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The structure of the F2& degenerate valence band of Ge has been investigated by a compre-
hensive study of the complex "quantum" resonance spectra from electric-dipole transitions
in the system of anomalously spaced low-lying Landau levels produced by an applied magnetic
field. This paper, the first of a series of four, is devoted to the development of a systematic
theoretical spectroscopy to serve as a framework for the analysis of oux experiments which
will be discussed in succeeding papers, Using group-theoretical techniques, following Lut-
tinger, we construct a generalized effective-mass Hamiltonian for holes, including the effects
of elastic strain, in the full six-dimensional space of F2& to encompass the spin-orbit-split-
off band. The formulation in the extended space sheds considerable light on two important
consequences of spin-orbit coupling, the anisotropy of the hole g factor (the Luttinger q term)
and a new effect, the spin-dependent contribution to the valence-band deformation potentials.
From the Hamiltonian for I"25 we project, making the split appropriate to large spin-orbit in-
teraction, the Hamiltonian belonging to 'the subspace of the band edge F8. %e examine the na-
ture of its eigenstates and develop a systematic scheme based on group theory for classifying
the magnetic eigenstates, in terms of which selehtion rules for quantum transitions can be
expressed in unusually clear and compact form. A formalism is presented for generating
complete, "synthesized" quantum-resonance spectra starting with the eigenvalues and eigen-
functions of the effective-mass Hamiltonian. A further projection, representing the decou-
pling of the Fa band by large uniaxial stress, is expanded to second order to evaluate the cor-
rections to the hole effective masses and g factors at finite stress. Finally, we consider the
interaction between the projected spaces of the stress-decoupled band-edge states and the
spin-orbit-split-off states which contributes two important shifts to the quantum-resonance
effective masses: the second-order magnetic interaction and the interaction from the cross
terms of strain and magnetic field.

I. INTRODUCTION

In a uniform magnetic field H the continuum of
states in the energy bands of a solid coalesce into
discrete quantum states called Landau states.
Cyclotron-resonance absorption of electrons and

holes may be vie&red as induced electric-dipole
transitions between these discrete Landau states.
The present work constitutes a study of the spec-
troscopy of qucnhcm-resonance transitions for
holes in the valence bands of germanium.

Seldom in practice is this quantum aspect of cy-
clotx on resonance manifest in a significant may. '
Usually Landau levels form a 'ladder" with equally
spaced "rungs" so allowed transitions take place
at a single energy %y, defined by a classical cyclo-
tron angular frequency &u, = eH/m*c, m* being the
effective mass of the charge carrier. In this case
cyclotron resonance may be satisfactorily inter-
preted from a dynamical standpoint in terms of the
classical motion of the carrier on an energy sur-
face of the semiconductor (or Fermi surface, in
the case of a metal) without recourse to quantum
mechanics ~

An important exception to this elementary inter-
pretation occurs for cyclotron resonance in degen-
erate bands such as typically found at the valence

band edge in many cubic semiconductors such as
Ge. and Si. In their treatment of this problem by
effective-mass theory Luttinger and Kohn~' pre-
dicted the remarkable result that the levels near
the bottom of the Landau ladders mouM have char-
acteristically irregular spacings compared to the
higher levels which, in accordance with the cor-
respondence principle, tend toward "classical"
uniformity. "Quantum" deviations in cyclotron
resonances arising from these anomalous levels
would be expected to appear at lour temperatures
and high magnetic fields. Experimental investiga-
tion of these quantum effects is important because
first, it vrould verify the theory and in particular
the validity of the effective-mass approach and
second, a detailed study could, in principle, pro-
vide a most comprehensive picture of the valence-
band structure

The first experiments under quantum conditions
(@o,&@6, where 6 denotes the i'emperature) were
done in Ge by Fletcher, Yager, and Merritt. 4

They observed complex quantum spectra consist-
ing of a multiplicity of hole resonances @which re-
placed the usual bvo classical hole resonances,
the "light"- and heavy"-hole lines, measured
earlier by Dxesselhaus, Kip, and Kittel~ and Dex-
ter, Zeiger, and I ax. s Subsequent quantum ex-
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periments by others~' in Ge at greater resolution
have extended the original measurements and re-
vealed additional structure.

Unfortunately, the initial impetus of these early
achievements has not been sustained. %'hile there
is essentially no question that the observed spectra
are indeed the quantum effects predicted by Lut-
tinger and Kohn, ~'3 attempts~ at their detailed
interpretation in terms of theory have so far been
disappointing. The difficulties as well as their
reasons are now in retrospect quite clear. First,
experimental identifications of the lines in the
spectra have proved all but i.mpossible to make.
Second, the alternative of reproducing the line po-
sitions by brute-force numerical computation has
not been particularly fruitful either partly for the
reason that known values of the five band param-
eters y» y» y» x, and@ which appear in the ef-
fective-mass Hamiltonian proved to be insuffi-
ciently precise. (In fact, no measurements what-
soever had been made of g and q, the two param-
eters which describe the hole g factor. ) Inasmuch
as the identifications of lines and the determination
of band parameters hinge sensitively upon each
other, one has little confidence that, without either
being firmly established, a trial-and-error
"search" program would necessarily converge to a
unique solution. Third, the least obvious but most
serious pitfall has been the neglect, with few ex-
ceptions, '0'~ of the effects of k„, the wave vector
along H. It is now clear from oux experiments
that kH effects have a more profound influence on

the charactex' of the spectra than has been sus-
pected heretofore and cannot be neglected even as
a first approximation. The further complexity in-
troduced by the k& problem essentially precludes
trial-and-error methods altogether.

Reviewing these difficulties, one should not be
optimistic that cyclotron-resonance experiments
could lead us to our objectives of testing the theoxy
and measuring the band structure of Ge unless
some new approach to the problem is found. Qne

expedient, exploited previously in the classical
study of the valence bands of Si, ~ is uniaxial
stress which removes the degeneracy of the va-
lence bands. It will be seen that uniaxial stress
can also be the key 3'~4 to untangling the intricacies
of the quantum spectra in Ge.

The complete work" has been divided into four
papers. This, the first paper, deals withtheoret-
ical topics needed for the subsequent analysis of
cyclotron-resonance experiments in Ge given in
the three remaining papers of this series'
(hereafter, respectively, referred to as Papers
II, III, and IV). In Paper II, cyclotron-resonance
experiments in uniaxially stressed Ge are analyzed
with two goals in mind: first, identification of the
principal quantum lines and, second, determina-

tion from these lines precision values of the three
effective-mass parametexs y» y„and y, . In Pa-
per ID we describe "combined" resonance experi-
ments (also using uniaxial stress) which yield the
first measurements of the parameters x and q.
The strain experiments in Papers II and III also
directly measure valence-band uniaxial deforma-
tion potentials. Using the band parameters thus

obtained we analyze in Paper IV the experimental
spectra in unstressed Ge. ' The intensities of all
quantum transitions are calculated and integrated
over kH to generate "synthesized" quantum spectra
which we fit to the experimental spectra. The
over-all agreement of these various experiments
with theory and, in particular, the excellent, de-
tailed agreement of the theoretical and experimen-
tal spectra at zero stress in regard to line posi-
tions, intensities, and line shapes xepresent per-
haps the most extensive and rigorous experimen-
tal verification yet made of the Luttinger-Kohn ef-
fective-mass theory.

In this paper we set up a theoretical framework,
based on the effective-mass theory, for the quan-
tum-resonance spectroscopy of the I andau states
belonging to the I'25 valence band edge of Ge.
Our approach to the problem is reminiscent of that
originally taken by I uttinger3; however, for the
analysis of our experiments it is necessary that
the scope of his theory be substantially extended
in the following respects: First, we must include
in the most general way possible the effects of a
uniaxial stress. Second, because a uniaxial stress
can give rise to significant interactions between
the spin-orbit-split-off band I'z and the I'8 band

edge, it is necessaxy to encompass both by taking
the entire I'~ valence-band manifold into consid-
eration. (This effect, although more complicated
for the quantum case, is similar to that discussed
by Hasegawa for classical reasonances in Si. )
Third, we must forego the customary practice of
setting AH=0; for, as it turns out, an interpreta-
tion of the quantum spectrum (at least for Ge) is
not possible if this assumption is made. Fourth,
we do not restrict ourselves to the case of H along
a particular crystallographic axis, but rather at-
tempt to formulate the problem in such a way that
solutions to the Hamiltonian, quantum numbers,
selection rules, etc. , can be expressed in a nat-
ural way for an arbitrary direction of H.

In Sec. II we begin by constructing on symmetry
grounds the full 6&6 effective-mass Hamiltonian
for I'25 including spin-orbit, magnetic, and strain
interactions. The parameters appearing in the
Hamiltonian are expressed by k. g perturbation
theory. When spin-orbit and jor strain interactions
are strong enough to split the states of the 1 z5' band
to a significant degree, it is convenient to decouple
the full 6& 6 Hamiltonian into Hamiltonians appro-
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priate to the smaller subspaces of the split states.
We develop a formal decoupling technique employ-
ing projection operators to do this. One important
aspect included in Sec. II is a detailed treatment
of spin-dependent terms in the Hamiltonian; me
find these can give substantial contributions, first,
in the form of the parametex q, which describes
the anisotropy of the hole g factor, and second, as
spin-dependent deformation potentials.

Section III is devoted to a brief discussion of the
microwave power absorption due to the cyclotron
resonance of holes. An expression, the "spectral
function, " is given for the absorption line shape
which ean be used to generate spectra for direct
comparison with experimental recorder traces.

In the remaining three sections me consider, in
sucession, projected subspaces from the six-di-
mensional space of I"zs given in See. II. Section
IV describes the split appropriate for large spin-
orbit interaction. We discuss the nature of the
eigenstates of the 4x 4 projected effective-mass
Hamiltonian for I'8 and develop a scheme for their
classification according to quantum numbers based
on symmetry properties of the Hamiltonian. Using
these quantum numbers me express the selection
rules for quantum-resonance (electric dipole) tran-
sitions. Allomed transitions are categorized ac-
cording to the type of symmetry-breaking inter-
action present in the Hamiltonian.

In Sec. V me project from I'8 the tmo two-dimen-
sional subspaces which decouple when a uniaxial
stress is applied. The various kinds of resonance
phenomena which can occur in these subspaces are
discussed; namely, cyclotron resonance, har-
monic resonance, combined resonance, and spin
resonance. Expressions are given for effective
masses and g factors including first-order correc-
tions which derive from the second-order projec-
tion expansion.

As a final step we consider in Sec. VI the sec-
ond-order projection generated by the 2x 4 "cross
space" in the I'zs Hamiltonian which connects I'~

and 1&. This projection is responsible for char-
acteristic linear strain-induced shifts of certain
cyclotron-resonance lines in I's.

We conclude the main body of the paper with a
brief discussion of the effects of higher-order
strain and magnetic interactions which originate
from bands external to the manifold of 1 25.

In the Appendixes we (i) analyze from a group-
theoretical standpoint several ' exactly" soluble
cases due to Luttinger, s (ii) outline a useful for-
malism for classifying free-electron Landau
states, and (iii) list systematically the interactions
representing some higher-order strain effects.

Numerical calculations and comparisons with
experiment mill be presented in the appropriate
experimental papers (II-IV).

II. EFFECTIVE-MASS HAMILTONIAN

A. Phenomenological Hamiltonians

The valence band edge of germanium is con-
structed of triply degenerate Bloch orbitals cz, ez,

ss (transforming like ye, zg xy) which belong to
the symmetry 1"zs of the cubic group~9 0& and are
derived from the symmetric combinations (bonding)

of predominantly 4p and 3d atomic functions cen-
tered at each of the tmo interpenetrating fcc lat-
tices. Inclusion of the tmo independent spin func-
tions generates a set of six independent'spin or-
bitals, which span the six-dimensional space in
which me work throughout this paper.

We consider three distinct interactions within
this manifold, name1y, the spin-orbit, the mag-
netic, and the strain interactions. In the effective-
mass approximation each of these interactions can
be represented by a 6x 6 matrix phenomeno1. ogical
or "spin" Hamiltonian which, according to Lut-
tinger, 3 can be constructed solely on the basis of
symmetry. In the following me generalize Lut-
tinger's argument to aQow for an arbitrarily strong
spin-orbit interaction. We utilize the angular-
momentum matrices I for I=1 and the Pauli ma-
trices o to represent the orbital and spin angular
momentum, respectively, associated mith the ba-
sis Bloeh states. These satisfy the fundamental
commutation relations

I xI =iI,
gO'X 2O'= ~$O (I)
O'~ Op + OIt O'g = 25g p ~

Each of the vector components as mell as their
products can be classified according to the irre-
ducible representations of the cubic group. Be-
cause of the finite magnitude of I and o, no powers
higher than second in I and first in o are indepen-
dent of the lower (see caption of Table II), and

therefore, the total number of independent matri-
ces is finite, specifically 36, which is the number
of independent elements of a 6x6 matrix. The 36
independent matrices are listed in the third col-
umn of Table I. The coordinates x,y, z are taken
to be the cubic axes.

The lomest-order effective -mass Hamiltonians
ean be constructed below from the condition that
they be invariant under the cubic operations.

(i) SPin-orbit interaction. The only invariant
which depends on both spin and orbit is f e, thus

K =-,'A(I ~ o), (2)

where A is a constant, the spin-orbit splitting.
(ii) Magnetic interaction. The magnetic effect

can be described in the effective-mass theory by
a vector k which satisfies the commutation relation

k&&%= eH/ilc,
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TABLE I. A tabulation of the 36 independent matrices constructed from I' and cr classified according to the cubic group
Oh representations. The remaining members of the multidimensional representations I'&2, I'i5, and I 25 can be obtained
by cyclic permutation. In column 2 an additional classification is made according to the representations D of the full
rotation group R'(3) for which the given set of operators form a partial basis. [Each set, while complete in Oh, does not
necessarily span the entire space of D .] The classification by D has merit in that, first, no matrix constructed from
I and 0. and transforming according to D ' with L &3 is independent of those with lower & and, second, all projections of
the Q, 0.) matrices on the J= 2, J=~, and "cross"-spaces are zero if &&3, &&1, and & &2, respectively (i.e. , D is
invariant upon projection in 0„). In the last column we list the projected operators on the Mz=~$ subspace of J= (for
the symmetry D4h appropriate for Tli [001]. As we pass from Oh to D4h the basis operators of the multidimensional rep-
resentations split as dictated by the compatibility relations (all representations have a+ superscript):

Oh i 2 f2 15 25

D4h: I$ I I/+IS I2+I5 I4+I5
Except for the representation I'i2, which has but two linearly independent basis operators explicitly given, the corre-
spondence of the projected operators in the last column with the permutations of the basis operators in column 3 is self-evident.

Representation~

o, z'(3)

r'I D(0)

Dt0)

Basis
operators

I ~ o

Projection
on J=g

Projection
on J=$

Cross-space
(J= g) x(J=$)

Projection on (J, ~~) = (y, y g)
for D4„

r+
2

D(3) (Ig+, +c.p. JXJ„Jg+JgJyJX o (r,)

D(2)

D(2)

D(2)

Ixax-I

fr„(I,~,-I~,)j-(r, (I~„-I„~,)j

0 (J„—J„)

2(J2 J2) (I2 I2)

Q (I2 I2)

I„'-I'„-o (r3)

I,~,--,'I 8--~ (r,)

I„o„-I~oy O (r3)

o (r, +r,)

&'i5 D(&)

D(&)

D(1)

D(1)

D(3)

Ix

I~(rg -I~y

(I'„- P')~x+&rg,j,+&rgxj

kl )c' 3((Vyjuy+(V&E)

2
0JX

0JX

2

9Jx

~J —-J
9 X f9 X

4

——J2
3

—-J20
9 x

Ix

3iI„

5
;Ix

3, (r,)

~2 ~2 (r )

{
333 (r2)

337„(r5)

o (r, +r,)

'-9&, (r,)

2 2-o.„, 9(T„(r )

-&, (r, )

$o„, go„(r5)

r25 D(2)

D(2)

D(2)

D(3)

I o +I~~

)I2 i2)u„((SP,)~, —(S,r-ju,)-
(I —I,)c„+2 ((Ig„jc —(Ijga, ) 2((J~- Jg)Jg

(I Ig2(lpg-
si@,}

o (r4+r, )

o (r4+r, )

o (r4+r, )

o (r,)

a(T„, —2o (r5)

The notation of DKK (Ref. 5) is used for the cubic group representations.
The form of the operator defines the 4 x2 rectangular matrix in (J, M&) representation which connects the subspaces

J=-' (I"8) and J=—' (I'7).

