
0 -50 - Ioo -

& 50 -200 —250 -300
STRAIN PAR AME T E R Xu

FIG. 17. Stress dependence of the Hp j- T' fundamental
transitions (0, -) (1, -) with {a) Tll t111] and (b) Tll t001].
The fits to the data determine mo/m and 0," (a) T)l t111]:
mp /m = 0.0724 + 0.0004, n = —(4.7+ 1.S) x 10 p cmp/kg;
(b) Tll t001]: mo/m=0. 0708+0.0004, e=-{0.6+1.5)
x10 P cm /kg.

T ll [001]: n„(calc) =+(21.6 + l. 6) x10 ' cm /kg,

T ll [111]: n '„(cale) = + (21.0 a l. 4) x 10 p cm /kg.

In addition, using Eq. (I. 144), we obtain

T ll [110]: n, (calc) = —(14.0+1.4) x IF' cmp/kg,

where x represents generically the strain param-
eters x„, x„', or x„". The x values of the data in
Figs. 17 and 1S were not considered free to be ad-
justed by fitting but were fixed in terms of the
stress by the values for D„and D„' in Eq. (27).
Expressions for the coefficients A and D may be
found in Table VGI of Paper I. Substituting Eq.
(43) into Eq. (28) we fit the data as shown by the
solid curves in Figs. 17 and 18. The dashed lines
repxesent the series limits, the linear part of Eq.
(28), from which we determine mce/m (intercept
at @=0) and n (slope) as listed in the figure cap-
tions.

From the data in Fig. 17 for Tll [001]and
T ll [111], we determined m„/m, n„and m,', /m, n, ', ,
respectively, using Eqs. (16), (25), and (26) and
the values for m~/m, m~/m, n~, and n,' measured
in Sec. IV D l. Similarly, the data for T ll [110]in
Fig. 13(b) and in Fig. 18 were analyzed p together
to give m, /m, mp/m, and m, /m and n„np, and
n3. The results thus obtained are listed in Table
ID.

The Ho~ T experiments are "redundant" in the
sense that together with the Ho]] T measurements
they "overdetermine" the band parameters and
deformation potentials. The extra relationships
which result from this redundancy are useful for
checking the over-all consistency of our work.

0.078

(o) Tll [&Io]
Holi [II((II

0.076-

0.074
E
iA

& OO72
0.078

4. 0.076

I

(b) Tll [IIO]
Holi [OOI]

0.070I
I

0 -50 -IOO I 50 - 200
STRAIN PARAMETER. Xu

-250

FIG. 18, Stress dependence of the Ho& T' fundamental
transitions (0, -) (1, -) with T'll faao]. The fits to thedata
determine m$/m and n: (a) Hp II [1TOI: m f/m = 0.0727

O. OOO4, e=+(2 2) aO-' '/lg; (b) A, ll [00a]: m*, /m
=0.0700+0.0004, ot = —(2y2) x10 ~ cm /kg.
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FIG. 19. Stress dependence of the Hp& T resonance series with T ll [001]. We sealed the s„values of the data from the

stress using D„=3.32 eV.

a&(calc) = —(7. 1 + 0. 5) && 10 ' cm2/kg,

n, (calc) =+(21.2 s l. 5)x10 ~ cm~/kg.

These numbers are all in reasonable agreement
with the measured parameters given in Table III.
In passing it should be pointed out that the sum
rule

ka1, 2, 3

obeyed if the linear shifts originate exclusively
from within the I"25 manifold, is roughly satisfied
by the experimental e's in Table III for each of the

three directions of T:

T II [001): Z a) -—+ 2. 4 a 5. 0,

T II [111]:Z n( = —4. 0+ 5. 0,
i

T II [110]: Z a( =+7.8+ 6. 0

(in units of 10' cm /kg}; in all three cases, the
residuals'~ are quite small compared to g, I n, l-40,
which reflects the total intraband contribution.

So far, only the lowest m=0-1 transitions for
HO~ T have been discussed; however, we have also
measured some of the higher transitions for
T l~ [001]and T II [111]the data for which are shown

in Figs. 19 and 20, respectively. The calculated
line positions (solid curves) are determined by
adding the effective mass shifts —(mf/m) 5(T) cal-

culated from Eq. (43) to the series limits (dashed
lines) taken from Fig. 17. Theory predicts that
all resonances with the exception of the "lowest"
transition, (0, -)-(1, -), occur as close doublets,
i.e. , (1, -)-(2, -) lies close to (0, +)-(1, +), etc.
On a few occasions, two peaks were actually re-
solved. Usually, however, we were unable to
distinguish the individual resonances; so the data
points in Figs. 19 and 20 represent the composite
peaks of each unresolved pair. In the case of the
lowest doublet, (1, -)-(2, -) and (0, +)-(1, +),
we see that the calculated curves in both Figs. 19
and 20 straddle the data points as expected. For
the sake of clarity the higher transitions are only
fitted by a single curve; accordingly in Fig. 19 the

curve labeled (1, +)- (2, +),in fact represents the
mean of (1, +)-(2, +) plus (2, -)-(3, -) and so on.
In Fig. 20 the curves shown, (1, +)-(2, +), etc. ,
represent the single sponger member of the doublet
as labeled. The fit of the data in Figs. 19 and 20
even at low x values by approximation (43) for 5(T}
is surprisingly good. This suggests the possibility
that the second-order projection formulas having
the virtue of simplicity [see Eqs. (I. 125) and

(I. 127)] may be generally useful for analyzing
cyclotron resonance "stressed" spectra. It should
be pointed out that the close match of the observed
stress dependence of the resonances with the
curves calculated by Eq. (43) also confirms the

(Ho ~~ T) values of the deformation potentials D„and
D„' in Eq. (27) upon which the x values in Figs.
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FIG. 20. Stress dependence of the Ho & T' reso&a&ce series with &ll I.&&&l. We scaled the &„' values of the data from the
stress usillg ~g=+3. 81 eV.