1, k~,

k», ky, kg,

k,k„—kP, =eII,/inc, etc.
k~ —k~, k2 —k2,

k„k,+ k„k„, etc.

(4)

where H is an external magnetic field. The lowest
powers of k are decomposed according to irreduc-
ible representations as

With the help of Table I we write the following cu-
bic invariant which includes powers of k not. higher
than the second:

jfs
Xs=

i
[A, +B,(I ~ o)]k

2m (
+[As(I, —sia) + Bs(I,o, ——,'I ~ o)]k„+c.p.

[A tl, l, ~ l, l, ) ~ B tl, g„+I,g, l)(k,k,)+c.p.)
+ [A4I, +B4o,+B4(I, —sI )(r,mc
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+ B4"((I,I„)o„+(I„I,)o,))H„+c.p. , (5)

where the factors 8 /2m and equi/mc are inserted
to make the A's and the B's dimensionless. The
curly bracket is used throughout to denote the
symmetric product

(AB)= ~(AB+BA), (6)

apd c.p. implies addition of cyclically permuted
terms. Inclusion in Eq. (5) of the spin-dependent
terms, as we shall see later, is essential in ob-
taining a nonvanishing q term in the projected
Hamiltonian.

(iii) Strain inferacNos. A uniform strain is rep-
resented by a strain tensor ' s„„=—,'(Rc„/sx„+ su„/
Sx„) (symmetric in p and v) whose components de-
compose in cubic symmetry as follows:

+ ~ C«+ C&&+ 4«,

spin-orbit: X„=o'K, (9)

magnetic. '

strain:

I k I ei
Xy= + R' 7I'+gg O' H i2m m '4mc

(10)
+I (~gv+sgv&x)tsv s (ll)

where g, is the free-electron g value (g, = 2. 0023)
and

p+ 4 2 gxVV,
4mc (12)

structing Hamiltonians from symmetry properties
alone. These parameters, on the other hand, cari
be evaluated by working in the perturbation theory
on the Bloch states at the center of the Brillouin
zone. The perturbations which give rise to the
three interactions are

I'~s: ~« —«ys» ~so —~~~ y
h= 2 2 VVxp,

4m c (13)
+ ~I"2s: ~ s» ~s ~ ~

The cubic invariant linear in strain gives the fol-
lowing strain Hamiltonian:

Z, =[D|+Ei('I ~ )o]( ie„+s„~+egg)

+[Dg(I, -BI )+Em(I, og - gI o)]4,„+c'.p.

+ [D,(I,I„+I„l„)+E,(i,o„+I„o„)]s,„+c.p.
(8)

Form (8) can be obtained from the magnetic Ham-
Qtonian (5) by replacing k, k„with s„„and dropping
all antisymmetric terms which appeared by virtue
of the noncommutivity (3).

B. Perturbation theory

In Sec. II A we introduced a number of phenom-
enological parameters through the process of con-

V being the periodic crystal potential. S„„and
~„„&are the spin-independent and spin-dependent
deformation operators which will be discussed
later.

The relationship between the "spin" Hamilto-
nians (2), (5), and (8) and the perturbation Hamil-
tonians (9)-(11)is established in the following
way. First, taking the matrix element of Eq. (9)
and comparing it with Eq. (2) we have

(14)

Next, we work to the second order in the perturba-
tion (10), separate the symmetric and antisym-
metric products of k using Eq. (3), and obtain the
matrix element

I If' ~ (il v„ I l)(l I w„l j)+(il v, I l)Q I o, I j) I

ek (i I m„ I l)(l I o„ Ij) —(i I vr„ I l)(l I vr„ I j)
4 '" """ '

(E -E) (15)

A| = 1+ 3(F+ 2G+2H, + 2'),
A2 = —F —2G+HI +H2,

A, =-F+G-H, +H, ,
(16)

where e»„ is the Rntisymmetric unit tensor. In
Eq. (15) i,j refer to the degenerate states (ei, t~,
c~) of the valence-band-edge manifold with energy
Eo; and l refers to a state outside it. Comparison
of terms of same symmetry in Eqs. (5) and (15)
leads to the following result. First, replacing p
by p in Eq. (15) we obtain spin-independent coeffi-
cients which are

A4= 4(F —G —Hi+ H2),

where

2 g l(e, lp„lp, l)l~
m r- Eo-Er

2

2 g l(c, lp„l p„l)l~
m

f2

2 g 1(c,lp„l 5„l)l~

m r- Eo-Er
15

2 g 1(c, I p„l E„l) I
~

m r- Eo-Er
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are the constants originally defined by Dressel-
haus, Kip, and Kittel (DKK). (We have made
them dimensionless. ) In Fig. 1 we indicate the
approximate positions~ of the energy levels in Ge
at k= 0 to locate the states that perturb the valence
band edge.

It is worth noting that the position and orthogo-
naiized-plane-wave (OPW) nature of the levels in
Fig. 1 provide a clue to the relative magnitudes of

and &2. In Ge the largest are +~ a
which derive from the nearby states I"&5 and I'z,
respectively, both predominantly of [ill] plane-
wave character which gives a strong overlap with
the valence-band state l ~5 similarly composed.
Rather smaller is G which derives from the more
remote I"&2 state whose character, predominantly
[200] plane waves, differs from the I'2, state.
Considerably smaller yet &3 derives from 125
states, the lowest of which (not shown in Fig. 1)
has [220] plane-wave character and lies far, - 25-
30 eV (free-electron estimate), above I'2&. Thus
the relative magnitudes are expected to fall in the
order IEI, la, l & I Gl » la, t.

Next, retaining the second term in Eq. (12) and

picking up only terms first order in spin-orbit in-
teraction we obtain, by comparison with Eq. (5),
the spin-dependent coefficients

The spin-independent deformation operator, dis-
cussed in detail by %hitfieM~3 and Pikus and Bir,
has the form

~„„=—(I/m)P„P„+ V„„, (2o)

where t/'„„represents the derivative of crystal po-
tential V with respect to strain &„„. The spin-de-
pendent deformation operator derives from the
change in spin-orbit interaction under strain. It
is given by

&~.~=(-5g.5i +$5~A +$5.ih )&a

~ g)„, I I)(l I IIg+ hg I f)(I I &„,
+ P 1I'X+

0

where the vector h is defined by Eq. (13) and

h„„=(5/4mac~)VV„„xp . (22)

The first and second terms in Eq. (21) come from
the first-order strain perturbation, while the last
term is contributed from the second-order pertur-
bation arising from the strain and spin-orbit inter-
actions through the intermediate states I'~z, I'&5,
and I'2, (see Fig. 1). Comparison of Eqs. (8) and
(ll) gives the following deformation potential con-
stants:

gS lP 1l Ia
a -a =--'a =2K~'

f(EO-Er)

, (c, ~(r&&VV), ~eg,

ENERGY
(IN IV)

20-~ I

I
+
25

NAVE FUNCTION

OP% TB

[200]
[200]

= —g +
8 2 (eg

~
r ~ VV

~
Kg),

(18)
+P„"V„"-P'„'V," 1

&
~

sV sV~
f(Z, -Z, ) 4mc' ' Sx ~

ay

~ag p, V„+p„V,
i(Eo -E,)

) 0- "IZ

—r'
[200]

p(+ d)

p(+ d)

-5-

As the spin-orbit contribution is usually much
smaller than the purely orbital one, we neglect
second-order spin-orbit terms entirely.

The deformation-potential constants appearing
in Eq. (8) can be obtained in a similar way by tak-
ing the intraband matrix elements of the deforma-
tion operators which are even" under inversion.

- I5-
[ooo]

FIG. 1. Approximate positions of energy levels in Ge
at K=o (see Ref. 22). The character of each wave func-
tion may be inferred roughly from the parent OPS( or
tight-binding (TB) states from where it derives. Spin-
orbit interaction is not included.
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Di =-'«t
I
~-+ 2~-let&,

and

E =-'««.
I

g -+»-.Isg ~

Es=t«el+* -3)ss isa&

E,=2i«, lg),„„lag .

(28)

(24)

X..=-.'A(Zs -I ——,'os) =
——'4 for J=2 .

(28)

C. Projection

Although the Hamiltonians presented in Sec. II
B are complete, it is often inconvenient to work in
the full six-dimensional space of I'~. Under cer-
tain conditions it suffices to work entirely in a
particular subspace or to treat the effect of com-
plementary subspaces by perturbation theory. We
point out first the relative magnitudes of the ener-
gies involved in a typical experiment:

energy gap» spin-orbit energy»

magnetic, strain and thermal

energies. (25)

This suggests that we diagonalize the spin-orbit
Hamiltonian Xs, first Def.ining the total angular
momentum by J=I+&o; we see

3A for J=-'

Thus, X„splits the six-dimensional space into a
four-dimensional J = —,

' subspace (1 s) and a two-
dimensional J= —,

' subspace (I'~). Now, we project
the magnetic and strain Hamiltonians onto each of
the spin-orbit-split subspaces with the aid of the
projection operators P and Q in the following man-
ner:

Xs Is = g A+ P(Xe+X,)P+P(Xs+K, )

& Q(1/A)Q(Xs+X, )P+ ~ ~ ~

Xi is = —3A+ Q(X, +X,)Q —Q(Xs+X,)

X P(1/A)P(Xs+X, )Q+ ~ ~ ~ (28)

The general formulas for projection I, c -J(J= —,
'

or J= 2) are given in Table II in reducible tensor
forms. In cubic symmetry the projected Hamil-
tonians (27) and (28) can be expressed as cubic
invariants using the angular-momentum matrices
J similar to the way discussed in Sec. II A. The
fourth and fifth columns of Table I show the pro-
jection on the subspaces J= —,

' and J= a of each
independent matrix reduced for cubic symmetry.
The first-order projections [the second terms in
Eqs. (27) and (28)] are particularly simple and
have the following forms:

J= —.3

PXsP = —(I /m )bt a k -ye[(J „—sJ )k, + c.p. ]

-2y N~.~,}(k.k.}+c p ]}

TABLE II. General expressions in (reducible) tensor form which enumerate all
possible projections of operators containing I and o. onto the subspaces of I'8(J=~2),
&'7(J=y), and the rectangular cross space &8 x I'7. Any higher power of 0 and I can be
reduced to lower powers by the use of Eq. (1) and the formula

'[Ia,[I„I„}}= s6 ~„I„+& @„qI„+6~qI„)

For J= $ there exist only 16 (=4t) independent matrices (powers not higher than third
in the components of J). Any higher powers can be reduced by repeated use of the com-
mutation relaxation JxJ=iJ and the formula

(P.~k. (~ ~.}}=-,'(6.i(~ %+6 .(~.~D

-g&~~..+~(~.,~~+& &~.) .

Operator

f.o

(IyI„}s

Projection~
on r, (Z=g)

2J
23J„

kl:~.~.}.s6..
s(~,~,}-s6„
r(~g~Ad- ('ge, di

projection
on FT (J=~)

4

3 J„
2J

2—3&i v

—S(&~)J.+&v~J,)

Cross space
I'8 x I'

—2I

(I,I„}+/(I„,I„)+26„-„

-m~ A+~(& 4 +&)I,)
k[I„(I„ig)}-—kk„(I„, Ig)}

'The "triple" symmetric product (JJgg is defined by (JJ+j= (3() t /~Jr&»J+&„,J~ p„,
where P is a permutation of p, , v, A..

The form of the operator defines the 4 x2 rectangular matrix in (J, M&) representa-
tion which connects the subspaces I'8 (J=@ and &7 (J=q).
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—(eg/mc) (zJ„+qJ„')H„+c.p. ,
PK,P = D, (e„,+ c.p. )

+ 3'[(Jx 3J )sex+ c p ]

+ —',D„'(2(J,J„)c„„+c.p. ),
with

(29)
&I/ MJ=R I/2

p+

J=3/2

M) sf3/2

r4
MJsi I/2

~s+ ~s

M„=a 3/2

rs'

r's

y~ = -A~ —B~,

ya= H2+ ~DI

y, = $A, + ,'B, ,
-

2 2 2R i 3 II
K — 3A4 3B4+~B4 —~B4

I 2 II4+3 4

(31)

NO SPIN

Ig
J= I/2

I'g

Mg s i I/2

r,'
MJ=X I/2

rs'

f'I][oat] rll[~~~] I"ll[~&o]

Dq =D~+E

Du= pD~+E2

Du = 2D3+ E3,
J——o1

2 ~

(32)

QK&Q = —(I /2m)y~k2 -g (ek/2mc) J ~ H, (33)

Dyd omah

FIG. 2. Splitting of the &2& valence band edge in Ge
resulting from the spin-orbit interaction I ~ o followed by
a uniaxial compressive stress T applied along each of the
principal crystallographic directions. The projection
operators associated with each splitting are shown.

QK,Q = D,'(c,„+c.p. ), (34)

with

y&= -A, +2B, ,
g'= —3A4+ 3&4++&4+ a~4'

~

D~=D~ -2E~ .

(35)

(36)

The effective-mass parameters (31) and the defor-
mation potential constants (32) associated with J= —,

'
bands conform with the definitions of Luttinger
and those of Kleiner and Roth, ' respectively. ~

Another useful projection is applicable in the
J= —,

' manifold when, in addition to (25), the condi-
tion

strain energy» magnetic and thermal energies
(37)

is satisfied. Anisotropic strain generally splits
the J= —,

' quartet into two doublets; and then we can
project X& further onto one of the strain-split sub-
spaces. The projection scheme is shown in Fig. 2
for three particularly simple directions of uniaxial
strain. This will be discussed further in Sec. V.

D. Spin-dependent contributions

It is clear from the discussion of Sec. II B that
all the coefficients of those terms in the "spin"
Hamiltonians (5) and (8) which depend on both orbit
and spin vanish in the absence of spin-orbit inter-
action. Such terms have traditionally been ne-
glected on the grounds that the spin-orbit inter-
action is much smaller than the purely orbital ef-
fect. Even with large spin-orbit interaction their
existence is hardly evident if only the first-order
projections are considered, because spin-indepen-
dent and spin-dependent terms such as I„-31 and

I„o„--',I o both give the same form, J, ——',J (or
zero), on projection on the J= —,

' (or J= —,') subspace
and cannot be distinguished from one another. The
only exception in which spin-dependent effects are
isolated and, therefore, recognizable in the J= —,

'
subspace is the q term in Eq. (29) which is seen
by Eq. (31) to arise exclusively from spin-depen-
dent sources. In prior work the q term has (in-
correctly) been neglected in Ge, where the spin-
orbit interaction is moderately weak; but for rea-
sons which will become evident we have found it
necessary to reexamine its origin and estimate its
magnitude more carefully. In fact, we find that
the whole subject of spin-dependent effects war-
rants closer attention overall.

By the analysis in the previous sections, q is
seen to be comprised of the components B4 and
B4' which, in turn, can be evaluated using the sec-
ond-order perturbation formulas (18). On the ba-
sis of these formulas Kohn (in an unpublished work)
concl.uded that q in Ge is extremely small, i.e. ,
q 10 ', thus justifying its neglect in the Hamil-
tonian (29). The smallness of this result is due
primarily to the fact that the relevant second-or-
der expressions (18) always contain matrix el.e-
ments of the derivative of the crystal potential
which is slowly varying outside the atomic cores.
We have uncovered additional and more important
contributions previously overlooked which come
from a formally higher order~ of perturbation,
namely, from the cross product of the spin-orbit
and magnetic interactions. The most important
terms then are those involving the diagonal matrix
element of spin-orbit interaction, namely,
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(i I p„ I l)(E I X„I l)(l I p„ Ij)
m~, (E, -E,)' (38)

where, now, z has been replaced by p. This for-
mula clearly shows that among the four represen-
tations connected by p with I'z5, only two, I'~5 and
1 2„with nonzero spin-orbit splitting can contrib-
ute. We thus redefine the B constants previously
given in Eq. (18) by dropping the negligible sec-
ond-order terms and replacing them by third-or-
der perturbation terms h1 and h as follows:

B1= -$(h1 -ha), Ba= —a(h —ha),

Ba= a(h, +ha}, B4= —,'g, +*(h, —ha),

4=-4(ha-ha» B4'=4(ha+ha»
where

2 g~ I +1IPyl5a, s) la%a. 1

m r (Eo E&)a
15

2 g l(s1IP„Isa.1)I &aa. 1

m r-„(Eo-E1)'

In the above,

&aa, 1
= »(a1.1 Ih. I aa. 1&

(39}

(40)

(41)

(42)

are the spin-orbit splittings of the lth 1 &5 and I'25

bands, respectively. For the same reasons that
Ba is very small we should expect h to be quite
negligible. On the other hand, h~ can be roughly
estimated on the assumption that both &, and h1

are predominantly contributed by a single 1„
band, which is located -3 eV above I'~, and, for
which &»-0. 2 eV. Since H&- —5. 3 this gives

PV
b,15 01 1(E

and we obtain

q =aha-0. 06 .

(43)

(44)

This constant is small compared, say, to a (a- 3.4); but it can be detected in precision experi-
ments (see Paper III). In materials with larger
spin-orbit interaction, we would expect the magni-
tude of q to be correspondingly larger. ~9

Besides accounting for the q term in its entirety,
the spin contributions, h~ and h~, also appear as
small 'corrections" in the definitions of the effec-
tive-mass parameters y„y&, y3, and ~ in Eq.
(31). This fact must be taken into account (in
Paper III) in evaluating the DKK band parameters
+, G, H» and H2 from experimental measure-
ments of y„y„y„and K.

Another interesting contribution of the spin-
dependent terms appears in the strain Hamiltonian.
In this case, since no equivalent to the q term ex-
ists, the spin-dependent part cannot be distin-
guished from the spin-independent one in the first-

order projection. However, two methods can be
suggested to detect its contribution. First, the
most straightforward way, in principle, would be
to measure the change of spin-orbit splitting of the
J= —,

' and J= ~ bands as a function of a hydrostatic
pressure. This directly measures E~. Second,
one could look for uniaxial stress effects which
derive from the second-order projection [the third
term in Eqs. (27} and (28)]. Here the pertinent
deformation potential is —,'(Da -Ea}or —', (Da -Ea)
instead of —,'(Da+ 2Ea} or —,'(Da+ 2E,) as given by Eq.
(32) for the J= —,

' projection. Comparison of mea-
surements of uniaxial deformation potentials made
inside and outside of the J= —,

' manifold would di-
rectly resolve the spin-dependent components E~
and E3 from the spin-independent components D2

and D, . (See Sec. VI. ) Such an analysis is car-
ried out in Paper II.

It is not a simple matter to estimate the spin-
dependent deformation potentials E» E» and E~
from the formal expressions (24). Only the first
term of the spin-dependent deformation operator
+„„„in Eq. (21) can be readily evaluated. It sim-
ply represents the change of spin-orbit interaction
by the scaling effect under strain and gives the
spherical contribution

E1———$A, Ea=Ea aA . —— (45)

This result by itseU is equivalent to making the
"deformable-ion" approximation.

Serious difficulties are encountered in attempts
to evaluate the second term h~„& in Eq. (21), since
it involves the derivative of the change in the po-
tential, V„„, under strain. Thus far we have not
found a realistic yet tractable model on which to
base such a calculation.

The third (second-order) term in Eq. (21}is
probably unimportant in Ge since the lowest rele-
vant states (I",a, I",„and I'») are at least E1 Eo- 10 eV above the valence band.

III. SPECTRAL FUNCTION

In this section we derive the absorption Iine-
shape function or spectral" function which de-
scribes the electric-dipole power absorption spec-
trum arising from quantum resonances in a crystal
which lies in a microwave electric field h having
fixed frequency and specific polarization. This
function maps the shape of the experimental re-
corder traces one observes when the dc" mag-
netic field H is swept over the resonance regions.
We shall not go into the subject of line broadening
in a general way; rather our goal is to develop the
spectral function in a form suitable for computa-
tion of 'synthesized" cyclotron resonance spectra
starting with the solutions of the effective-mass
equation.

In the past it has been customary to analyze cy-
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and gives rise to an interaction with electron

X'= (e/c)X ~ v = (ie/&o)8 ~ ve'"',

where v is the electron velocity defined by

(47)

he% ' (4S)

The power absorption per electron from the micro-
wave electric field is expressed as a sum

clotron-resonance spectra in terms of line posi-
tions and intensities calculated for k„=0 with an

appropriate collision-time line broadening chosen
to approximate the line shapes. A few attempts ' '
have been made to relax the k„=0 assumption and

incorporate by perturbation methods (near k„=0)
the inhomogeneous broadening due to the depen-
dence of the transition energy on kH. However,
this approach is too restrictive for our present
needs; we shall see in succeeding papers that it is
unlikely that the quantum cyclotron-resonance
spectra in the degenerate valence bands of Ge

could be unravelled in such a simple way. Serious
complications arise in reality due to the fact that
not only are the observed spectra composed of a
superposition of numerous quantum resonances
each k„broadened, but also transitions can take
place in regions of ks space away from ks —-0 (non-

central transitions). Where k„mixing of two or
more transitions is appreciable it becomes diffi-
cult to trace the transitions as continuous func-
tions of k&. It is necessary, therefore, to estab-
lish a more powerful method of spectral analysis
which automatically copes with such complex situ-
ations.

In addition, some confusion has existed in pre-
vious work in regard to the dependence of the line-
shape function on magnetic field. This would be
unimportant if our attention were confined to local-
ized structure (or a single line), but for the case
of the hole transitions in Ge the spectrum can span
a range of effective mass of more than a factor of
10. When the magnetic field must be scanned over
such a range (we assume that the microwave fre-
quency is kept fixed) it is imperative that the de-
pendence of the intensity on the magnetic field be

properly taken into account to ensure a quantita-
tive and unambiguous fit to the observed spectra.

The development of the spectral function initi-
ated from the analysis of the resonance spectra in

Paper IV for unstressed or "cubic" Ge where the

k~ broadening is most pronounced. However, the
formalism is applicable for stressed crystals and

has been employed in a few instances in Paper II
where detailed analysis of line shapes is required.

A harmonic electric field of frequency &u(& 0) is
described by

X = (ic/(o) Se'"', (45)

Q (E, E-,)(f, -f,)w„
(s, t&

(49)

(f, —f,)
I
(t

I
8 ~ v

I
s)

I
5(E,—E —he@) . (51)

2(d ~„,&
Es&S t

The power absorption (51) depends on the tem-
perature through the distribution function f and on

magnetic field via level energies and matrix ele-
ments. As the magnetic field is swept in a typi-
cal experiment the entire level structure scales
continuously and linearly with the field. It is
therefore convenient to separate the linear field
dependence from the "intrinsic" level structure by
introducing the following dimensionless quantities.

(i) Dimensionless magnetic field We c.an rep-
resent the magnetic field in the dimensionless
form,

q =crt/mc(u . (52}

In this section it is convenient to let g and H range
formally from — to + in order to encompass
both states of circular polarization.

(ii) Dimensionless hole energy. Conventionally

the hole energy is also expressed in a dimension-
less form

Emc/ae-

The sense of this quantity is Positive with increas-
ing hole excitation. In the present work it is ap-
propriate to assume that e is independent of H just
as in the case of a simple band at k~ = 0. However,
for cases in which the bands are appreciably non-

parabolic, E is nonlinear in H, and we cannot
make this idealization.

(iii) Dimensionless momentum and matrix ele
ment The summation .on the indices (s, t) in Eq.
(51) extends over all pairs of magnetic states. In
particular, the solutions of the effective-mass
equation possess a definite momentum kH which is
conserved in an electric dipole transition (see
Sec. IV). Therefore, the total line shape, ex-
pressed by Eq. (51), consists of a superposition
of transitions occurring at each value of k„. If we

separate the k& summation from the rest, we can
replace it by an integral, having first introduced
the quasicontinuous dimensionless parameter

over all pairs of states (s, t) with statistical occu-
pation probability f and energy E. In Eq. (49) w„
is the transition probability ' per unit time deriv-
ing from the interaction Hamiltonian (47) (plus its
Hermitian conjugate) and is given as usual by

w„= (2v/h) (e'/4~') [ I
(s

I
Z ~ v

I
t)

I

'6 (E,—E, + h~)

+ I(tl ~ ~ v
I
s& I'«E E h&u) j, (50)

which, on substitution into Eq. (49) gives the pow-

er absorption
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g =(elHl//ec)-'"I„. (s4)

Next, we introduce a dimensionless matrix ele-
ment F„(g) according tor'

&,.(0)=«, Lle ~ uls, L&, (se)

where now s and t represent all quantum numbers
other than )'r„, u is the dimensionless velocity

u = (c/e
l zl I)'"mv, (sv)

and e is the polarization vector of the microwave
electric field. 33 The dimensionless matrix ele-
ment E„(f) is independent of magnetic field under
the same circumstances that & is.

%e assume the magnetic field is swept slowly
enough so the holes are distributed according to
Boltzmann statistics corresponding to the instan-
taneous magnetic field. Also we assume that the
number of carriers generated by photoexcitation
remains constant. Under these conditions, the
power absorption P per hole at magnetic field g is
given by

p = (e'l 8
l
'v/2m(o) w(r)), (se)

W(r}) = r}'(I —e-") dg

«, I
l
& ~ vis, I & =(I ~I/~&(«Ill/c)"'&r. (&&,

(ss)
with

tant factors comprising the coefficient in Ell. (59).
Two factors favor the intensity of transitions at
high effective mass (i.e. , high q); they are r) in
the numerator and Z(r)) in the denominator. In the
former, one power of g comes from the matrix
element squared, and one power originates from
the density of states (i.e. , from the transforma-
tion of the arguxnent of the 5 functions to dimen-
sionless form). Although the partition function
Z(r)) depends upon the details of the level structure
and is not a simple function of r) (and y) it, never-
theless, always decreases monotonically with q,
very rapidly when y is large. All other faetorable
quantities containing 5 appear in both numerator
and denominator (partition function) and, hence,
cancel. Failure to recognize this cancellation has
led to erroneous results in earlier work. 34

The factors in Elf. (59) responsible for the
structure of the spectrum are the matrix element
E„and the density of states representated by the
5 function. The former (which must be calculated
at each value of f) gives the selection rules and
relative intensities. It will be discussed in more
detail in Sec. IV. In practice one usually takes
into account the effects of collision broadening by
xeplacing the 6 function by a smoother line-shape
function g(r) —r)„& suitably normalized:

1'"„g(r)- r)„)dr) = I . (ee)

%e employ in our calculations the Lorentzian func-
tion

~ & [l~„(~)l' 5n(-n, . &

sr t
'Its~

(g) lme(q+q )]e lrlra

where Z(r)) is the partition function

d~Q& lrlw~&rl-
s

(s9)

(eo)

ld7w (r) —r)„)'+ (r}„/ldll)' ' (64)

where v is the collision time.
Eciuations (59) and (64) form the basis of line-

shape analyses in Papers II-IV.

IV. SOLUTION OF EFFECTIVE-MASS EQUATION

AND SELECTION RULES

y = 8'(y/k8,

r)„=(e,—e,) '.
(el)

(62)

The summation on s and t extends over all eigen-
states with a fixed f We call .Ell. (59) the spec-
tral function, since it completely determines the
shape of absorption from II= 0 to ~ (r}= 0 to ~) or
H= —~ to 0, whichever the case may be. In Paper
IV we shall see that the dependence of e,(f) on f is
often far from parabolic which rules out a simple
evaluation of the integral (59) as attempted pre-
viously, ' instead, for meaningful results, we must
resort to numerical proceduxes.

To clear up the confusion noted earlier in regard
to the magnetic field dependence of the spectral
function we briefly txace the origins of the impor-

In this section we examine the nature of the
eigenstates of the "spin" Hamiltonian given in Sec.
II and of the quantum-resonance transition matrix
elements, which connect these eigenstates, given
in Sec. ID. Because of the complexity of the va-
l.ence bands of Ge, explicit solutions to the Hamil-
tonian can only be obtained by numerical methods
for the general case (mentioned briefly at the end
of this section). Nevertheless, without actually
solving the effective-mass equation we can gain
considerable insight into the nature of these solu-
tions through the elucidation of their symmetry
properties-a basis on which we shall establish
schemes fox classification of energy levels and
selection rules for cyclotron-resonance transi-
tions. In this discussion the following conditions
will be assumed. "

(i) We confine our consideration to the J= 2 (I'r)
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band, i.e. , the first-order projections (29) and

(30) are used as Hamiltonians. [Modifications
which occur when we lift this restriction will be
discussed in Sec. VI. It should be pointed out that
conclusions based on symmetry are not affected by
expanding the manifold to include the J=-,' (I'7)
band. ]

(ii) The external strain is assumed to be of uni-
axial nature and applied along one of the three sim-
plest directions, [001], [111], and [110]. We
briefly remark on stress directions having sym-
metry lower than these at the end of this section.

(iii) We assume that the static magnetic field
lies along the stress axis (T II H). This highest
symmetry case is the one of greatest interest to
us. (Other cases will be discussed in Sec. V un-
der more restrictive conditions. )

We begin by defining our coordinate systems.
Consistent with the condition (iii) we set up a right-
handed coordinate system (x„x2,xs) with x, along
the magnetic field (and directed in the same sense).
We define the dimensionless momentum along the
field by

e.[(J ~)'--']
and an anisotropic part

(72)

actly and the remaining antisotropic parts (71), if
they are sufficiently small (i. e. , y, —y2, q «y„
y2 and ~), can be treated by perturbation theory.
For discussions of symmetry, however, it is pref-
erable to make a different split into axial and non-
axial parts consistent with the axial symmetry
established by the stress and magnetic field.

Before doing this let us also rewrite the strain
Hamiltonian (30) in spherical and nonspherical
parts. We express Eq. (30) (omitting the dilata-
tional part) in terms of the magnitude T of the uni-
axial stress (T&0 for tension and T&0 for com-
pression) and its direction cosines (7'„7'» r, ) re-
ferred to the cubic crystal axes:

X,= eg(JS- -', J')~2+ c.p. ]

+e„'[2(J„J]r„v +c.p. ] .
This separates straightforwardly into an isotropic
part

g = (Sc/eH)' k = (Ic/eH)' 'k (65)
—(e„—c„')[2(J,J,}r„r„+c.p. ], (73)

and, following Luttinger, introduce the harmonic-
oscillator creation and annihilation operators by

where

f 3ee(Stt Sta)DeeTe f
ee 3S44D 2'ee (74)

a' = (k c/2eH)'~~(k, + ik2),

a = (8' c/2e H)
t~ 2(k, —ik2),

(66)

[a, a']=1,
[a, L]=[ 'a, L]= 0.

(67)

Similarly, in the same coordinate system we de-
fine the raising and lowering angular-momentum
operators for J= 2 as follows:

J,=(J,~fZ, )/v2, (ss)

which, from Eq. (3), satisfy the commutation re-
lation

and s», s», and s44 are the cubic elastic compli-
ance constants.

We now rearrange both magnetic and strain
Hamiltonians, (70)-(73), into axial and nonaxial
parts. The Hamiltonians (70) and (72) always have
axial symmetry about H (and T); whereas (71) and

(73) split further into an axial and nonaxial part in
a way depending upon the direction of H with re-
spect to the crystallographic axes. At this point
we introduce the variables (65) and (66) and follow-
ing the usual practice we denote the transformed
spin Hamiltonian by & and the axial and nonaxial
parts by D'and D", respectively, so that

which obey the commutation relations @=a'+D" . (75)

[J,& Js]=~J., [J.& J ]=Js .
A. Axial and nonaxial parts

(69)

Frequently it is convenient to split the magnetic
Hamiltonian (29) into a "spherical" or isotropic
part

S2
(-,'y, +&y )km y (J. k) +—(K+-,'y, )(J.g)

(7o)
and a nonspherical part

(y2-y3)(2(J, J)(k„k,j+ c.p. )

+q —(J H, + c.p. ) (71)

because the spherical part can be diagonalized ex-

D = ytS+y S —2y St —ah2+y3)SQ

+ K el3 +qelg —
xee (el' —

4 ) e

D"= —,'(y -y )(2 a +8 a ) .
(76)

(77)

Below we list the explicit forms for D' and D"
for H and T (T ll H) along each of the principal
crystallographic directions [001], [111], and [110].
(All energies are measured in units of —IeH/mc. )
In each case the Hamiltonian is expressed in coor-
dinates (xt, x2, x,) given in Table III which embody
the symmetry of the stressed system (this table
also lists for each case the components of the
strain tensor E.„„):
T IIHI I [001]:
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TABLE III. The strain tensor components c» referred
to the cubic axes for a uniaxial stress T oriented along
each of the principal crystallographic directions. Also
listed for each symmetry are the transformations (z, y,
z) (xf x2, x3) of the cubic axes to the coordinate sys-
tems (x3IIT) employed in tne text.