17-20 are based without adjustment. (This is note-
worthy in view of the fact the measurements for
Ho ~ T and Ho ~~ T were made using different inde-
pendently calibrated sets of apparatus ).

F. Determination of P

From the effective masses measured for T ~~ [110]
we can determine the splitting anisotropy param-
eter P. Using our "standard" values of y„y, and

ys in Eq. (34) we can calculate (see Table I) the
effective masses m, /m, ma/m and ms/m for
'T ~~ [110] as a function of I Pl. The results are
plotted in Fig. 21 in the form V'(m, ma/m ),
vs, m, /mg +~ms/m2) which can be directly com-
pared with the measured data. On the same plot
the experimental points taken from Figs. 13 and
1S and projected onto the calculated curves fix the
value

~P~=O. S9+O. O1. (45)

Since D„and D„'&0, it follows that P&0. The ratio
of the deformation potentials is, therefore, D„'/D„
=1.15+0.02. As a further check on the effective
mass measurements, we note that in Fig. 21 all
three experimental effective masses are consistent
with a single value of l Pl, an unlikely coincidence
if the measurements were appreciably in error.

V. MSCUSSION

A. Effective-mass band parameters

Prior to stress experiments, ~~'~3 the only direct

measurements of the inverse-mass parameters y&,
ym, and ys reported for Ge were obtained from the
classiea/ light- and heavy-hole cyclotron resonances
in unstressed crystals. Unfortunately this method
suffers, in principle, from three rather serious
drawbacks: (i) The signs of ya and y, cannot be as-
certained. (ii) The apparent cyclotron resonance
peak positions may be shifted by unresolved quan-
tum effects which can be present since the classical
condition, 1(d«k6, is never strictly satisfied in
experiments. (iii) The cyclotron resonance lines
are broadened and shifted in a complicated fashion
by the k~ dependence of the effective masses. Such
effects are usually very difficult to correct for
accurately.

To a large degree these problems are overcome
by our measurements on the fundamental "quantum"
transitions which are more precise (sharper reso-
nance lines), less subject to systematic errors
(smaller line shifts) and, importantly, give the
signs of ym and y, . (In passing we should mention
that the positive signs found for y~ and y3 are con-
sistent with the current picture of the Ge band
structure. ")

In Table IV we compare quantum and "classical"
values ' ' ' for y„ya, and y, . Offhand the num-
bers seem to be in reasonable accord; nonetheless,
at the level of pxecision now realized some syste-
matic discrepancies between the two kinds of ex-
periments show up (compare column 2 with 3).
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FIG. 21. Determination of the splitting anisotropy pa-
rameter P from the T, ll h10] fundamental transitions. The
curves were calculated (see Table I) from the values of
y~, p2, and ys in Eq. (34).

effective masses which tends to mitigate the dis-
agreement, in particular for y~. After correcting
line shapes (see Appendix) to compensate for the
remaining shifts, we obtain the following classical
values for the Ge valence-band parameters: y,
(classical) =13.40+0.03, ym{classical) =4. 26
+0.05, y~(classical) = 5.69+0.03, which are in
excellent agreement with the quantum parame-
ters in Eg. (34). We conclude that the quan-
tum (stress) and classical measurements of y„
y& and y3 can jn fact be brought jnto ha rmony

but only after the line shapes of the classical hole
resonances are understood.

We might add that the complex quantum spectra,
in unstressed Ge (as we shall see presently in

Paper lV) can be fitted quite precisely with calcu-
lated spectra based on these same values of y„y2,
and y3 given in Eq. (34) fu—rther evidence that this
set of parameters now stands on rather solid
footing.

From stress experiments at 35 6Hz Fujiyasu et
cl. '3' ' obtained the band parameters in column 7 of
Table IV, but low resolution and an inadequate anal-
ysis make their accuracy suspect. The question-
able interpretation of early quantum experiments
(without stress) cause us to doubt the meaningful-
ness of the quoted parameters and we omit them
from our comparison.

The most serious difference, more than five stan-
dard deviations, is seen in the y, 's. We believe 8. Deformation potentials
the classical measurements to be at fault for the
reasons described in (ii) and (iii). These difficul-
ties [especially (ii)] could well have been anticipated From cyclotron-resonance experiments in uni-
inasmuch as experimental conditions in the past, axially stressed Ge we can deduce the valence-
typically 24 GHz and 1.3 'K (i.e. , k&o- k9), fell band (uniaxial) deformation potentials from two ef-
considerably short of being truly "classical. " -fects, namely, the band splitting within the J=

&

In order to verify that this actually is the prob-, manifold and the strain interactions between the
lem we have repeated the experiments (see the Ap- 2= & and J'=

~ manifolds. Unexpectedly, our ex-
pendix) at 9 GHz (and 1.2 K), closer to the classi- yeriments in Ge show that a sizable disparity exists
cal regime than reached heretofore. We observe Ibetween the two [compare Eqs. (37) and (36) with
at 9 GHz that the classical resonances (especially;Eg. (27)] We attribute the differences49 to spin-
the light hole) are indeed slightly shifted to lower dependent terms~ in the strain Hamiltonian of sym-

TABLE IV. Comparison of inverse-mass band parameters for Ge measured by different
cyclotron resonance experiments. The signs of y2 and y3 in columns 3-6 (classical work)
are indeterminate.