Tll [001]

«~ = «i), = Sl,T

«ss = SIIT

« —«~ —«s

x3=z

xx «yy «ss 3(S11 + 2S12)T
1

xy yc sx 6 44

x, = (1/W)(z+y -2z)

x2 = (1/W) (-x + y)

g3= (1/W)(g+y+z)

Tll [110]

yy
= $ ( 11 + 12)T

«ss S12T

s44T

«~ = «s„=0

xl = (1/W) (x —y)

x2= z

x3 = (1/~) (z +y)

T IIHI I [111]:
D'=y, S+y,S0--3(2y2+y, )S, —3(y, +2y, ) S,

+xj3+q(+ 3 J3)J3 x (J3 $),
D-= —'.(rz —r, )((j,j,)a"+(J j,)a'

+J,a f +J at' ) —
~g (J, +J );

T IIHII [110]:

(78)

(7&)

So- (J', -~)(a'a+ -,'- t'),
S, =(J.jj fa (J+J,)t'a',
S =J a2+J2a 2

are all axially symmetric operators and

x„=ej(keH/mc),
x '„=e'„/(ReH/mc)

(82)

(83)

are dimensionless strain-splitting constants.
The Hamiltonians (76)-(81) thus recast are now

in a form more appropriate for the analysis of
Sec. 1VB.

It is clear from Eqs. (71) and (72) that the non-
axial part for any direction is proportional to
either y2 —y3, x„-x„', or q. The nonaxial contri-
bution due to yz -y, is often referred to as the
"warping" as this term is responsible for the
warped or fluted shape of the constant-energy sur-
faces of the valence bands.

D'= rp+ ,'(r, + Sr,)S,——(r, +r, )S, —8 (3r2+ 5r3) S,

+ K J +q (+&
—-j,)J ——'(x.+» '.)(j3

—
4 )

gP+ (r r )[ (J2a 2+J2a2)+ (J2+J2)

x(a a+2-t )-—,'(J, —$)(a +a )

—(( j, j) a't+ (jjgat;)]
+ ,'q(j, j,j.+J J-,j.) ,'(x„-x„'}(J',-+ -J') .

(81)
In the above,

S=a a+ z+ zf

B. Classification of eigenstates

A systematic spectroscopy for cyclotron reso-
nance in complex bands requires a scheme to
classify the magnetic eigenstates. This scheme
should satisfy the following criteria:

(i) Each eigenstate should be labeled by making
maximum use of quantum numbers based on sym-
metry (and having thus a simple physical interpre-
tation); and the status of each quantum number
(whether it be "good" or "ba,d") should reflect the
condition of the corresponding symmetry.

(ii) The selection rules for transitions should
be expressible in terms of the quantum numbers,
and the violation of selection rules should follow
as a natural consequence of the loss of one or
more symmetries.

(iii) The scheme should be universal in the sense
that it should be applicable for an arbitrary orien-
tation of H; and, accordingly, it should be possible
to match corresponding eigenstates as H is rotated
from one crystal axis to another.

In the past a number of methods for labeling
Landau levels have been used all of which fail on
one or more of the above counts usually because
the symmetries of the problem have not been thor-
oughly understood nor fully exploited. In this sec-
tion we outline a new and more satisfactory scheme
for spectroscopic notation based on the transforma-
tion properties of the Hamiltonians (76)-(81)which
we shall employ in succeeding papers to label
states and identify quantum transitions.

It is known that the operators (66) with the com-
mutation relation (67) generate a series of har-
monic oscillator states which are equally spaced
in energy. In a three-dimensional problem each
of these levels (Landau levels) is enormously de-
generate due to a remaining degree of freedom
which does not appear in the Hamiltonian. For
the purpose of distinguishing each state, we de-
fine another set of canonical variables by

b~ = (kc/2eH)'~2(k~ —ik2)+i(eH/21c)~ 2(x~ —ix2),
(84)

b= (kc/2eH)' ~(k~+ikz) —i(eH/2kc)' (x, +ix2),

with the commutation relations

[b, b'] =1,
[a, b] =[a', b']=[a', b]=[a, b']= 0, (85)

[b, ~] =[b', t]=0.
The physical significance of the variables b and b
is fully discussed in Appendix B. By virtue of the
commutation relations (67) and (85) we can define
the basis oscillator states by the following condi-
tions:

a'a In. , n~, &) =n. In. , nn, &),
b bin„ny, g) =n/In„ny, g),
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—. —ln„n„ t& = (ea/ffc)'"t ln„n„ t&,

a ln„n» f& = (n, +1) ln, + I, n~, f),
a

l n„n„f& = (n, )'" l
n, -1,n„g&,

b ln„ng, && = (ng+1) ln„ng+1, f),
(n~)'" ln. , n~ -1

(86)

cable to portions of the Hamiltonian.
(iii) Axial part, D': From (67), (69), and (82),

we can define an operator

which commutes with the axial part D' of the full
Hamiltonian

[x,D']=0.
(n„na = 0, 1, 2, . . .) .

The states are mutually orthogonal with respect to
n„n&, and g and are assumed to be correctly nor-
malized over the crystal volume.

A convenient way of classifying eigenstates is to
use the symmetry operations which leave the sys-
tem invariant. To do this we will need to split the
Hamiltonian |',75) further into a part D1 that depends
on f and a part Do that does not:

D=D +D +D' +D

Do=DO Do, D1 -D1 D

DS. DI, DI, DILL Dfta D53
~

The ful/ Hamiltonian D possesses the following
two kinds of symmetry properties.

(i) From Eqs. (6V} and (86),

[t,D]=0, (88)

[btb, D] =0, (89)

and hence g and nq = b b are always good quantum
numbers.

(ii) The nonaxial part D" given by Eqs. (I'I),
(79), and (81) has a fourfold, threefold and two-
fold rotational symmetry reflecting the crystallo-
graphic symmetry of the axes. Group theoretical-
ly, the operator C„which rotates the entire system
through 2v/v about the H, T-axis has the proper-
ties

waK
-1'

@JAN =J.
(96)

Since the spin Hamiltonian Do contains only prod-
ucts of even powers of a and a, it follows that

[&,D,]=o . (96)

The eigenstates of Do, therefore, ean be classified
according to the eigenvalues of ~, which are + 1.

Summarizing, from Eqs. (88), (89), (91), (94),
and (96) we list following quantum numbers which
can be assigned to each 'spin" Hamiltonian:

This is simply an expression of the conservation
of the H component, J3+a a —b 5, of the total
(Bloch state plus oscillator state) angular momen-
tum. [We have dropped b b which also commutes
with D'(see Sec.IV C), and have added —, to simplify
numbering. ] The eigenvalues of the operator N
are clearly

X=M~ ye~+ ~ .3

The quantum number N assumes the values 0, 1,
2, . . . , since ~& ranges from ——,

' to + —,
' and n, takes

on the values 0, 1, 2, . . . .
(iv) k„=0 part, Do: At t' = 0, we can utilize the

parity operator m. This is a 180' rotation about
H in k space, so that

gag = —at-1 t

C a'C-' = e-"'"a'
V V

CaC" =e" "a

and, thus, commutes with D,

[c„,D]=o

(90)

(91)

Do.. t;, ng, K, N, p,
D: g, n~, K, N,

Do.. ), n~, E, g,
D: g, ps~, E .

(97)

as ean be verified directly from the Hamiltonians
(V6)-(81) with v=4, 3, and 2 for TliHil [001], [ill],
and [110], respectively. The operator C„gener-
ates a cyclic double group of order 2v, in which
(C„)"has the representation —1, and, consequently,
the one-dimensional representation of C„has to be
one of the vth roots of -1, na ely, e-'~-""'"
(K=0, . . . , v —1}. The quantum number K, there-
fore, can be assigned to those states whose total
wave function I K) transforms as

c„lK&=e-' -"" "lK& (K=O 1) (92)

%e have additional symmetry properties appli-

The application of these quantum numbers wiLL be
illustrated in the experimental papers (Papers
II-IV). Some of the lower-symmetry quantum
numbers can become redundant when the system
takes on a higher symmetry. In the ease of axial
symmetry, for example, a state with quantum
numbers N, n& transforms under a rotation through
8 about H as

C~
l
&, n~& = exp[- i(Z, +a a —b~b) 8

l
N, n,)

= exp[ —i(N-no -~a)e]IN, n, )

since the Bloch and oscillator states have the an-
gular momenta J3 and a a —b b, respectively,
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satisfying the condition (93). In particular for
8 = 2s/v

c„I~, n, & = exp{-[2(x-n, ) —3]w~/vf
I
~, n,&,

which, by comparison with (92), leads to

N-n, = E(m-odv),

or~ fox' ny = 0~

N =K(m—od v ) .
This might give the impxession- that E is redundant

and, hence, unnecessary. However, its role be-
comes significant as soon as we deviate from axial
symmetry, particularly in cases of strong nonaxial
mixing, where N can no longer be defined while
E can. Furthermore, we have a useful property
that energy levels with different K cross while
those with same K repel, as they approach one
another in a diagram in which the levels are plot-
ted as functions of either & or stxain magnitude.

The quantum numbers we have given in (97)
while fairly complete are not quite sufficient to
uniquely label each state. In the extreme case
where the nonaxial terms are very large, a simple
identification of states becomes impossible since
all states of the same K are strongly mixed and,
hence, indistinguishable except by a rank ordering
according to their energy. However, if the non-
axial terms are weak so that a one-to-one corre-
spondence with the states of the axial Hamiltonian
is not lost, then the additional quantum numbers
+ and m of Do can stiQ be considered "approximate"
quantum numbers and used to classify states.
Also, in practice the harmonic-oscillator quantum
number n, sometimes serves as an additional label.
Its merit lies in the fact that it becomes a good
quantum number in the high stress limit (see Sec.
V} where the eigenstates are approximated by a
single harmonic oscillator. This point is further
discussed in Papers II and III.

C. Selection rules

The selection rules3~ for cyclotxon-resonance
(electric-dipole) transitions between Landau states
can be expressed very compactly in terms of the
quantum number scheme in (9V). The transition
probability is calculated from the matrix element
in Eq. (51}, which can be rewritten as

&t Ih ~ vI s& = (Ih I/m)(eel/e)'"

e~ +ew++esus ls&, (98)

are the dimensionless velocity components and

e, and e, =(e,+ie,)/v 2 (100)

are the components of the polarization vector.
Here e and e, taken individually, would corre-
spond, respectively, to a left-hand and a right-
hand circularly polarized electric field.

The existence or nonexistence of the matrix ele-
ments (98) imply certain selection rules for elec-
tric-dipole transitions, each corresponding to a
symmetry property described in Sec. IV B.

(i) From Eqs. (6V), (85), and (99), we note that

g and 5 b commute with u,

[g, u]=0,
[btb, u] = 0,

which leads to the trivial selection rules

&t; = 0 for all polarizations,

M& = 0 for all polarizations.

(101)

(102)

(103)

(104}

The quantum number n~ associated with & b is now

seen tobe totally superfluous, i.e. , a "dummy, "
because it neither affects the energy nor is
changed in any physical transitions. The system
with one value of n& is simply a replica of that
with another n, . In the line-shape formula (59),
the summation on the initial state s should include
all values of n&, but the same summations appear-
ing in both the numerator and denominator [S('g)]
cancel. %e therefore assume throughout that
n, =b'b=0

(ii) As regards the rotational symmetry about
the H, T axis, the velocity operators satisfy

C„ueC„=u3,-1

C-1 +31'3 1& (105)CuC„=e ' u, ,
which can be readily verified from the structure of
the Hamiltonians (V6)-(81) for v =4, 3, 2 corre-
sponding to the three principal crystallographic
directions. In other words us, u„and u belong to
the one-dimensional representations P' ' of the
rotation group about the v-fold direction where,
respectively, K= 0 and + 1 and v —1 (= —1).

It is worth noting at this point that the relation-
ships (105) can be derived in an a1ternative and
more elegant fashion (and one which affords a con-
venient way to calculate matrix elements) by ex-
pressing the matrix element of u, between eigen-
states of D in terms of the creation and annihila-
tion operators, a, a. From Eqs. (6V) and (99)
we have

SD
u, = (uq+gu~) = ——

v'2 Be

1 . 8D
u = =(uz -iu&)=-42 Be

(99)
[a, D]=[a,a'], =-u

so that by taking the matrix element of u between
the two eigenstates of D with energies a, and a&,
we obtain3~
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«lsl~&(&. -~ )=-«l~-l~&,

&flu ls&= —&tlals&,
1

~ts

(106)

~= 0 for polarization e3,
~= 1 for polarization e

~= —1 for polarization e, .
(108)

It is important to note that implicit in the state-
ment (108) is the understanding that 4K=+ (v —1)
is equivalent to 4K=+ 1 owing to the congruence
(modulo v) property of the quantum number K.
(Thus, for example, a K=8-K=O transition for e
polarization is allowed in fourfold symmetry. )

(iii) and (iv) In general, Eqs. (103), (104), and

(108) are the only "universal" selection rules that
can be derived rigorously from the symmetry of
the system. There are, however, several addi-
tional "approximate" selection rules corresponding
to each constituent Hamiltonian appearing in (87):

Da Da Daa Daa

Do, which is usually assumed to be the dominant
term in the Hamiltonian, has the highest symmetry
and, correspondingly, gives rise to the most re-
strictive selection rules (classified as type Mo)
involving the quantum numbers N and 3. The se-
lection rules on N'and m follow automatically from
their definitions in Sec. IV A if we once again note
that u, and u3 are 4N = + 1 and 0 operators, respec-
tively [see Eq. (105) et seq. j and have negative
parity. The addition of each of the symmetry-
breaking Hamiltonians, D&, Do', and D&', intro-
duces transitions —which we classify M» Mz, and

where g„ is defined by Eq. (62). Similarly, we
have

&flu. ls& = ——«l"
l

s& . (107)
~ts

With the aid of (106) and (107), the symmetry prop-
erties (105) follow immediately from Eq. (90).

With (98) and (105), the following selection rules
are readily established for ~=K& -K,:

M3, respectively —with a matrix element propor-
tional to the added Hamiltonian.

The selection rules for circularly polarized e,
and longitudinal e, electric fields are summarized
in Table IV; this classification immediately indi-
cates which transitions are allowed under different
conditions and roughly gives their order-of-mag-
nitude intensity. The Mo transitions are always
present (subject to their selection rules) and pre-
sumed to be the strongest. The M~-type transi-
tions are possible only through the longitudinal
momentum k&, hence they are referred to as non-
central or kH transitions. The M2-type transitions
stem from the warping of the band; they are some-
times called harmonic transitions. The M3 transi-
tions, which are kH -harmonic transitions, require
the participation of both k„and warping and are
generally the weakest type.

In addition to application of the selection rules
in Table IV in a strict sense, one can sometimes
further characterize transitions if it is possible to
maintain a one-to-one correspondence between the
eigenstates of D and those of Do such that N and ~
are, roughly speaking, "good" quantum numbers.
If this is true, then the omitted entries in Table
IV would read dN= any integer but + 1 (consistent
with the ~ selection rule) or &m=no, specifying
the symmetry-broken transitions not allowed by
the higher symmetry selection rules of type Mo.

As remarked earlier, it is not always possible to
identify states with the quantum numbers of Do. It
becomes particularly difficult to do so when two
interacting levels are close in energy, in which
case the only valid selection rules are (108). In
many cases, however, the above classification is
possible and can be used to considerable advan-
tage.

D. Polarization characteristics

A look at the spectral function (59) shows that
the conditions under which a transition s- t can
give rise to an absorption are, first, that the ma-
trix element F„e i xtsand, second, that g&,

——(c&

TABLE IV. Classification of selection rules for quantum resonance
transitions in degenerate bands. (These selection rules are in addition to
Af = 0 and Az& = 0 which always apply. ) Where entries are omitted either
N or & is not a "good" quantum number; and, strictly speaking, a selec-
tion rule is not defined (see text).

Type

Mp
Mg

M2

M3

Relative
matrix element

7|~ V2~ Y3

V2& V3&

'y2 'y3

(~, -y, )C

+1
+1
+1
%1

e~
4N

Selection rules

yes

yes

eg

yes

yes
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—&,) ' be positive. (Note again that I&„l2 is not
necessarily equal to I &,& I ~. ) The combination of
both conditions results in the well-known polariza-
tion rules for cyclotron resonances in simple
bands. Let us consider, for example, a hole in a
spherical band having an effective mass of I/y
(y&0) for which the Hamiltonian, eigenvalues, and

transition matrix element are

& =y(s e'+k+kL )',

sN,-g = y(&+ 2+ 2k ),
F„„,= -y[e, (Z,)'"8„,„,

+e (N, +I) 5„~„,s+e~6„, „],
1

NgyNS y(~ ~ )

We see that resonance absorption can occur only
for the transition N- N+ 1 in the e polarization.
(Resonance occurs at g= 1jy. ) For electrons (y& 0)
absorption occurs only for the opposite sense of
polarization e,. Absorption either for holes or
electrons is forbidden for longitudinal polarization
83.