Present
work

(quantum)

13.38 + 0. 02 13.27+0. 03 13.21 13.2+ 0.1
4.24 + 0.03 + (4.32 + 0.06) + (4.28)' + (4.45 y 0, 03)
5. 69+0.02 +(5.60+0.03) +(5.56) +(5.40+0.05)

DZL'

13.1y 0.4
y (4.15y 0.3)
g(5. 50y0. 3)

FMO~

13.50 g 0.05
4.40 ~0.05
5.87 +0.04

B. %. Levinger and D. B. Frankl, Bef. 24.
"Values quoted by R. B. Goodman (Ref. 7) from analysis of

cher, W. A. Yager, and F. R. Merritt, Ref. 3.
G. Dresselhaus, A. F. Kip, and C. Kittel, Ref. 54.
R. N. Dexter, H. J. Zeiger, and B. Lax, Ref. 55.

'H. Fujiyasu, K. Murase, and E. Otsuka, Ref. 13(b).

measurements of R. C. Flet-



QUANTUM RESONANCES IN THE VALENCE BANDS. . .II. . ~

metry I o,g, (E,o„+f„o,)c~, etc. (Here, I is the

vector angular momentum operator for I= 1; and 0
is the Pauli spin operator. ) The projections of
these spin-terms onto the J= —,

' subspace are iso-
morphic to the projections of the more familiar
spin-independent terms~' I,c, (I I„+I„I„)c~,etc. ;
therefore, the two can be lumped together in the
J= f space with a single coefficient D„=&++ Ea or
D„'= ~D3+E3 identical to the Kleiner-Roth uniaxial
deformation potentials as originally defined [see
Eg. (6)]. On the other hand, the projections are
different in the 2&4 "cross space" connecting
J'=

& and 4= ~ producing an analogous but indepen-
dent set of "mixing" deformation potentials D
=k(D2-Ea) and D'=~(D3-E3). Measurements in

either subspace alone are not sufficient to permit
a decomposition into spin-dependent (Em and E,) and
spin-independent (D2 and Ds) parts.

Previous strain experiments of diverse kinds
have all basically measured the same quantity, the
J= —, band splitting which determines only D„and
D„'. '7 These results" ~~ are tabulated in column
5 of Table II for comparison with our values in
column 2. Although the values in column 5 exhibit
some scatter, their trend falls reasonably in line
with our results. The only other cyclotron-reso-
nance measurements of D„and D„' by Fujiyasu et
al. '3' ' agree quite well with ours.

Recently, Saravia and Brust63 and Melz64 have
calculated the valence-band deformation potentials
(D„and D„') for Ge using the pseudopotential method.
Their results are also included in Table II.

No other measurements in Ge have been reported
for the mixing deformation potentials D and D,
nor the components D2, D3, Ea, and E3 derived
therefrom. On one point, however, we can make
a tenuous but interesting connection with other ex-
periments. Lawaetze~ in a recent study of the sys-
tematics of the valence-band deformation potentials
has found evidence suggesting a correlation between
values of the spin-independent deformation poten-
tials for different semiconductors of the same
ionicity. If this is true, we would then expect a
close match between the respective deformation
potentials 1n the two purely covalent semiconduc-
tors Si and Ge. Our most recent measurements~6
for Si give tentatively D„=+2.3 eV and D„'=+3.0
eV. Assuming spin effects are negligible ' in Si,
we can write ~DR=D =2. 3 eV and &D3=D' =3.0 eV,
which we see are not very different from the Ge
values in Eels. (39) and (40), respectively.

So far, the theory of the phenomenological spin-
dependent deformation potentials E~ and'E3 has not
been completely worked out. From perturbation
theory we find that the following three kinds of
terms (see Paper I) contribute to E~ and Z,:

where V is the periodic crystal potential and

sV[(l+ c ).x]
pv

The first is the "kinetic" term which derives
simply from the scaling process in applying the
Pikus-Bir' transformation to the coordinates and
is readily evaluated giving 3A. The second term
is less transparent; it depends upon the change of
crystal potential V with strain V„„, which must be
determined in a self-consistent way —a difficult and
unsolved problem. The third, and presumably
least important term, is a second-order contribu-
tion containing matrix elements of the spin-orbit
interaction X„and strain interaction K, which con-
nect the valence states I'~5 with the relatively re-
mote even-parity conduction-band states I =I",2,

and I 25.
Kith the theory for E2 and E3 incomplete, we

can only consider thy partial result given by the
kinetic term; in other words we are forced to as-
sun1e V~ —0, an appl ox1n1atlon which 18 equ1valent
to using the deformable-ion model. In this approxi-
mation EB=E3=SA-0. 1 eV. Comparing this with
the experimental results EI =E3-0.7 eV, we see
that the kinetic term alone is too small to account
for our observations although it has the correct
sign. The disagreement is not surprising, for it
has been shown before68 in Si that the deformable-
ion model gives poor estimates for valence-band
deformation potentials (D„and D„').

The same three terms also give rise to a change"
in spin-orbit energy A from the dilatational com-
ponent of strain a +&~+& . This change in A is
often written

where a is the lattice constant and g is a dimension-
less coefficient expressible in terms of the dilata-
tional spin-dependent deformation potential E,
= -+gqA defined in Paper I. Theoretical estimates
of 7) have been made by Brust and Liu, q =4 (at
I.); Cerdiera ef af. ,

0 q=l. 'l; Melz and Ortenbur-
ger, ' g=1.8; and%epfer et al. ,

~~ g=0. 2. It is
interesting to compare these with the deformable
ion value q = 2 we get from the kinetic term'~ (El

&9A =0.06 eV). An experimental value of &=0. 6
+0.8 has been reported. ' Although evidence is
still meager and not unanimous, it seems clear
that within the valence bands, spin-dependent
strain energy shifts due to dilatation (E,) are con-
siderably weaker than those of a uniaxial kind (E2
and E3).
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C. Hole scattering times

As a byproduct of our cyclotron-resonance ex-
periments we obtain some information about the
hole scattering times. The line shapes of the hole
resonances are almost completely determined by

k~ broadening; however, in a few instances, nota-
bly the fundamental resonances, k~ effects are suf-
ficiently small so that the relaxation-time broaden-
ing mechanism is seen. We have not attempted a
comprehensive or systematic study, ' rather we
summarize some typical kinds of measurements
which might serve as a basis for further work.

(a) From the linewidth of the sharpest quantum
resonance observed, the (0, -~)-(l, —~) fundamen-
tal transition for Ho ~~ [ill], we measure the hole
scattering time at 1.2 'K and 52. 9 GHz,

&= (5. 1+0.6)x10 '0 sec (46)

(un'=1VO), using the relation mr=HO/hH, where
h,H is the half-width measured at half-maximum.
[b.H is taken from the "leading" edge (low-field
side} which is the narrower side of the slightly k»-
broadened line. ] This lowest transition in the I an-
dau ladder should have the longest scattering (re-
laxation) time, if r(a) is assumed to be a decreas-
ing function of energy E.

(b) We unfortunately do not have measurements
of the fundamental transitions at frequencies widely
enough separated from 53 GHz to determine the de-
pendence of ~ on (d. However, we can get a rough
idea by analyzing the linewidths of the classical
light-hole resonances, for which data (Ho~~ [ill]
and 8=1.3'K) are available at 6. 9 (see Appendix),
24, 73 and 53 GHz (see Paper IV}:

r=1. lx10 sec (&or=60) at 6. 9 GHz,

r = 4. Vx 10'0 sec (&or = VO) at 24 GHz,

&=2. Vx10'0 sec (&or=90) at 53 GHz.

We note that there is a marked decrease in w with
increasing v; such thai, the value of vw changes
relatively little.

(c) The temperature dependence of 7' can be in-
ferred from a measurement [cf. Ref. 13(b)]

~=2. 9x10 ~o sec (&or=95}

at 4. 2 K and 53 GHz estimated from the linewidth
of the (0, —2)-(1, —2) transition for Ho~~ [111]. (A
similar value, 7'=2. 7X10' sec, was adopted in
Paper IV in computing a fit for the unstressed quan-
tum spectra for Ge at 4. 0'K). Comparmg thi»e-
sult with Eq. (46) we observe that the temperature
dependence for ~ is much weaker than the typical
0 dependence characteristic of a classicul
acoustic phonon scattering process. '

In summing up me mould mention that the proper-
ties of the hole scattering time noted above, 7 ap-

proximately inversely proportional to e and only
weakly dependent on temperature, are charac-
teristic of qunntgm acoustic phonon scattering. It
was first pointed out by Meyer'7. that the usual con-
cepts of "classical" transport theory are inadequate
as a description of the cyclotron resonance scatter-
ing times when k&o/k8 & 1, at which point the cyclo-
tron radius becomes comparable to the wavelength
of the relevant scattered phonons. At very "low"
temperatures (a limit approached in our experi-
ments) he found that the linewidth of the quantum
transition n = 0- 1 becomes independent of tem-
perature, as all phonon excitations are frozen out,
but increases linearly with magnetic field (frequen-
cy) reflecting the increase in the density of states.

Measurements of scattering times from the
cyclotron resonance linewidths could enable one, in

principle, to determine75 the dilatational deforma-
tion potential D~ which, in contrast to the uniaxial
components D„and D„', is not obtainable from the
stress-induced line shifts in the hole spectrum
(nor can it be isolated from interband optical ex-
periments).

D. Hole thermalization

The long hole scattering times in Ge are re-
sponsible for a phenomenon which shows up unex-
pectedly in our experiments, namely, that below
-2. 5 'K a significant fraction of the optically ex-
cited holes fail to thermalize; This becomes evi-
dent when we attempt to fit experimental resonance
traces taken at, say, 1.2 K with computed line
shapes (more striking are the effects on the relative
intensities in the quantum spectra in Paper IV); in

order to fit the data we find it necessary to assume
that the holes are "hot, " 6 i.e. , at ™2.5'K. On

the other hand, at 4. 2 'K all experimental results
are consistent with the holes being in equilibrium
with the lattice.