These simple polarization rules must be modi-
fied when we consider quantum transitions in com-
plex bands. The energy criterion E& -&, &0 is
again a necessary condition for absorption. Hom-

ever, the kinds of transitions which can take place
is only restricted, in general, by the selection
rules (108). Thus, there can exist transitions of
both types ~=+1 and —1—active in opposite
senses of polarization e and e„resyectively-
mhich satisfy the energy criterion. While spectra
taken with either sense of yolarization will contain
resonance lines, their appearance may be quite
different. In fact, for Hl~ [001] and Hll [ill] one set
of allowed transitions (~= —1) will be active only
for e, whereas the other set (4K=+1) will be active
for e . The two spectra will be mutually exclusive;
there will be no lines common to both. Homever,
for Hll [110]the selection rules for e, and e are
identical (recall that for v=2, ~=+1 and —1 are
equivalent) so allowed transitions will be active
for both polarizations e, and e„, although their in-
tensities mill not necessarily be the same.

In contxast to the ease for simple bands, it is
possible for absorption resonances to appear in
the longitudinal polarization SIIH owing to allowed
transitions obeying the selection rule ~=0.

The selection rules in Table IV become some-
mhat less restrictive when the electric fields are
linearly polarized (the more common experimental
situation). A linearly polarized eleetrie field in
the x,xa plane (perpendicular to H) and directed at
an angle 6 from the x~ axis can be represented by
tmo counter-rotating circular-polarization com-
ponents

2"1/2~& & ~ 2-1 /28-i & 0

Since both circular components are yresent in
equal intensity w'e cannot distinguish betmeen +
and —in the selection rules in Table IV. Both
kinds of transition mill be excited by a linearly
polarized field.

An anisotrogy in the transition intensity can ex-
ist for linearly polarized fields when H lies along
an axis of low symmetry, i.e. , Hll [110] (v = 2). To
see this me mrite the matrix element squared as

2
~
F«

~

~ = (u.)2«+ (u )f, + 2(u. )«(u }«cos25 . (110)

(We take the matrix elements of u, to be real. }
For Hll [001] and Hll [ill] (v = 4 and 3, respectively)
the selection rules (LQ8) do not permit (u, )„and
(u )« to exist simultaneously. Therefore, the last
term in Eq. (110) must vanish and the intensity is
independent of the angle 4. However, when
Hll [110] (v = 2) every allowed transition is active
in both polarizations e, and e; so the last term in
Eq. (110) is, in general, nonvanishing causing an
anisotroyy when the electric field is rotated in the
(110)plane. (A marked difference is observed in
the relative intensity of absorption peaks between
spectra obtained (Hll[LLO]) with Ill[110] (8=0) and
8~~[GOT] (5= —,'v) although the peak positions remain
the same. See Paper IV. )

E. Solution of the effective-mass equation

Since there are at most only four independent
wave functions corresponding to each value of N,
the axial Hamiltonian can be solved exactly by di-
agonalizing it w'ithin this four-dimensional syace.
The nonaxial part, on the other hand, breaks the
N selection rule and introduces a coupling mhich
extends into a space of infinite dimensions. The
general way of tackling this problem is to expand
the wave function in harmonic oscillators

a„(M~)u„„~
~
M~)

n~=0 &g=-3/2

and solve the secular equation in a„,(Mz) generated
by the effective-mass equation, ~„,,& =&/„, ,~. '8

The secular matrix splits into v submatrices, each
submatrix corresponding to a definite value of the
quantum number E. At g = 0, each submatrix fur-
tIlex' splits 1nto two aeeox'ding to g= + 1 ~ In general
no further decoupling occurs, and me stiQ have to
diagonalize an infinite matrix. In a numerical
calculation, the matrix is truncated at a size
which can be handled from a practical standpoint
and yet is large enough to give the desired states
accurately. More details of actual calculations
will be given in the experimental papers (Papers
II-IV).

Luttinger discovered two analytically soluble
cases, the spherical case (@3=A, q =0) and the
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e = e„[l+3(p' —l)(7„'r', + T„'r,'+ ra~'„)]'I' (112)

expressed in terms of P, the splitting anisotropy
parameter defined by

I DI
P=

Dg(Sgg —8gp)
(113)

To see the nature of the strain splitting, we calcu-
late the commutator between the strain Hamilto-
nian and the component of the angular momentum

along the stress J ~ 7'=7„J„+v„J„+~,J, and obtain

trigonal case, Hll[lll] (k„=0), for which the infi-
nite secular matrix breaks up into finite tractable
blocks. For the 1atter case the reasons underlying
the decoupling have heretofore been quite obscure.
A discussion in Appendix A explores the symme-
tries of these cases and sheds considerable light
on the origins of the decoupling phenomena.

F. Axes of lower symmetry

Directions of HIIT other than [001], [ill], and

[110] (and their equivalents) correspond to v = 1

in the scheme discussed in this section. Among
the quantum numbers listed in Eq. (97), & is al-
ways zero and the corresponding K selection rules
(108) become completely nonrestrictive and trivial.
We then only have the rigorous selection rules
(103) and (104), and approximate selection rules
derived fxom Do, D~, and Do'. The secular equa-
tion for the Landau eigenstates enjoys generally
no splitting, except the one for O'0 = 0.

V. HIGH-STRESS LIMIT

When the external stress is so large that the
strain energy greatly exceeds the magnetic energy,
it is more heuristic to diagonalize the strain and

magnetic energies stepwise rather than to directly
diagonalize their combination. A uniaxial stress
splits the fourfold Bloch states with J = —,

' (I'8) into
a pair of doublets, a twofoM degeneracy still re-
maining due to Kramers' theorem. If this split-
ting were infinite, magnetic leve1.s would be formed
within each pair of the strain-split Bloch bands.
The Landau level structure within such a doublet
is much simpler than that in the original quartet
and enables us to understand the resonance spec-
trum at high stresses. We discuss in this section
the behavior of the spectra in the high-stress re-
gime, starting from the limit mentioned above.
Mathematically the procedure consists in expand-

ing the Hamiltonian in the inverse powers of strain
splitting and projecting it onto one of the strain-
split subspaces.

Let us start with the strain Hamiltonian (30)
(omitting the dilatational part), which for a uniaxial
stress in the direction (r„,w„, r, ) can be written as
the sum of (V2) and (V3). This can be easily diago-
nalized to give the strain energies + &, where

=y&, Mg =+ 2
3 (115)

for Tll[001] and Tlt[111], where e generically de-
notes &„and c„', respectively. For P=1, K, com-
mutes with S ~ v in any direction, and the splitting
given by Eq. (112) does not depend on the direction
in which stress is applied. This remarkable case
is referred to as "isotropic quantization. "39 With

P & 1 it is not generally possible to specify strain-
split states by the quantum number M&. But, if
the strain anisotropy is small, i.e. , P is close to
unity, then for any direction of T the fourfold band
edge splits into two Kramers doublets whose
wave functions are predominantly composed of
pure states, either +-,' or+-„of 3' r (In Ge P.

has been determined4 to be P=+0.7 or not too far
from unity. ) It is therefore reasonable that we
continue to label the strain-split states according
to Mz and consider Eq. (115) to hold for an arbi-
trary direction of uniaxial stress.

We now project the Hamiltonian {2'7) further onto
each of the subspaces, M&=+-,' and M&=+ &, using
the projection operators P, and Q&. The leading
terms in the projections are

~A(2 = 3A+ e + P)P3CqPPq+P)P3Cj, Pq((I/2e)q(P3C

+ P,P(3CI, +3C,)q(l/A) q(3C, +3C,)PPi +
(116)

3CL~la -- 3A —c + q~PK~Pq~ —q~P3C~PP~(I/2e)P~P3CqPq~

+q,P(3C, +3C,)q(l/AJq(3C, +3C,)Pq, ~

'(117}

The projected Hamiltonians (116) and (117) are no

longer invaxiant under the cubic group 0„; instead
they are invariant undex an appropriate subgroup of
O„representing the symmetry of the stressed sys-
tem, which is D4~, DM, or D» corresponding, re-
spectively, to T ~~ [001], [ill], or [110].

The px ojected Hamiltonian (117) is next evaluated
for each of these three principal cases. We re-
strict our attention to the Mq =+ 2 bands as only
these bands in Ge are thermally populated («0)
and amenable to resonance studies at liquid-He

from Eqs. (73) and (113),

[3C„3 7]=2f~„(I3-1)[(~', ~-a)~,I~„Z„)+c p .]..
(114)

From this we see that for P & 1 the commutator
vanishes only when T lies along two special direc-
tions: (i) Ttl[111] (or its equivalents), i.e. r„=r2,
= r„and (ii) T II[001] (or its equivalents), i.e. ,
~„=~,=0. For these cases we say that the strain
splitting is uniaxial, " i.e. , the strain-split states
can be chosen to have a definite eigenvalue M& of
the projected angular momentum 3' ~ 7'. We thus
can write (assuming P&0)

PK~P= —& Mg ——+ ~,
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01 (118)

(0 -i
@~~s@i=~

()
=&I ~

1

The matrices o„vz, o~ (the Pauli matrices). and
the 2& 2 unit matrix are linearly independent and
serve as a basis on which to express any 2X 2
matrix. In D@„J,and J~ belong to I', as do 0, and

Op J3 and o, belong to I'~, and 1 belongs to I', .
By using the compatibility relation, we can estab-
lish the correspondence of all the independent J
matrices to 0 matrices. This is given in the final
column of Table I. The projection of the fourth
term on the right-hand side of Eq. (117) is readily
obtained through the algebraic relation

temperatures with large, compressional (T & 0)
stresses4~ (the most typical experimental situa-
tion). The development for the Mz = + —,

' case, in
principle, would proceed along identical lines.
Our coordinate system (x,xmx, ) with x, along T is
the same one used in Sec. IV. We first dispatch
several preliminary details.

The projection process is simplified if we choose
the phase of the wave functions judiciously so that
for Tll[001] the projection of S is

@i~s@i=
()

~ I
= 2os ~o-2

TABLE V. Strain splitting energies, effective masses,
and g factors of the (J, Mz)=(2, + 2) band for the three
principal directions of stress. For T II [110), the axes
1 and 2 are chosen along [110] and [001), respectively.
The anisotropy parameters P, p&, and p2 are defined by
Eqs. (113) and (121) in the text.

[001j

m/mi Yi Y2

m/m2

m/m3 yi +2y2

41f + 10q

g2

g3

4K+10q

2~+ $q

g I —Pg

Yi l'3

71 V3

71 Y3

4' +7q

4v+7q
132K+-q
2

[110j

(1 ~ 3P2) 1/2

Yi+ lA'2 3 l273

Yi 2 lA2

'Yi + yjA'2+ 3RA'3

(2+ jli+3jl2)K+/(7+17pi —9&2)q

(2+ yji+ 3fl2)K+ y(13+ 14gj)q

(-2+ 2gi + 6 jl2) K +$(-7+ 13yji + 21yl2)q

Q~ J2Q) = 4(2 + 'I)) + 3'g2)o2,

where

'gg = (1+3P ) ' = cos'g,

g~ = P(1+ 3P ) ' ~ ~ =- (1/v 3)sing . (121)

Summarizing the results, for each of the three
principal directions of stress, we can write the
first order projection on the Mz ——a —,

' subspace [the
third term in Eq. (117)] in the form

(Q1XPl) (PlXQ1) Q1X Ql (QlXQ1) (119)

j.
Q~ J~@)—-g (- 1 + 'pi + 3'qa)os

Qg~gQg = ~(2+ &i+ 3'%)» (120)

where X is any J matrix. Consideration of the fifth
term requires a full 6X 6 matrix and will be dis-
cussed in Sec. VI. The projection for 7 II[111]is
obtained in a similar way. The case with Ttl[110]
is somewhat more complicated because it involves
the unitary transformation that diagonalized the
strain Hamiltonian. In this case J is projected as

ek
(+1 1ol++2H2o2+g3H3o3)4mc

(122)

This clearly describes an ellipsoidal energy sur-
face with an anisotropic g tensor. The effective
masses m„m2, m, and the g factors g1, g~, g„
depend on the direction of stress and are given in
Table V.

The second-order projections on Mz ——a ~ [the
fourth term in Eq. (117)] are

& II [001]:

.'»(+ k:)'—+r',({k-pa}'+{kmk.}'+{kk P) p g I r'(kiHio—i+k:H.o. -kP4o. )
u m Sc]

+r,r, (k'H, o, + k', H2oa) + (r, r, —x)r, (H&—o&+Hoes) {kA}—(r2+ r3)ys({kfk3}o&+{k2k}on)

2 2

y~+y, ( +kk~)H~&, + (y, -x)y~({k,k,}H, +{kmk,}HI)o, —zxyg(kg -k2)(Hg&g -H2om) + —
)

—(~i+ Hm)
2 e) a 2

Sc& 4
(123)

T'll [111]:
4

(+2 ~ 2y ){k„@+2(2y~2+ ys~) {{k,kg {k~k }}—2(y~ -ye)[{k„{k,k3}}+{k,{k ks}}]

+ — 2y +y k~ +k H, -k,H, k, o +2 y +2y k,k H, p +2 y -y, k~.+k~ o,)fc )
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(124)

—6ysys[((k a, + k,a )ks]Hs (-k k,)(H a, + H, a )] —}(;(2ys+ys)((HP + H k, )k s)a s
—K(ys+ 2ys)(k H, a, + /PH a )

(II 23
+k(yk —y )(k Il +k kk )k + kk(yk —y )}(k B k +k tl k )k } + ~ I k

k RHjl I,Sc) 4

+ —(A(ns+n)+H(2n+ 1)gs
2x

+C+[D(2n+I)+El ]),
where x= e/(ffeH/mc), and

, Ps. ,
. . .)

P's P's P's
y

mH mg m2 m3

g= (gsP&+gsPs+gsPs)

(125)

(126)

The meaning of the pair of high-stress quantum
numbers (n, a) will become apparent in the suceed-

where the + components of a vector A are every-
where defined by A, = 2 ~~s(A, + sAs) F. or T II [110]
the expression for the second-order projection is
rather lengthy and is not included here. In the
above forms (123) and (124), the contributions from
the q term in the magnetic Hamiltonian (29) have
been neglected. We note that the second-order
projections are of order k'/e, thus representing
the lowest-order energy coax'ections to the strain-
independent levels of the (T= ~) Hamiltonian (122)
which appear as we depart from the limit T- ~.

If an external magnetic field is now applied hav-
ing di."ection cosines (P„Ps, P, ) with respect to the
principal axes of the ellipsoid, we can diagonalize
the first-order projection (122) by using appropri-
ate creation and annihilation operators, a and a,
similar to those defined in Eq. (66) and satisfying
the commutation relation (67). (We now have to
quantize along H which in general lies in a differ-
ent direction from "3", the stress axis. ) The
longitudinal momentum k„ is again a constant of
motion and represented by its dimensionless form
(54). The energy corrections —proportional to Hs

(corresponding to ks) and inversely proportional to
the strain splitting —which come from the second-
order projection, are evaluated by taking the ex-
pectation value of the latter with respect to the
first-order eigenstates of (122). It is usually con-
venient first to rewrite the second-order projec-
tion in terms of a~, a, and f. When expressed in
this way, contributions to the expectation value can
arise only from the diagonal terms like at a +a a
and (a a+aa )gs. Thus the total energy up to sec-
ond order and measured in units of —heH/mc is

43
given in the form

e(n, ~, l') =x+ (—(n+-', )+-', ( ls~-,'g

ing discussion. The coefficients A, B, etc. , in
Eq. (125) are complicated functions of the band
parameters y„y2, y3, and x whose form generally
depends strongly on the direction of H with respect
to T. We discuss below the two cases of greatest
experimental interest, namely, those for which
the magnetic field lies either parallel or perpen-
dicular to the stress. In the high-stress case, the
dependence on the longitudinal momentum k„does
not play as important a role as it does in the ab-
sence of stress, since the k„dependence under
high stress is determined mainly by the ellipsoidal
projection. It is usually possible, therefore, to
assume that k„=0.