These observations suggest that in cooling from
4 to 1 K at some point the hole lifetime r, and

thermalization time 7, become comparable. The
hole lifetime is determined by the trapping of holes
on ionized shallow acceptors, a process which ac-
cording to the "cascade theory" ' has a strong
temperature dependence ~,-e . But ~„which is
essentially the lattice scattering time, is roughly
independent of 8 (if anything, it is a decreasing
function of 8). Thus, at sufficiently low tempera-
tures we would expect that 7, -7', whereupon the
holes would be unable to relax in energy to the lat-
tice temperature. We assume that this non-equi-
librium situation can be described by a Boltzmann
distribution with an effective temperature 8*
&8,~„. For our samples (N„-4x10'3 cm ') we
estimatev that this critical condition, ~, -~, -10 9

sec, will be reached near 2'K.
The "heating" effect may be aggravated in many
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of our samples by their high degree of compensa-
tion, i.e. nearly all acceptors are ionized and,
hence, free to act as fast hole traps.

Following this extremely fast capture of a hole
by an acceptor, a plausible next step~ in the re-
combination chain could be the capture of an exciton
by the neutral trap with a subsequent three particle
Auger recombination emitting an energetic hole
into the valence band to repeat the cycle. Despite
the fact that this (and jor competing processes) may
be relatively slow compared to the initial fast cap-
ture, there is little likelihood that the recombina-
tion process will be "bottlenecked" by a "satura-
tion" of the traps inasmuch as the carrier density
-10 cm~ (see Sec. IIIC) is several orders of
magnitude less than the trap density. (As to ex-
perimental evidence bearing on this question we
fail to note any marked change in thermalization
with even an order of magnitude increase in light
intensity. )

VI. CONCLUDING REMARKS

High-resolution cyclotron-resonance studies
have been presented which provide a comprehensive
picture of the structure of the valence bands in Ge

and their behavior under uniaxial stress. Perhaps
even more importantly these results underscore
the potentialities of the uniaxial stress technique

as a powerful spectroscopic tool for the analysis
of quantum spectra from cyclotron resonance in

degenerate bands. Indeed, at present it is possibly
the only way complex spectra of this kind can be
sorted out. %e see that the application of stress
affords, first, unambiguous identification of many

lines in the spectra and, second, a direct means

to measure a number of important parameters:
namely, the hole effective-mass band parameters,
the valence-band deformation potentials and hole

scattering times —all of which are relevant to other
work. In particular, we should emphasize that a
clear-cut procedure is indicated whereby the effec-
tive-mass parameters y„ya, and ys can be deter-
mined in a precise but elementary way from mea-
surements of only a few key easily identified lines
of the (stressed) spectra —the fundamental lines,
n=0-1, M~= —z, and -2 —thus obviating the ne-
cessity to measure and analyze the remaining (and

more complex) parts of the spectra We ha. ve out-
lined the complete analysis of the spectra in some
detail in anticipation that it might serve as a model
for future studies in other cubic, tetrahedrally
coordinated semiconductors most of which have
degenerate valence-band structures like those
found in Ge.

Future experimenters should consider the use of
uniaxial tension as a complement to the uniaxial
compression employed in our work. In such ex-
periments the M~ = +-,' Landau levels would lie low-

est (see Figs. 3 and 4); and the (0, —2)-(I, —2}
fundamental transitions would consequently show

up as strong resonances easily followed over a
large range of stress, thus facilitating measure-
ments of the band parameters. Since the M~ =+ —,

'
resonances (for Ho ~~ T) fall at magnetic fields much

lower than the M~ = +~ resonances, the stress in

tension needed to achieve a given degree of decou-
pling (the same x value} would be much less than in

compression.
In review it is appropriate to point out briefly the

merits of quantum cyclotron resonance as a tech-
nique for measuring valence-band deformation po-
tentials. First, band mixing and band splitting
produce different and easily distinguished first
order effects in the spectra which can be measured
directly to determine deformation potentials of the
tao types, D, D„' and D„, D„'„respectively. Sec-
ond, cyclotron resonance transitions, unlike optical
transitions, are stxictly intraband effects, so ex-
ternal states, interactions, or excitations —e.g. ,
excitons, phonons, other bands, impurity states,
etc. —whose systematic behavior with strain is dif-
ficult to assess, are not introduced. The analysis
for the deformation potentials is based entirely on

valence-band effective-mass Hamiltonians checked
self-consistently by the cyclotron resonance experi-
ments themselves. Third, the inherent high-res-
olution obtainable in the quantum spectra permits
measurements of deformation potentials to be
carried out at low stresses, which precludes the

appearance of nonlinear effects to any appreciable
degree.

We should not close without drawing attention to
the very close agreement which exists throughout

this work between experimental results and the cal-
culations. The significance of this is emphasized
when one considers that the calculations based on

a, minimal set of band parameters (five to be exact)
account for a wide variety of observations ranging
from the positions of a multitude of cyclotron reso-
nance lines to even such subtle features as the line

shapes and line intensities. In view of this highly

satisfactory situation we conclude that the effective
mass formalism of Luttinger and Kohn, upon which

our calculations are based, provides a remarkably
accurate description of the structure of the degen-
erate valence bands of Ge and the motion of holes
therein with a magnetic field applied. More strik-
ing evidence on this point follows in Paper IV.
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APPENDIX' CLASSICAL CYCLOTRON RESONANCES OF
HOLES IN Ge

We pointed out jn Sec. VA that small discrepan-
cies are found when the values of the effective-
mass parameters y„y2, and y3 from our quantum
cyclotron-resonance experiments are compared
with the results from classical cyclotron-resonance
experiments. We attribute these differences to
systematic shifts of the classical hole resonances
by quantum and k~ effects. Our goal in this Appen-
dix is, first, to confirm directly the existence of
these shifts by remeasuring the classical reso-
nances much closer to the limit S(d «kO than
reached heretofore; and, second, to outline how
corrections can be made for these line shifts to
extrapolate to the true, limiting values of the hole
effective masses. (All measurements and formulas
in this section refer to the unstressed crystal ).
The corrected values of the effective masses ulti-
mately enable us to reconcile the classical and
quantum determinations of y» yz, and ys.

A. Measurements of light- and heavy-hole effective masses

Our experiments were done on a balanced bridge
(rectangular TEtct) cavity spectrometer operating
at 9 GHz, the essential features of which have been
described earlier. ' The measurements were
made with the microwave power (10 '-10 a W) and

light intensity both reduced to levels where the hole
cyclotron resonances ceased to narrow further. A

single (flat, rectangular) sample, cut in the (110)
plane from Ge crystal n&LP-33, was used in all
runs, ' by rotating the magnet about the Dewar axis
we could set H~ along each of the three crystallo-
graphic axes [001], [111], and [110]. (Only for
Hc ~~ [111]were Hc and the microwave electric field
S, orthogonal. ) By observing the splitting of the
electron cyclotron-resonance lines the orientation
of Ho could be made in situ to within 0.1' of the de-
sired crystal axis. To take advantage of narrower
resonance lines most measurements were made at
1.3'K rather than 4. 2'K; we found that the shift
of the hole resonances which resulted from lower-
ing 8 was almost insignificant (the failure of the
holes to thermalize at the lower temperature may
be partly responsible).

A complete listing of classical hole cyclotron
resonance lines we observed is given in Table V.
For Hc II [110](see Fig. 22) we observed the
classical line at m~/m = 0. 263 reported by Fletcher
et al. (4. 2 'K spectrum)' and identified by Bagguley
and Stradling ' as arising from a noncentral criti-
cal point at k„/k„(max) = 0.60. (The quantum
analog of this resonance is described in Paper IV. )
The heavy-hole resonance for Hc Ii [110]is unfor-
tunately totally obscured by a much stronger elec-
tron line; however, we may estimate its effective
mass, m~/m =0. 366+ 0. 001, rather accurately
from the position of the sharp third-harmonic
resonance seen in Fig. 22.

B. Corrections for cyclotron-resonance lineshifts

In Table VI we list the effective masses of the
light- and heavy-hole resonances measured at dif-
ferent microwave frequencies. One notes that the
effective masses are slightly frequency dependent,
decreasing by roughly 1% as the frequency is re-
duced from 53 to 9 GHz. Clearly, if we are to
achieve a precision of the order of or better than

TABLE V. Hole cyclotron resonances in Ge observed at 8964 MHz and 1.3'K. The ef-
fective mass values (in units of m) were measured from the peaks of the resonances. In-
cluded here are the harmonics of the heavy-hole resonances as well as a classical k~ line
and its third harmonic observed for Hpll [110]. The nominally forbidden second harmonic of
the heavy hole for Hp II [110]appears in our spectrum owing to the presence of a longitudinal
component g&'Ho of the microwave electric field. The fourth harmonic wae not detected in

any of the orientations.

Line

light hole
fifth harmonic
third harmonic
second harmonic
heavy hole
k~ line
third harmonic of
kz line

Hp II [001]

0.0431 + 0.0001
0.056 + 0.001

0.0931+ 0.0005
forbidden

0.279 a 0.001

Hp II fill]
0.04160 + 0.00005

not observed
forbidden
0.18 + 0.01

0.374+ 0.001

Hp II [110]

0. 04201 + 0. 00005
not observed

0.1225 + 0.0003
0.182 + 0.002

0.263 6 0.003
0.090 + 0.005
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FIG. 22. "Classical" cyclotron resonance spectrum of Ge for Holi [110] measured at 1.3'K and 8970 MHz.

1% in determining the band parameters from
classical cyclotron-resonance data, we must ex-
amine rather carefully the question of line shifts
for the hole resonances.

Although the effective masses measured at 9
0Hz closely approach the classical limiting values,
matter s could be improved still further if we could
estimate from a linebroadening theory the shifts
that remain. Unfortunately, there is no simple
theory that predicts the line shape from combined
k~- and quantum-line-broadening processes. ' %'e

can, however, obtain the line shape by direct nu-
merical computation of the spectral function based
on estimated or "trial" values for the five band
parameters which appear in X» in Eq. (I). Assum-
ing a Lorentzian shape for each component line

[whose position is specified by the inverse effective
mass u&(n, k„)= m/m*(n, k„)j we sum the transitions
from, say, n = 0 to n and integrate over k~ to
generate a partial line shape (up to n = n ). We
choose n large enough so that this partial line
shape contains most of the quantum and k~ effects.
If necessary the weak remaining contributions to
the resonance from transitions n &n can be easi-
ly included if it is assumed that these lines have
converged to the classical limit and, therefore, can
be approximated by adding to the above partial line
shape a single Lorentzian (of the appropriate in-
tensity) at the position &o(n = ~). The difference
4&v in the peak position of the calculated line shape
thus gotten and the c~culated limiting position,
&u(n =~), gives the "correction" to be used in in-

TABLE VI. Light- and heavy-hole cyclotron resonances as a function of microwave fre-
quency. Except where stated otherwise the measurements were made at -1.3 K. At 53
GHz the heavy-hole lines are no longer well defined as they have begun to break up into
quantum resonances.