A. Hll T

In the geometry Hll T the transitions induced by
microwave fields in the strain-split valence bands
may be classified into four major categories. In
the first are the "conventional" cyclotron reso-
nances analogous to those found in simple bands,
while the remaining three categories represent
additional kinds of resonances originating from
various terms in the second-order projection.
Each category is distinguished by characteristic
selection rules which operate for the Landau and
Bloch quantum numbers (n, Mz = a —,'), respectively.
(For the case Tll [110]and Pe 1, M~ =a s is to be
understood in the sense mentioned earlier. )

Expressions for the coefficients A, B, C, D, and
E appearing in Eq. (125) are given in Table VI for
the geometry HllT.

1. Cyclotron resonance: b,n =+ 1, ~ =0

At very large stresses ordinary cyclotron reso-
nances obeying the selection rule &n= 1 occur at
fields corresponding to the classical "tube" mass
of the energy ellipsoid (122). For T It[001] and

T II[111]the first-order projection (122) has axial
symmetry about T(m, = ms, g, =gs) and the only
allowed transitions are in the hole-sense polariza-
tion (e and &n=+I). For TII[110]the lack of axial
symmetry allows the &n =+1 transitions to appear
weakly in the electron sense of polarization as well
(i.e. , e, and An=+1). The second-order energy
contributions to the Landau levels, the last four
terms of Eq. (125), represent quantum shifts
which depend on n and M& =+ —,'. These energy
shifts can be large enough at intermediate stresses
to split the classical resonance line into (n, M~)
components. As T- ~ these second-order effects
(()- I/e) become vanishingly small and the fine
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TABLE VI. Second-order correction coefficients in
the &(n, +, P) [Eq. (125)] at the high-stress limit
for the HI( T configuration. For Tll [001) and [111]the
coefficients are exact to second order. For T)l [110) the
exact coefficients are rather clumsy in form; for sim-
plicity we quote here only their "first-order expansions"
based on the assumptions: (y3 p2)/y2, q, p —1«l. It
should be noted that in the spherical case, @3 =A, one
obtains A=B=C=D= —E=ay& for every direction.

[001]

5( t+Va)
2

373

24'2+ V3)

37273

-373

[111]

'Y2+ 273

2PP+ P3

72+ 273
2 2

72+ 2/3

—(2y2+ y3)

[110]

37273

~2(5&3- V2)

~2(5&3-V2)

-37273

structure collapses into an inhomogeneously
broadened "classical" resonance.

2. Harmonic resonances: Ebs & 1, ~&= 0

Matrix elements of the second-order projections
[e.g. , (123)] connect states not connected by the
first-order projection (122) giving rise in the
spectrum to a series of "harmonic" transitions
dn & 1 (4M+ =0) in addition to the ordinary cyclo-
tron resonances. The exact nature of the &n se-
lection rule depends upon the degree of rotational
symmetry (v) about the H, T axis. Since the ex-
istence of the harmonic transitions requires an
admixture from the strain-split partner M& = + —,

'
(in addition to "warping") the intensity of the har-
monic resonances vanishes at large stress as 1jc .

3. Spin resonance: b,n =0, ~&=+ 1

Also connected by matrix elements of the sec-
ond-order projection are different Bloch states
having the same Landau quantum number. This
transition represents an electric -dipole-induced
spin resonance excited in the polarization 8 IH.
The fact that the effective inverse "spin" mass for
this transition, ega, is a simple combination
of w and q suggests doing spin resonance experi-
ments to determine these constants directly. Un-
fortunately, it would be difficult to resolve the
spin transitions from the much stronger cyclotron
quantum resonances which also appear in this
same geometry, 8 LH. A further drawback is the
fact that the spin transition requires k~ participa-
tion, i.e. , it vanishes at kH =0.

4 Combined resonance: hn =+ 1, ZPI& =+ &

The final possibility is a simultaneous change of
both Bloch and Landau quantum numbers, that is,
a cyclotron resonance with a spin Qip. This reso-
nance is termed a "combined" resonance. Since
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the combined resonance, unlike the spin resonance,
is active in the longitudinal polarization g IIH, it
should enable us to make a direct determination of
the g factor (g, ) and, in turn, the parameters z
and q, which can only be measured with great dif-
ficulty otherwise.

Table VII summarizes the types of transitions
which occur for HIIT and lists expressions for their
effective masses. The transition matrix elements
are also included for the cases T I) [001] and Tl)[111].

B. Hl T

In the configuration Hl&, as for the prior case,
the first-order projection (122) only gives rise to
cyclotron resonances, &n=+1, of the ordinary
kind. However, the second-order projection in-
troduces additional types of resonances (even more
numerous than before because of the lower sym-
metry of the geometry H JT) of a r.ather compli-
cated nature. Most are of litt1.e interest to us, and
we shall not consider them further. Qne second-
order effect of importance is the shift of the ordi-
nary cyclotron-resonance transitions from their
stress-independent (T- ~ limit) positions given by
the first-order projection (122). The energy lev-
els (including second-order corrections) are again
described by Eq. (125) [the label s of the Bloch
states now has a slightly different meaning from
before (see Paper II&], so that the effective mass
for a cyclotron transition (n, a) - (n + I, a) is given by

„+—[2A(n+1)+ 2D] (127)m* mo+ 2x

at g = 0. The constants A and D are given in Table
VIII for important cases.

VI. INTERACTION WITH SPLIT-OFF BAND

In Sec. II we constructed "spin" Hamiltonians
for the full sixfold degenerate band edge 1"~5 which

in turn we projected onto either of the spin-orbit-
split subspaces I"8 (J=-,') and I'f (J=-', ). Thus far
we have not taken into account the higher-order
"couplings" which exist between these projected
spaces nor higher-order interactions with bands
external to both. Such effects (neglected in the
usual effective-mass approximation) can produce
marked line shifts for quantum resonances. Be-
cause the spin-orbit splitting is often considerably
smaller than other energy gaps we here shall as-
sume the dominant higher-order contributions to
come exclusively from the interaction between
spin-orbit partners and ignore the other bands al-
together. We consider, then, in this section the
perturbation of the Landau levels of 1 8, derived in
Secs. IV and V, by the spin-orbit-split-off band
I'7 .

The lowest-order perturbations from 1 z are
given by the third term in the projection (27),
which contains three types of products K„(XPC,],
and X„. The explicit forms for these products can
be obtained straightforwardly by multiplying the
two off-diagonal rectangular matrices connecting
the subspaces J= —,

' and J= —,
' (consult column 6 of

Table I). An alternative and more general deriva-
tion which follows the spirit of Sec. IIA, is to con-
struct higher-order cubic invariants from k„, a,„,
and J„g=—,') and determine the coefficient of indi-
vidual terms by comparing their matrix elements
with corresponding ones obtained by direct multi-
plication of the rectangular matrices. The result-
ing three Hamiltonians Keey key and X» represent-
ing, respectively, the three types of products
above, are thus expressed like the first-order
projections in Sec. II as invariant linear combina-
tions of the 16 independent J matrices listed in
column 4 of Table I. From the product fKPC,}we
obtain

Kk, = —[(PK,Q) (QK2P) + (PKDQ)(QK, P)]
1

1 8= ————4D' I', (e,„(k„k„)+c.p. ) —2D I' (e„JP„+c.p. —-', e k )
'2

—4D' r,E„,(k,k,] ——D„I' (e„„k„+e k, + e„k,) p, ——', J )+c.p.

+ 4D' D, ik„,(kk )+ 4„)krk ))+2D P, lk +4„„—24„))kk )+—,D I'kl, „)k,+k'„—2'„2', ) )J,J ) c.
PI

K yD„' (t„„HD+c.p. )(J,JD J'2+ jg J„J,)+ ~DD„(c„p+epp —2e~)H„++~D'„(c„„H„+op,HD) J„+c.p. .

Amc

2D~(ep, + epp —2e„„)H„++) D' (C„DHp + eD, HD) J,+ C. p.

where

=-'(D -Ep), D' = (D -E ), I'p=$(A —B ), I' =x.(A —B ), K= —-(A —2B +-'B'+-'B"), (129)



4206 K. SUZUKI AND J. C. HENSE L

VK ={(j~ —JE)J }~ (130)

(131)

1
X))~ = —(PX))Q )(QX))P)

1 —3I'~({k„k,}2+c.p. ) ——,'I' (k, +c.p. ——,'k )3 x

— 31'is {k,k,}- I'2 (k4 + 2{k~„k,}) (J'„——,J ) + c.p.
)

+ 2 31'~{{kg,}{k,k„}}+I'zl', {k,~km —2k„{k„k„}}{J„J,}+c.p.

1 eS S~—K 21 k„k„H, +c.p. J„J„J,+J,J J„A mc m

+, &I' (k~+k2 —2k~)H„+/I', ({k,k,}H„+{k,k„}H,) J„+c.p.

—Fa(k~+km —2k, )H, + 2I' ({k„k„}H„+{k,k,}H,) Z„'+ c.p.

+ r, (a( )',)e.+ar, )(),a,)sr„-(a.),)e) v, +c.p. I-

The product g can be obtained from the expression for X„, Eq. (128), by dividing the latter by 2 and re-
placing the k terms, ()I /m)I'2k„, ()I /m)I'3{k, k„}, and H„with the strain terms ',D e—„, -,'D' e,„, and 0,
respectively (plus cyclic permutations). The result is

X„=—(PX,Q)(QX,P)
1

Finally the product X, can also be obtained essentially by inspection from X)„by dividing the first haU by
2, and making the inverse' substitution of —,'(ff /m)l 2k„and ~(k /m)I', {k,k,}for D e„, and D' e,„, respec-
tively (plus adding a term which comes from the product H times H). The result is

1 ek') 2

i
ffeQH'--.'(i H)'] .

A (mcj (132)

(133)

(134)

It should be noted that the combinations of the spin-
independent coefficients (A2, A„Dz, Ds) and spin-
dependent coefficients (B2, B~, B4, B4, B4', Em, E,) in
the first-order projections (29) and (30) are dif-
ferent from those appearing in the second-order
projections (128), (131), and (132). [Compare Eqs.
(31) and (32) with Eqs. (129).] In the absence of
spin-orbit coupling, B4= 4g, =

& and all other B's
and E's are zero, so we may write

I'q='Yq, I' ='Y, K=&+1,

Each of the three types of interactions" X~, X&„
and X«has a characteristic effect on the quantum-
resonance spectrum which we shall discuss below
in application to the three special cases where the
stress lies along the principal crystallographic
axes [001], [111), and [110].

1. Z«. Second-order strain splitting

Using the strain tensors given in Table III we
obtain the second-order strain Hamiltonians [ex-
pressed in the coordinate systems defined in Ta-
ble III]:

As we pointed out earlier, the spin-dependent con-
tribution to the effective-mass parameters are
really quite small (i.e. , of the order of q), so the
approximation (133) is a rather good one. The
spin-dependent contribution to the deformation po-
tentials, however, is not generally negligible and
we shall not make use of the assumption (134).

T II [001]:

a3C« f (J3 3 J 1)

T II [111]:

(135)

(136)
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Tll [110]:

where

+-,'(3&'„+a )(e„—c„)(Jz—Jzz)

- -,'(3~" + c')],

R„=——[-,'(3~ +6&„e —'z)(J', —-', g')

(137)

this projection). Using the operators in the last
column of Table I, we obtain from (128) the pro-
jection for T (~[001]:

2

Q)X~,Q~ = —— 41"z(k, + k, —2')2 2 2
A 2m

eh
+

A
4K(H„o, +H„o„+2K,c,) .

A 4mc
2

c~ = g(spy —sgp)D~T,

to & 44 gg

(138)

The splitting parts (the J terms) of K« in Eqs.
(135)-(137)exhibit the same symmetries as the
first-order strain terms [see Eqs. (76), (78), (80),
and (81)], so their effect is merely to introduce a
small nonlinearity in the strain splitting energies.
The non- J" terms in K„ impart to all states in
J= —', a uniform second-order energy shift of no
consequence to our present work.

2. Kk, . Strain-dependent line shift

The term K&, contributes an energy shift to the
Landau levels proportional to both magnetic field
and strain, thus having the effect of changing the' apparent" band parameters and shifting the reso-
nance effective mass by the order of e/A. This
effect has been considered in detail by Hasegawa
for classical cyclotron resonance where the shifts
are uniform for all Landau levels. In the quantum
case, however, where the effective masses differ
for each cyclotron-resonance transition (at finite
stress), the correction to each transition depends
in a rather complicated fashion on the nature of
the specific Landau levels involved. In the high-
stress limit, however, the calculation simpli:ies
as we can further project (128) onto the strain-
split subspace M& = + —,

'
by the procedure described

in Sec. V (only the first-order term is retained in

1 l 1 8&„
m & m

~g'= ~gz= —(4e„/A)(K+1\,

~g'= —(8c /A)(z+1);

Tll [111]:

(140)

(141)

(142)

(The projection of K&, onto the subspace M' = + —',
vanishes. ) For T II [111]a form identical to (139)
obtains for the I& = ~2 projection with the obvious
replacements: (x, y, z) (1,2, 3) (see Table III) for
the coordinate axes, g - q and I'2- 1 3. For
Tll [110]the result is somewhat more complicated.
From the foregoing we can determine the modifica-
tions to be made to the first-order projection in
Eq. (122). We find that for the three principal
directions of stress, the sum of the first-order
projection (122) and the second-order projection
(139) can again be written in the same form as
(122), with (1/m) and g shifted from the expres-
sions in Table V by

Tll [001]:

TABLE VIII. Second-order correction coefficients in the inverse effective mass m/m* [Eq. (127)] for cyclotron res-
onances within the M& =+y band for the H ~ T configuration. The lowest-order effective masses m~, m2, m3 are defined
in Table V. The parameter g appearing in the coefficients A and D is defined in the second row of this table. For
&II [110]we have made the same approximations as made in Table VI.

T II[001]

(m /m )

~Vs+ & 722 9 4 2

T II [111]

(m. .)'"
(m/m )

$(2 2+ 2)

3~4(~2+ 2~2)

HII [110]

(,m, )'/2

(m, /m, )' ~4

~~2+-~ V2
32 9 4 2

+Th3-V2)V227

—-'(p —&)F2(& —So')

TII [110]
Hll [00T]

(mm)'

3 2+9~4 2

—-(y3 —&2)y2(1 —3C )
3 4
8

+ -0 1)72 (1

D 2a v2(vp+ $K) ~2 (72Ãp+ 6K Y2+ sKv3)-' $n y2(y2+ $K)

+-(y3 —y2) (4y y2 —2e y2+ a K)

+ -,'(P -1h, ( 'y, + 2 "y, — -'
)

2& Y2(~2+)K)

+
8 ~3 $2)(2Q /2+at K+2Q f2 —G K)

—8(P -1)y2(0' F2+2& K+20' "Y2 —& K)
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&g& = &g2 = —(4m~/A)(r{'+1),

&g, = —(3&' /A)({{+1);

Tll [110]:

(143)
rule Q ~(m/m;) = 3y~ is still obeyed for each di-
rection of stress. The corrected effective masses
given above are identical with the classical result
of Hasegawa if we assume a„=c„and &

= —
A [3r (rt +r) P'+P')

1

rp-(3r)2P' r)—g+ 1)],
= ——2y2(3r)2P' —rh+ 1),1 1&„ (144)

nz mA

(1 1~
A

~

—= ——[—3r, (n, +n, P'+ P')
~m3 m A

+r, (3r)~' -n, +1)];
Agi = —(e„/A)(r{ + l)[(1 —g&)(3P

' —1) + 3rir(P'+ 1)],

&g2 ———(e /AI)({{+1)[2+re(3P'+1)+ 3'qq(P' —1)],
Ags= —(e„/A)({{+1)(3P'+ 1)(1+ re+ ,' r)3) . —

(145)
In the above equations p~ and g2 are defined by Eq.
(121), and P' is the spin-dependent strain-splitting
anisotropy parameter, P =e /e; also for con-
venience the approximation (133) has been assumed
for the band parameters. The effective-mass sum

l

3. Kk k. Magnetic- field-dependent shift

The term X» is of order k4 and hence similar
in nature to the corrections (123) and (124) dis-
cussed in Sec. V. It introduces an energy shift
of order (I~V/A, where &o is the angular frequency
of the resonant radiation field, and hence contrib-
utes an effective-mass correction of order h&o/A.