Line

light hole

[001]
[111]
[110]

heavy hole

[001]
[111]
[110]

0.0431 ~ 0.0001
0.04160 a 0.00005
0.04201 + 0.00005

0.279+ 0.001
0.374+0.001
0.368 + 0.001

24 GHzb

0. 04368 z 0.00008
0.04187 +0.00005
0.04236 + 0.00005

0.2825+ 0.0006
0.377 + 0.002
0.368

53 GHz

0.0440+ 0.0001
0.0421 + 0.0001
0.0426 +0.0001

Present work.
Levinger and Frankl, Ref. 24.

'Present work (Paper IV).
Fletcher, Yager, and Nerritt, Ref. 3. Data taken at 4.2 K. No uncertainties quoted.
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FIG. 23. Comparison of the experimental and calcu-
lated line shapes for the classical light-hole cyclotron
resonance in Ge for Hall [111]. The resonance was rec-
corded at 1.3 K and 8978 MHz. The theoretical line shape
was calculated for M=2. 0 K, v=9 GHz, and v=1.08
x10 sec (~v=61) from a superposition of (kz-broadened)
quantum lines as discussed in the text. The calculated
line-shift correction puts the classical" limit (n ~) for
the light-hole masp at m*/m = 0.04146 y 0.00008.

terpreting the experimental resonance. In spite of

the fact that the peak position depends sensitively

upon the choice of "trial" parameters in Q, the

difference b co does not.
In Figs. 23 and 24 we fitted calculated line

shapes to the light- and heavy-hole resonances, re-
spectively, for Ha tt [111]. The secular determi-
nants were truncated at dimension 69~69, which

gave n = 14. The width of the component lines

is defined by the scattering time T = 1.08&&10 sec
(&dT =61). Although the Ge sample was at 1.3'K,
we had to assume in the calculations an effective
hole temperature of 0*-2.O'K, the value found

to give the best fit of line shape to the "quantum"
bump' on the low-field side of the heavy hole reso-
nance in Fig. 24. For Ho tt [111]the peak positions
(but not necessarily the shape) of the light- and

heavy-hole resonances are actually rather insensi-
tive to 8* because the contributions to the asym-
metric line shape from both k„and quantum effects
fall on the same side of the resonance; consequent-

ly, at a higher temperature, for instance, the re-
duction in the quantum contribution would be par-
tially compensated by an increased k~-contribution.
&e see that the experimental and computed line

shapes in Figs. 23 and 24 agree reasonably well.
Discrepancies on the "wings" of the line shapes,
most evident in Fig. 24, are believed to result
from the truncations of n and k~ in the diagonaliza-
tion. The "trial" parameters used in calculating
the line shape were, in fact, the "actual" values
from Eq. (34), so not surprisingly the calculated

We can now evaluate y„y~, and y, from the cor-
rected classical-hole effective masses. In lieu of
making the customary series expansions of the
Shockley integral'4 for the (k» = 0) "tube" mass, we

have derived alternative expansions for m* by
diagonalizing the Luttinger Hamiltonian + in Eq.
(1) in the limit n- ~. We restrict ourselves to
k„=O; and having chosen the eigenfunctions of the
"spherical "Hamiltonian (y~ = y3) as a basis, we
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FIG. 24. Comparison of the experimental and calculated
line shapes for the classical heavy-hole cyclotron reso-
nance in Ge for Hall [111]. The trace was taken at 1.3'K
and 8964 MHz. The theoretical line shape was calculated
as in Fig. 23. The cyclotron-resonance peak lies at m*/
m = 0.374+ 0.001. The "bump" atm*/m = 0.335 (see Ref.
83) and "background" absorption at lower magnetic fields
are kg effects. Both are reproduced by the calculations. The
calculated line-shift correction puts the "classical" limit
(n ~) for the heavy-hole mass at m*/m =0.3762
+ 0.0010.

and experimental line positions coincided without
adjustment. From the locations of the n- classi-
cal limits in these figures we obtain the effective
masses listed in Table VII.

In the same way it is possible to reanalyze ear-
lier experiments' 4 done at 24 GHz. We did this
for one case with Ho tt [111]and found that the cor-
rected effective masses agreed closely with our
results in Table VII.

For Ho tt [001] and Ho tt [110], &o(n, ks) converges
much more slowly to &o(~, ks) than for Ho tt [111];
so even with the largest (80&&80) secular deter-
minants we diagonalized, we were unable to obtain

an accurate line shape. Instead we simply esti-
mated the corrections from the asymmetry of the
experimental line shapes. Since the corrections
for the 9-GHz experiments are quite small, ( k/o,

such an estimate is probably adequate. The cor-
rected effective mass values for [001] and [110]
are given in Table VII.

C. Determination of y„y2, and p3



QUANTUM RESONANCES IN THE VALENCE BANDS ~ ~ ~ II ~ ~ ~ 4253

TABLE VII. Corrected values of light- and heavy-hoke effective masses (in units of m)
for Ge. The data in Table V were corrected for kz and quantum line shifts as discussed in
the text.