Since h{d/A is very small at microwave frequen-
cies, this shift is usually negligible compard to
the one in Sec. V except for those few resonance
lines which admit to extremely precise measure-
ment. For experiments in the far infrared, on
the other hand, this correction may assume con-
siderable importance. For completeness we de-
velop below those perturbations which arise from
Ok ~

In the high-stress limit we can again project
(132) onto the subspace Mz = a & and obtain for
Tll [100]:

2

QR Q = ————I' {—', tk, ~ l„) +y{(k,~ h„)k,{+2k,{—{{|1'{—I'{){tk{ k„)k~')

1 eh h2—A —'I (k„+k —2k, )(Ho, +H o —2H{r,) —31' [(k,o, +k o„,H k,]- '(H k, +H k„—k,{r]Il

1 eh
yP p2 (~2 ~2) &~~2 (146)

C'= —[4y + ~(K+1) ], D'= -y(K+1),
E'= 2y(K+1), +' = —2p .

(148)

These results based on the spherical limit are
applicable for all directions of stress.

We may summarize the results of this section

The correction to the high-stress states (n, +, g),
obtained by taking the expectation value of (146) in
exactly the same manner as in Sec. V, is in form
essentially identical to Eq. (125),

h ——[4'(n +n)+&'(2n+1)g
mc A

+C'+E't'4+ ( (Dn2+1) E+'t' )]
(147)

(in units of -SeH/mc). As this energy perturba. -
tion is so small, it suffices if we use the spherical
approximation for both the band parameters,
yr, =y, =y, [assuming, in addition, the relations
(133)] and the deformation potentials, e„= t'„ to
estimate it. The coefficients in Eq. (14'7) for
H]] T now simplify and become

2 gyl S ~2

I

by reiterating that the relative energies, pertinent
to resonance experiments, of the Landau levels
within the M& = + —,

' subband including the interac-
tions neith the spin orbit-split off b-and can stil-l
be expressed by the form (125) with renormalized
effective masses and g factors [Table V plus Eqs.
(140)-(145)]and with an additional k4 correction
(147). We further note that the above-mentioned
k correction for the various transitions in the
geometry HABIT is expressible in exactly the same
form as the last term in Eq. (125) with a simple
modification which consists of replacing 2x by
A/[h(eH/mc)] and substituting the coefficients
given in Eq. (148).

VII. CONCLUDING REMARKS

Our discussion began with the construction of
the most general effective-mass Hamiltonian to
order k and first order in strain f within the 6X 6
manifold of the I'2~ band, that is, the combined
space spanning both spin-orbit-split bands, I'7 and
I'8. This k2-a Hamiltonian has served as the ba-
sis for nearly all subsequent theoretical develop-
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ment; in particular, we have considered its pro-
jection onto each of the subspaces I'7 and I'8 and,
in turn, onto the strain-split subspaces of the lat-
ter. Before we close it is of interest to examine
the "lowest-order" approximation more closely
and consider briefly the ways in which we can
generalize the Hamiltonian to higher orders both
ink, i.e. , k4, k6, etc. , and in c, i.e. , a, ak,
etc. Some terms of higher order for the I'8 band
have already been considered, namely, the per-
turbation in I'8 which arises from the interaction
between I'8 and I', (i. e. a "two-band" approxima-
tion).

First, let us consider higher-order effects in k.
Generally speaking, it is clear that the expectation
val, ues of the successively higher-order k terms in
the Hamiltonian will diminish in magnitude by a
characteristic expansion parameter ku&/E„where
E» is an appropriate energy gap between I'8 and
other relevant perturbing bands. For microwave
resonance experiments, for which hw «S», the
truncation of the expansion to k~ turns out to be an
excellent approximation; however, with the move-
ment of experimental effort into the far-infrared
region this assumption may no longer be satisfactory.

Qne way to extend the theory to orders of k
higher than k would be to include nearby ba.nds
into the space spanned by the k ' p interaction ma-
trix and solve the resulting Hamiltonian in this

augmented space. + An alternative way, more in
keeping with the approach developed in Sec. IIA,
would be to construct and solve a higher-order
Hamiltonian within a single band. This procedure
was first carried out for the case of a simple band
by Kjeldaas and Kohn4~ who made, following the
initial Luttinger-Kohn first-order canonical trans-
formation, ~ additional transformations to remove
interband momentum matrix elements to succes-
sively higher orders. An application of the Kjel-
daas-Kohn technique was made to the conduction
band of InSb by Wallis. 4S It is interesting to note
that this band, in contrast to the I'8 valence band
of Ge, is spherical to order k and warping first
appears at order k4. (We should also mention that
by neglecting the small warping part Wallis was
able to obtain exact solutions to the k4 Hamiltonian;
in other words, the isotropic k4 part could be di-
agonalized simultaneously with the k2 part. )

Qn purely group-theoretical grounds we can con-
struct the most general k Hamiltonian for the I'8
band, expressible as a cubic invariant containing
the J (J= —,') operators and second and fourth pow-
ers of k. To illustrate its form we drop aniso-
tropic terms and obta, in the following spherical
Hamiltonian for I s (up to k ) which contains seven
independent constants in addition to the usual three
coefficients y„y(=y~=y, ), and x which appear in
the k Hamiltonian:

2

K, = ——( r2, +$y)k~-y(k ~ S)2+ —(K+-,'y)(H S)'~ —,~ 6,k4+6z(k, (k S) }
2

[il ks(H ~ Ji ~ i(q[(k ~ Hi(k ~ J(]+i(q[(k ~ Jl~(H. Jl]]+(
—

) [i(gH + Q(H JP], . (149)

[We should point out that the sum of E[I. (70) and

K» in Ref. 44 is a special case of the above Ham-
iltonian. ] The numerical coefficients 6„.. . , 6~

are to be determined by the procedures of Kjeldaas
and Kohn. In cubic symmetry each of the k4 terms
in E[I. (149) splits, as seen, for example, in the
cubic Hamiltonian (132).~

Like the Wallis case for InSb mentioned earlier,
the spherical Hamiltonian (149) is exactly soluble
for an arbitrary direction of magnetic field as well
as finite k„(the discussion of Appendix A 1 applies
literally here) by using a Luttinger-type wave
function of the form

3 13' 1 I I X

4N k N-3~2) N 3,h ( 2~ +~N p~2) N-p, h~ [ 2 ~

+oN 1( 2)+N '[
~ ]'( I 2) ++N( 2)+N, ]( I

-2&
(150)

In contrast, however, to the eigensolutions for the
k case, the coefficients a„ in (150) are functions
of the magnetic field; this field dependence can be
a source of cyclotron-resonance line shifts, i.e. ,

the apparent effective masses will depend upon the
radiation frequency ~ at which experiments are
done. If the nonspherical parts are restored to
the Hamiltonian (149), it no longer admits to solu-
tion in a finite space, and the wave function can
only be represented as a series expansion similar
to E(I. (111).

Next, we turn to the question of the higher-order
strain terms in the Hamiltonian. We have consid-
ered the effect of deformation on the basis of the
effective Hamiltonian (8), in which the deformation
potential constants have been evaluated by the in-
traband matrix elements (23) and (24). The next
lowest-order contributions beyond this approxima-
tion are the interband interaction between Z], [Eq.
(10)] and X, [E(I. (11)]and that between R, and R,.
The latter is not important for the intraband tran-
sitions we are considering. The former effect in
the I'8 band has already been partially taken into
account (in Sec. VI), and we shall here remark on
the remaining contribution of this type, namely,
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the strainMependent effective-mass shift caused
by bands external to F'-.

)01 terms of order k„k&c„„weseek are included
in Eq. (C8) which has the form of a spin Hamil-
tonian with undetermined coefficients. We can
easily evaluate these coefficients if we adopt a
two-band approximation which includes the valence

I

band edge 1"a and the conduction band I'~(= I'a&&I'a),

the split-off band r~ having already been taken into
account earlier in Eq. (128). (Contributions from
more remote bands should be much smaller and
for the purposes of this discussion can be com-
pletely ignored. ) The resulting spin Hamiltonian

Z&, representing the contribution from I'~ has the form

——ja(Da Da)y~c-k -Dya(e k+c.p. —aa-k)-2Dya(e „(kP„}+c.p. )
ga I (,

C

—(Da-D~)yae„~k, (J„-,'J )+—-,'D„y~e k (J —-'J )+c.p.

-2(Da -Dif) yaa-(kxkvHJx Jy]+3DsylaxWJx J„)+c.p.

+ —(Da —Da}c-H~J. —+Dg(24- —a„„—a.g)H~ Jg+ aDg(2a- —a„„-a.g)H~ Jg
Sc

(151)

+/DE(s-H~+e gag) Jq —fDM(e*+q+eiqHg) Jz+aDM(a" agg)HiVi+ gDg(ag+q f-Hg)V*+c p.

+$D„'(e,Q, +c.p. )(J,J~Ji)

where

E,= E(r;) -E(r'),
(152)

mass sum rule is now violated and

O =(Da -Da)(su+~ia}' (154)

and s„and s„are defined by Eqs. (74}and (138),
respectively. From the result (153) we can see
that the change in the effective band gap between
the interacting I'z band and the strain-split. M~ = + 2

subband shifts the "apparent" band parameters yz,

ya, y„and a linearly with stress. The effective-

is the conduction-band deformation potential. V,
and(J, J„J,] are defined in Eq. (130) and Table II,
respectively.

With the aid of Table I we can now project the
HamQtonian (151), assuming a stress T~t [001], on-
to the manifold of the strain-split states M~ =+ &.

When we add this projection to the projections (122)
and (139) [including the approximation (133)]ob-
tained earlier, we find the sum can be written in
the form of Eq. (122) with modified effective-mass
and g-tensor components given by [cf. with Eqs.
(140), (141), and Table V)

m m cg - 4„'t 44—= —=(y, -ya)jl+ "j+ "y»
E, )

m cg —eg) 8c-
P1$

=(ya+2ya) jl+
I yaE~) A

4 ) 44 (153)
ga=ga=4sjl+ E "j —~" (~+I),E

g 2ajls+~ "j —
A

(~+I),E ) A

where

=3y&+ E j dP'-~.

(span

y~(de
Ec &dP

also changes linearly with stress. [Here P is the
hydrostatic pressure and ,'dE, /dP=(Da —-Da)

x(s~~+2s~)]. For Ge we obtain

y &dE, l -s a'-~„(s~,-s,a) j =5.4X10 cm/kg —,

which should be compared with the experimental
result (see Paper II, Sec. IV)

(155)

-Zaq= —(2 ~ 4+5 ~ 0)&10' cma/kg.
i

The corresponding quantities for [111]are

y (dE,
) dP 44)D~~j =8-. 8x10 cm/kg

versus
-Zaq=(4. 0+5.0)X10' cm/kg.

i

The sums of e's are consistently less than the
calculated values, but in view of the large uncer-
tainties in the experimental numbers one cannot
attach much significance to this fact.

It is interesting to compare the relative magni-
tudes of the strain-linear effective-mass shift con-
tributed by the 1 ~ conduction band to that from the
I'~ split-off band. For the transverse" effective
mass, m, =ma, we obtain from Eq. (153) the ratio

&m, (~,) (y, -ya)(aa —e.) ~~,(r,'& 4y,~ S
(based on the values'a D„=2.3 eV and ya--4. 24 for
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Ge, in addition to the parameters given above22).

We note that the two effects contribute construc-
tively, and that the X'z contribution is more than an
order of magnitude smaller than that from I'~. This
justifies our neglecting interband effects in toto.
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APPENDIX A: SYMMETRIES AND QUANTUM NUMBERS IN

SOLUBLE CASES

Luttinger3 has discussed several cases in which
the secular matrix decouples to the extent that
essentially exact solutions can be achieved in a
finite space. It is interesting to consider these
cases briefly in the context of our present analysis.

The "sphericaP' ease: y3 =
y2 (q = 0)

The magnetic Hamiltonian (29}assumes spheri-
cal symmetry [see Eq. ('?1)] when we set y2 = y2

(and q =0) whether or not k„=0. For F 40 the
symmetry is in essence equivalent to that of the
full axial Hamiltonian D'. The secular matrix
decouples into 4X4 blocks each assigned with an
axial quantum number N. Cyclotron-resonance
transitions (S~H} obey the selection rules of
type M~, i.e. , &M=+1.

Next, if we set AH=0, parity now becomes a
good quantum number, and each 4&4 matrix fur-
ther splits into two 2&2 matrices. Cyclotron res-
onance can only occur under the most restrictive
selection rules of type Mo. AN=+1, &g=yes.

2. The trigonal ease; Hll f111) (kH =0)

Luttinger has pointed out that a remarkable
simplification occurs for the case Hll [ill] when

kH = 0. It is then found that the infinite secular
matrix fa,etors into 4X 4 blocks which can be read-
ily solved. The reasons for this unique behavior
are considerably less trivial than for the preceding
case; and, in fact, until now the question has been
regarded as somewhat of a mystery. Since the
Hamiltonian for this particular case lacks axial
symmetry, N cannot be a rigorous quantum num-

ber, so the decoupling is not an obvious group-
theoretical consequence of the apparent symme-
tries. The crux of the matter, we find, lies in the
existence of an unusual "hidden" symmetry which
becomes evident when we look further into the
structure of the Hamiltonian.

To reveal the nature of this symmetry, we shall
demonstrate that the Hamiltonian for Hlf [111],writ-
ten here as D2[= D'+ D" in Eils. (V8) and (79) with r
=0], has the special property of being invariant
under a particular kind of unitary transformation.

We shal1 show that this invariance is responsible for
the remarkable decoupling of the infinite secular
matrix into analytically tractable 4 &&4 blocks.

Let us begin by constructing the following two
operators:

A = —2~3+~~3

I = A+ata+ 2,
(Al)

(A2)

and similarly

e iwA{J J }eiy2 e+2iy{J J }
e '" J,'e'" =J,' (invariant) .

Next, we shall need analogous unitary transforms-
ye~ations e'y' ' which can be derived from the commu-

tation relations (67):

e '"' 'ae'"' '=a+ (-iy)[ata, a]
+(-iy)'/(2! )[a'a, [a'a, a]]+~ ~

=a+ (iq )a+ (iy)2/(2! )a+ ~ ~ ~

= e'ya

and similarly,
&-i yata at&fy d &-i yat (A10}

From the foregoing we are now in position to
effect a unitary transformation of the complete
Hamiltonian Do which contains the operators J,al,
J a, {J,J2}a, {JJ2}a, J, and J2. As an ex-
ample, from Eqs. (AV} and (A10) we have

ilPl{J J }at2eiyI e ilPA{J J ]eifPA

g ~~1 y!I 0at jjj~s y 0 0~ g ~

e2ilP{J J}e 2itaf2

={J.J,}a".
With this and with similar relaUons for the re-

whose special significance within the J = —, manifold
for the case Hll [111]and kz =k2=0 will become
clear shortly. Using Eil. (69) we calculate com-
mutation relations of A with products of the angu-
lar momentum operators,

[A,J,']=+ 2J2,
[A,{J,J,}]=+ 2{J,Jg,
[A,J,']=0.

With the help of these commutators we are able
to set up a unitary transformation e' ", where y
is any real angle, of the three types of operators

{J,J,}, and J'„.
e ""J2e'" = J2+(-i!2)[A,J2]

+ (- 0')'/(2')[A, [A, Jl]]+
=J,'+ (w 2iy )J„+(+ 2i!2)'/(2! )J,+ ~ ~ ~

+2& yg2
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maining operators, we finaQy arrive at

-A@I~ &iyL
o& = oy (A12}

proving that Do is invariant under a quasirotation
through the angle cp. This is obviously not a rotation
in real space, and its geometrical interpretation
remains for the present unclear. However, in a
mathematical sense the invariance under the ro-
tation" by p represents a hidden symmetry embed-
ded in the Hamiltonian for 8 lt [ill] (&„=0) which
is responsible for the accidental" decoupling of
the problem. This behavior is peculiar to the
single case, Hll [ill]; it does not occur for any
other direction of magnetic field.

Once the relation (A12) has been established it
follows that the eigenstates of Bo can be classified
according to the eigenvalues of I which are sim-
ply integers, 0, 1, 2, ' ~ (Mq ranges from ——,

'
to +-,', and u a takes on the values 0, 1, 2, ~ ~ ~ }.
From Eqs. (Al) and (A2) we find that the lowest
two eigenvalues L = 0 and 1 each occur only once,
so each is identified with a single (isolated) eigen-
state, a "singlet. " Likewise, I- = 2 and 3 occur
three times apiece and so give rise to "triplets. "
Finally, for I ~ 4 each eigenvalue is fourfold re-
dundant corresponding to a "quartet" of states.
Since at most four independent wave functions can
belong to each value of L, we see that the secular
matrix must decouple into blocks of dimension not
exceeding 4 X4.