Hp

light hole
heavy hole

[001]

0.04342 + 0.00015
0.279 a 0.001

0.04146 + 0.00008
0.3762 +0.0010

[110]

0.04191a 0.00010
0.368 +0.001

(d~ =y& +2I'+b, (47)

(the upper and lower signs refer to light and heavy
holes, respectively), with I' and b, given in Table
VIII. The expression for the second-order correc-
tions 4,(110) for Ho ~l [110]is unfortunately so cum-
bersome that it would not be useful to present it
here, instead we merely quote their numerical
values in the following analysis. It is convenient
for the determination of y„y~, and y~ to invert the
relationships in Eq. (47), whereby we obtain

r&=k(~, +~ )(1 —5,),
I' = ~((o, —(o )(1 —5 ), (48)

treat by second-order perturbation theory the off-
diagonal matrix elements containing all terms in

(y, -y,). For Ho ~~ [111](because the ks = 0 cyclo-
tron orbits are circular) the results by either tech-
nique are trivial; both expansions reduce to a sin-
gle, identical term. However, for Ho along [001]
or [110]the expansions we have developed converge
more rapidly than the Shockley integral series
despite the fact that both employ the same expan-
sion parameter (y, -yz) . The more rapid conver-
gence results from our choice of a zeroth order ef-
fective mass which closely approximates the actual
effective mass rather than the [111]effective mass
m~(111) appearing in the Shockley expansion, which

may be a poor starting point if the anisotropy of
m*(e) is appreciable. It is sufficient for our needs
to go only to the second term [of order (rz -pq) ] m

the [001] and [110]expansions.
The results of these expansions are outlined

below. For any direction of Hz the dimensionless
inverse effective mass &o = m/m* can be written

Let us now analyze the results for Ho along [111),
[001], and [110]:

1. Hp $ (111J

The values of the inverse effective masses

(o,(111)= 24. 120 + 0.047,

(o (111)= 2. 658 a 0. 007

from data in Table VII give the following:

y) = 13.39+ 0. 03,

(yp + 3y,)'+ = 10.73 + 0. 03,

(50)

(51)

(52)

with the help of Eg. (48) (5,= 5 = 0). From the
[111]measurements alone we cannot determine yz
and y~ separately; to do this requires an additional
measurement either for [001]or [110]both of which
follow.

(o,(001)= 23. 031 + 0. 080,

(a (001)= 3. 584@0. 013
(53)

is straightforward if we first estimate the small
corrections 6, = —0. 0072 and 6 =0.0124. Substi-
tuting these numbers into Eq. (48), we obtain

ye =13.40+0. 05

r(7r&+3r&+kg 3) =9 60+0. 05.
(54)

(55)

3. Hp ii(110)

2. Hp i)(001)

The analysis of the [001] inverse effective masses
(from the data in Table VII)

with

5.=(a, +a)/2y, and 5 =(a, -a )/4r. (49)
From the experimental inverse effective masses

(Table VII)

TABLE VIII. Anisotropic components of the inverse effective mass
[Eq. j,'47)] for classical-hole cyclotron resonances.

Hp

[001]

[111]

[110]

~~ V2+3Vg+6V)Vg)' '
1 (~2+3 2yi/2

—(31yp + 111yg +114pg g)

9 &'8-'H) 4I' +7~ 4I'
512 (~ I') 4I'~

0

not given
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(o,(110)= 23.861 + 0. 05V,

(o (110)= 2. 717 a 0. OOV,

(56) 440

[and the "corrections" 5,(110)= —0. 010, 5 (110)
= 0. 016] and using Eq. (48), we obtain 4.30

ys = 13.42 + 0. 05 (57)

8(31y~+ 11lys+ 114y2y~) = 10.41 + 0. 05 . (58)
4.20

y, (classical) = 13.40+ 0. 03 . (59)

Second, the simplest way, we find, to determine
yz and y3 independently is by plotting Eqs. (52),
(55), and (58) as shown in Fig. 25. The intersec-
tion of the three curves in the figure then fixes the
values

y, (classical) =4. 26+0. 05, (60)

As an alternative method one could derive the
corrections 6, and & by direct numerical integra-
tion of the Shockley integral for kH =0 on a computer
using an assumed set of parameters y&, y~, and ys.
We have actually tried this and obtain the values

5,(001)= —0. OOV2, 5 (001)=+0.012V, 5,(110)
= —0. 0105, and 5 (110)=+ 0. 0141 from the computer
which are in excellent agreement with the perturba-
tion estimates. The direct method is easily ex-
tended to practically arbitrary precision.

As the final step, we collect results. First, we
determine a mean value for y, from Eqs. (51),
(54), and (5V),

4.10

5.50 5.60 5.70

73
5.80 5.90

FIG. 25. Classical determination of the effective-mass
band parameters y2 and y3 from the simultaneous solution
of Eqs. (52) (Hpll [111]), (55) (Hpll [001]),and (58) (Hpll [110]),
The experimental uncertainties for [111)and [001] are
indicated by the dashed lines.

y,(classical) = 5. 69+0.03.
'Within their error limits the results for [111],
1001], and [110]are consistent, as evidenced by,
first, the smallness of the deviations of the three
independent values of y, from the mean in Eq. (59)
and, second, the near coincidence. of the intersec-
tions of the'curves in Fig. 25. We believe, there-
fore, - that systematic errors resulting from k&

and quantum effects in the classical resonances
have been reduced to a level less than the uncer-
tainties of measurement.
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for Ho, T Il [111Jwhich hasthe form [see Eq. (62) of Ref. 2].

Mg= +2 3
2

-q/~2
Vc,„j

If we set g = 0 @,nd q = 0), then A = C (the + 2 basis states
become degenerate); and we find now that the secular
equation factors exactly yielding a trivial eigenvalue

~(s) =&+x„' (@=~+F3}(a+$)+x„', s=o, &,
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