From the foregoing it becomes obvious that the
eigenvalues of I exactly correspond to Luttinger's
quantum numbersm~ (shifted by 2). Cyclotron-reso-
nance transitions are defined by the single selec-
tion rule 4L =+1 which is, first, consistent with
4K=+1 and ~m=yes and, second, nearly as re-
strictive as the selection rule 4Ã= + 1 which holds
for a bona fide axial symmetry.

The operator L has been constructed in an a
priori fashion, ' our discussion reveals merely the
identity and some of the properties of this "hidden"
constant of motion. Important questions remain:
what is the physical significance of the rotation
angle y, and why is I conserved? Answers to
these presumably will lead to a deeper understand-
ing of the problem.

The above analysis provides as a by-product a
proof of the well-known statement —the energy
contour for K& [ill] (k~ =0) is a circle —in a way
which shows it to be closely related to the solubil-
ity of the quantum problem. The classical energy
E(K) associated with the wave vector f is obtained
by solving the k p Hamiltonian Q, which, in the
[ill] representation, has the same matrix form as
Eqs. (76) and (79) with a =q =0, x„'=t' =0 and with
a, a~ reconverted to k, k, through the relation (66).
From Eqs. (A6) and (AV) and from the form of the
classical Hamiltonian we readily see

e '"'Z;e'"' =Xg„ (AIS)
f

where 4,'=e"" k, are the components of the trans-
formed vector k' obtained from K by a rotation
through the angle y about the [ill] axis. Since
eigenvalues are invariant under unitary transfor-
mations, Eq. (AIS) shows the energy to be un-
changed by such a rotation; and, hence, the energy
contour is a circle.

%e must point out that an essential requirement
for the above proofs is the fact that the Hamil-
tonian is expanded only to k . If terms of k and
higher are included, it can easily be shown that the
conclusions regarding the Luttinger decoupling and
the cir'cular energy contours are no longer valid.
(Incidentally, this breakdown caused by k terms
confirms the fact that the decoupling is not related
in a conventional way to a rotational symmetry. )

APPENDIX 8: CLASSIFKATION OF FREE-ELECTRON

LANDAU STATES

In Sec. IVB we employed a scheme for identify-
ing magnetic states of holes based on the use of two
sets of canonical ~variables a, a and b, b . It is the
purpose of this appendix to elaborate a bit further
on the background of this formalism.

Since Landau's original solution' of the electron
motion in a uniform static magnetic field, consid-
erable ambiguity has existed on the unique identi-
fication of the enormously degenerate eigenstates. In
what is called the Landau gauge, one of the coor-
dinates, say x„ transverse to the magnetic field,
does not appear in the Hamiltonian and the degen-
eracy is understood as connected with the choice
of k~ or of the center of the cyclotron motion. An
alternative labeling scheme which reflects the
axially symmetric nature of the problem was intro-
duced by Johnson and Lippmann, ' Dingle, "and
Yafet, Keyes, and Adams, ~6 but the classification
of degenerate states was incomplete. %e outline
here a systematic method of identifying magnetic
states which is symmetric in the sign of charge
and admits to simple physical interpretation of the
charged particle motion in terms of two sets of
harmonic oscillators. Our method is based on the
use of two sets of canonical v'ariables first intro-
duced by Kubo, Hasegawa, and Hashitsume" and dis-
cussed recently by Malkin and Man'ko, and Feld-
man and Kahn in connection with coherent states.

Apart from the translational motion along the
magnetic field, the free electron (charge e = —

l el )
in a magnetic field is described by the Hamiltonian

I'2x = (u,'+a,'),
where
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(B2)

In these equations X~ = hc/! e!H is the square of the
cyclotron radius, where H is the magnetic field
directed along +x8. From the definition (B2) it is
easy to see that the operators defined by

s=~(n, -e,),

'==(I, + I,)v'2

satisfy the commutation relation (67) and the Ham-
iltonian transforms to

R = Ko,(a'a+-,'), (B4)

where &u, =!'el'I/mc = g/mX' is the cyclotron fre-
quency.

The original problem involves four canonical
variables (x„P»x» P,), so the two operators a and a
are not sufficient todescribethe system completely.
As for the two remaining operators, we define

5=(I,+fI,) —~ (x, +fx,),
i

5 = ~ (k, -ik, )+ — (x, -ix, )v'2 V2X

(B5)

which obey the commutation relations (85). Equa-
tions (67) and (85) confirm that (a, at) and (5, b~)

can act as the two independent sets of canonical
variables we seek and show that the eigenvalues
n, and n~ of the operators a~d and b b, respectively,
take on integral values 0, 1, 2, . . . . %e there-
fore define the simultaneous eigenstates of a a and
b~5 by !n„ng having properties listed in Eq. (86),
which allow us to generate all normalized eigen-
states from the ground state ! 0, 0),

in„ng = (n. !n, !)-'"{st)"(5')"~i O, O) . (BS)

The component of angular momentum along the
magnetic field I3=x+& —xzP| is a good quantum
number in the problem. This is given in terms of
the operators (BS) and (B5) as

L, =)f(s's —5'5) = n(n. -n, ) . (B7)

The totality of the states given by Eq. (B6) forms
a complete set of orthonormal wave functions in
the two variables x, and xa. The orthogonality

(n„n, in,', n,') =5„„5„,~, (Bs)

follows, since states with differentn, have different
energies, and states with same ~, but different n~

have different angular-momentum components.
The foregoing discussion allows us to visualize

the systematics of the electronic states in an intui-
tive way. Equations (B4) and (B7) suggest that the
system is equivalent to an assembly of two types

FIG. 3. Schematic classification of the eigenstates of
a charged particle in a magnetic field according to the
quantum numbers pg, and pgb. The arrows indicate the
"transitions" between states by the designated operators.

of harmonic oscillators. Each oscillator in the a
system has frequency &, and angular momentum
8 along H. That in the b system has frequency
zero and angular momentum —g along R. The
former system corresponds to electron rotation
in the direction of classical cyclotron motion and
the latter in the reverse direction. The role of
the operators a, a~ and b, b can be simply under-
stood. In Fig. 3, a and at are vertical stepping
operators while b and bt are sidewise stepping
operators. The energy has a fixed value in each
horizontal "row" increasing in steps of IId, from
one row to the next while the angular momentum
increases by 8' either by moving upward or by
moving to the left.

An oscillating electric field of infinite wave-
length and polarized perpendicular to the magnetic
field induces a transition between the magnetic
states with a transition probability proportional to
the square of the matrix element of x~ and xz.
From Eqs. (BS) and {Bs)we have

x, +ix, =&2&(5 —a'),
x, —ix, = —&2iz(b' —a),

which, with Eq. (86), shows that the electric field
induces two types of (one photon) transitions, ' one
which changes n~ and the other n, . In the former
transition no energy is exchanged with the radia-
tion field, while in the latter a quantum of 1(d, is
either absorbed or emitted. This fact justifies
our considering only the change in n, in calculating
resonant absorption.

For a charge of + tel, we readily see that the
appropriate Hamiltonian is

X,=Kg,(b 5+—,)
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with all definitions unchanged. We still can use
Fig. 3 for this case, but now the energy increases
to the right, instead of upward. The b oscillators
now become active in absorption, and the a oscil-
lators have zero frequency.

APPENDIX C: HIGHER-ORDER STRAIN EFFECTS

In this section our goal is to generalize the va-
lence-band effective-mass Hamiltonian to the sec-
ond order in strain which requires, for consistent
results, that the development be carried out to an
order sufficiently high to include cross terms of
magnetic and first-order strain interactions as
well as terms of order a~. The dynamics of an
electron in the simultaneous presence of strain and
magnetic field can be treated systematically by an
extension of the methods of Luttinger and Kohn' in
which one makes a cononical transformation to
eliminate interband matrix elements to first order
in both k and strain. Essentially the same results
can be obtained by higher-order perturbation
theory, but for the case of a degenerate band the
method of canonical transformation is more trans-

parent.
We assume that the spin-orbit interaction is al-

ready completely diagonalized at K=O, and we ne-
glect throughout the k-dependent spin-orbit inter-
action. We designate the energy of the valence
band edge (I'(t) by Eo and its degenerate wave func-
tions by i, j, i, etc. We assume inversion sym-
metry and designate by m, m', etc. , the bands at
k = 0 (either simple or degenerate) having positive
parity other than the valence band edge and by l,
l', etc. , those with negative parity. The band
energies at K= 0 are denoted by E with appropriate
subscripts. Our Hamiltonian is

h k' h eNK=zo+ + —% ~ v+g, —o ~ H+X,
2m m ' mc

S~k2
+K„+g o. H+Z,'o)+K,', (Cl)2' " ' mc

where we note that K~ is odd, and K," and X,'are
even with nonvanishing intraband and interband
matrix elements, respectively.

We apply a canonical transformation T =es to
(Cl) and obtain

8~k~=' *«*=&'
2

+)(,~i(.(
—)~ o+)('."+)i.' ~ Iz„sl+o(„s)~ o('.",s) ()(.', s]

+-[[Xo,S],S]+-,[[X„S],S]+-,'[[K',",S],S]+-,'[ [K,', S],S]+&[ [[X„s],S],S]~. . . . (c2)

8'k' ea '
2m * mc

+-,'[x„s]+-,'[x.', s]+-,'[[x,",', s], s]
+ —,'[[x„s),s]+—', [[x,', s], s]+ ~ ~ ~ . (c4)

Now we choose S in such a way that both the inter-
band strain and k v matrix elements vanish to
first order, namely,

x, +x,'+ [z„s]= 0 . (c3)

When (C3) is satisfied we have

—,'[[x„s],s]= --.'[x„s]--,' lx,', s],
&[[[X„s],s], s]= —g lz„s],sj-& [[X,', s],s],

and the transformed Hamiltonian becomes

I

From E(l. (C3) and from the inversion properties
of K~ and K,' we obtain the following matrix ele-
ments of S:

s
I

z&
=- &ilx.

l &&/(E. -E,),

slm& =-&fix.lm&/(E -E-)
«Islf'&=-&fix:lf'&/&E, -E, ),
&mlslm') = (m lx'Im'&/(E E ')

(nlSln) =0 for n= (i j) or l or m .

(c5)

From E(l. (C4) and with the help of Eq. (C5) we
obtain the following intraband matrix elements of
the transformed Hamiltonians:

1 ~~ (i}x,} i'&(i'Ix I l&(fix I j)+(i}x I l)(l }z I i'&(i'IK
2 r &Eo -E~)'

p (i}xg,l &)(l}K,I l'&(f I xg, }j)
r. s! &Eo —E&)(Eo Ev)—
+ (i}K,I m)(m Izo} l)(ll zo}j) + (i}X))I l)(l }X~Im)(m IK, Ij)

g ~ tn &Eo -E i) &Eo -E )

( I~I ) (
)) )t l(elr (

I I
) (

I I
)

~('I)( l()(ll)( (i) ~(i)K I )( iz (i)

.I j)
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1 +~ (i) K,) i')(i']XJ m)(m)X, ) j)+(i)X (m)(m)X, } i')(i'IX, ) j)
(Eo-E.)'

(i I X, I m)(m I K, I m ')(m 'I K, I j)
(E, E-.)(E, E-. )

(C6)

where K, =3C,'0 +3C,
' (this has both interband and in-

traband matrix elements),
The Hamiltonian (C6) for the I"t degenerate band

can be expressed alternatively in the form of a spin
Hamiltonian using the 16 independent J matrices.
The discussion here proceeds in the reverse logi-
cal order to the one in Sec. II. The sum of the
first, second, and fourth terms gives the familiar
k m Hamiltonian in the absence of strain, Eq.
(29); and the third term gives the intraband strain
interaction, Eq. (30). The fifth term is a second-
order strain interaction which can be written as a
spin Hamiltonian in the form

F~(egg) + Ft(tzy+ c.p. ) + F3[t«+ c.p. —3(t~) ]

+ [Ftt&gt«+ Fst«+Ft(t~i~+ 2t»egg)] (J* q J ) + c p.

+ [Fzt&gt»+ Ft(t«+ t» —2t«)t»]{J,J&)+c.p.

where the coefficients E~, . . . , Fe, can be determined
by comparing appropriate matrix elements with
Eq. (CG). Equation (C7) represents a generaliza-
tion of 3C„ in Eq. (131), the latter being the single
contribution from Eo -E = A. (The coefficients
E, and I"~ accidentally vanish in this case. )

%e next consider the sixth through eighth terms
of Eq. (C6) together. The sixth term accounts for
the change of band parameters with strain caused
by the dilatational shift as well as uniaxial splitting
of the degenerate band edge. (The summation over
i' extends over all members of the degenerate set
including i and j.) The l =/' part of the seventh
term is responsible for the change of band param-
eters resulting from a dilatational strain shift and
uniaxial strain splitting (in case of a degenerate
band, e.g. , for I' t) of the intermediate odd-parity
states. The Eo-E =A part in the eighth term is
the strain-linear coupling, Eq. (128), discussed
in Sec. VII.

The sum of the sixth through eighth terms in
Eq. (C6) can again be expressed in the form of a
spin Hamiltonian. Group theory shows that there
are in all 21 independent coefficients in the Hamil-
tonian of order 4'„k'&c„„. The 21 independent in-
variants each having a coefficient C». . . , C2& are
listed below (the representations at the left refer
to the J operators in the invariants):

(2) t„„{k,k,)+ c.p. ,

(3) t«kz + C. p. —stggk

l,t: (4) t„„k„(J„—SJ )+c.p. ,

(5) t«ks(J, —t J2)+c p. ,.
(6) t„,{kP,}(J,--'J )+c.p. ,

(7) (t kt+ t»kt+ t„k,)'( J„—~ J )+c.p.

r„: (8) t„„{kP,){J„J„)+c.p. ,

(9) t„P2{J,J„}+c.p. ,

(10) ( t»{k,k,}+t,„{k„k,)){J,JJ + c.p. ,

(11) (e«+ t» —2t«) {k,k~}{J„J„)+c.p. ,

(12) t..(kf+k', 2k'){J-.J,)+c p , . (C. 8)

(13) (t» —t„)H„V„+c.p. ,

(14) (t,„H„—t,+,)V„+c.p. ;
I"2. (15) (t„,H, + c.p. ){J„J„J,);

I'g5. (16) tg), (H, J„+c.p. ),
(I» t-(H. J.'+c p ),
(18) (t»+ t'gg — t2)«H„» JC'+. p.

(19) (t,„H„+t«Hg) J„+c.p. ,

(20) (t»+ t„—2t„,)H„J„'+c.p. ,

(21) (t,„H„+tg,HI) J~t+ c.p.

where V„and {J„J'„J,) are defined in Eq. (130) and
Table II, respectively. Equation (128) represents
a special case of the general Hamiltonian and con-
tains all but seven of the 21 coefficients, C» C4,
C„CS, C9, C,s, and C», which have accidentally
vanished. The corresponding invariants contain
either c~ or k or both and therefore do not appear
in the r~-re interaction. Some of the invariants
(C8) admit to simple physical interpretation.
Term (8), for example, can be interpreted in a
straightforward way as the strain-dependent change
of the k -band parameter p» but this simple as-
signment is not always possible for other invari-
ants. The coefficients C~ through C» can be de-
termined in exactly the same way as in Sec. II
by comparing the spin Hamiltonian with Eq. (C6)
term by term.

The last two terms in Eq. (C6) give third-order
strain energies expressible as a spin Hamiltonian
of order &e,& „)„c„„,which we shall not write out
explicitly.
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In passing it is worthwhile to point out that ex-
actly the same mathematical procedure would be
followed if we were to replace X, by K~, both of
which have identical inversion properties. The
source of the q term, Eq. (38), that we picked up
then would correspond to the seventh term in Eq.
(C6) if we set l =l'.

It is possible, although we have not done so, to
split each coefficient, C&, . . . , C2„ into components
representing contributions from bands of each
symmetry classification. In this regard we note
that the eighth term of Eq. (C6) includes inter-
mediate states of even parity, so this sum, there-
fore, extends over positive as well as negative
parity bands.

It is interesting to a.sk oneself how many inde-

pendent coefficients are required if we make a
sjherical approximation? The answer to this is
given by group theory and the result is quite sim-
ple. For the second-order strain Hamiltonian the
spherical counterpart to Eq. (CV) contains but
four independent coefficients, namely, the coeffi-
cients of the four terms in the expression X„given
in Ref. 44. The same is true for X&„. the 21 in-
dependent coefficients in Etl. (C8) reduce to eight.
The remark made in Sec. VII on the solvability of
X» for the spherical case still applies: the spher-
ical Hamiltonian including the second-order strain
and strain-magnetic terms can be solved in a, finite
space for any direction of uniaxial stress collinear
with magnetic field and for any value of && using
a wave function of the form (150).
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