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Short-range defects are found, for example, at solid surfaces and at deep and isoelectronic traps in the
bulk. We have extended a new concept, introduced by Kohn and Onffroy, in order to treat local defects in three-
dimensional solids. The new concept involves generalized Wannier functions, which can be obtained variationally.
These functions vary from site to site in the (nonperiodic) solid and make a complete orthonormal
basis set for the bound and continuum wave functions. Questions as to the validity of the method in
three dimensions are answered. The basis functions are calculated via perturbation theory for local
defects in a wide-band-gap insulator. An exact set of difference equations similar to the one-band
Koster-Slater equations and to those presented by Kohn and Onffroy is derived for the many-band
wave functions of the nonperiodic system. It is shown how to obtain charge densities and local
densities of states without prior knowledge of the electron wave functions.

I. INTRODUCTION

Many teehnologieal applications of solid-state
physics depend on the detailed electronic structure
in the vicinity of localized defects. The electronic
structure of bulk defects strongly influences, for
example, the luminescence characteristics of
solids. Chemisorption, which is basic to catalytic
and corrosion processes, produces a local defect
in the surface region of solids.

Defects mhich produce meak and extended per-
turbing potentials lead to shallom impurity levels
with large electronic orbits. These are relative-
ly well understood on the basis of an effective mass
formalism. Those situations in which the im-
purity wave function is mell localized have been a
traditional source of frustration, however.

This paper makes use of a nem concept intro-
duced by Kohn and Qnffroy in the field of localized
defects in solids. The concept involves generalized
%annier functions which ean be obtained variation-
ally. The generalized-%'annier-function formal-
ism is particularly mell suited to deep, sharply
localized potentials and thus compliments the ef-
fective-mass formalism for shallow potentials.

There are many examples of short-range de-
fects. Isoelectronic impurities are impurity atoms
from the same column of the Periodic Table as one
of the atoms of the host lattice, e. g. , GaP: N.

One encounters short-range impurity potentials in
these cases. Impurities such as Cu and Au in Si
can produce "deep" traps, binding carriers with
energies of the order of 0. 5 eV. The orbits as-
sociated with these states are mell localized. '
Lattice vacancies are still another example of a
localized bulk defect. Surfaces also produce rapid-
ly varying inhomogeneities in solids. Recently
experimentalists have been able to measure local
densities of states in the surface region. ~'6 Thus
the time is ripe for a formalism which can be used
to calculate self-consistently the energy spectxa of

electrons in chemisorption bonds (self-consistent
in the sense that the electron wave functions are
determined from a potential which depends on the
wave functions themselves).

The theoretical means presently at our disposal
for solving localized impurity problems is the mell
knomn Koster-Slater method. Calais and Rib-
bing reviem the method, and point out that it re-
quires that one know both the impurity potential
and the full set of energy bands and corresponding
mave functions for the perfect crystal. This is cor-
roborated by the calculations of Callamay and

Hughes, Parada, and Faulkner which showed the
necessity of including a number of bands. How-
ever, many-band Koster-Slater calculations are
difficult and there have been no calculations which
treat both bound and virtual levels self-consistent-
ly.

The generalized %annier function concept in-
volves a different approach to the problem. The
influence of all of the bands are included directly
in the generalized %'annier functions which are then
used as a basis for the expansion for the wave func-
tions of the nonperiodic solid.

For a system consisting of an isolated impurity
in a one-dimensional lattice, Kohn and Onffroy
have shown that the generalized %annier functions,
a„(x), have exactly the same asymptotic behavior
as the %annier functions of the periodic lattice,
a„(x). Further, they showed that for lattice sites
n asymptotically far from the perturbation, the
a„(x) approach the a„(x) exponentially in n

Here me analyze and apply the generalized %'an-
nier function concept to three-dimensional systems
with local defects. Des Cloizeaux" has enumer-
ated the difficulties that three dimensionality in-
troduces into the analysis of the asymptotic behav-
ior of %annier functions. Vfe employ an approach
based in spirit on Koster-Slater theory to charac-
terize the local behavior of the generalized %an-
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II. GENERALIZED WANNIER FUNCTIONS

We begin Sec. II by setting down some familiar
results from band theory and the theory of Wannier
functions. These results along with a brief dis-
cussion of the Koster-Slater formalism for treat-
ing crystals with localized perturbations will serve
as a background for our demonstration of the
localization of the generalized Wannier functions.

A basic assumption of band theory is that the
electronic states of crystals are adequately de-
scribed by a one-electron Hamiltonian of the form

H = ——,
' V +V(r), (2. I)

where V(r) is periodic in the direct lattice so that
for any lattice vector n,

V(r +n) = V(r) . (2. 2)

Because of the periodicity of H, its eigenfunctions
are Bloch waves p, (k, r) of band index a and wave
vector k,

nier functions. The results provide a framework
for a systematic variational treatment of solids
with local defects.

In Sec. II we consider the question of the localiza-
tion of the generalized Wannier functions in three
dimensions. There we show that the perturbed
wave functions of a band can be expressed in terms
of a set of functions localized about each lattice
site. In addition it is shown that as the distance
from the perturbation increases, the general. ized
%'annier functions reduce to the conventional Wan-
nier functions of the unperturbed periodic system.

In Sec. III generalized Wannier functions are
calculated, for the case of local defects in a wide-
band-gap insulator. The dependence of the gen-
eralized Wannier functions on the bandwidth and
band gap is determined.

Sec. IV is devoted to caleulational techniques
for determining generalized Wannier functions,
wave functions, charge densities, and local densi-
ties of states. The procedure for calculating the
wave functions involves a set of difference equa-
tions similar to the one-band Koster-Slater equa-
tions. The local density of states and, for filled
bands, the charge density may be calculated direct-
ly from the generalized Wannier functions without
knowledge of the wave functions.

Finally in See. V we discuss the advantages of
the formalism in application to such local defects
as bulk traps and surfaces. Some insight into the
ehemieal-bond theory of solids is also obtained.

(2. 3)

Again because of periodicity, these Bloch func-
tions can be expanded in terms of the Wa,nnier
functions of band 0.,

P (k r)=N '~~+ e'"'a (r-n) . (2. 4)

In Eq. (2. 4) N is the number of unit cells in the
crystal and a (r —n) is the Wannier function of band
z located at site n.

The essential idea of the generalized Wannier
function formalism is to deve1op a relation analo-
gous to (2. 4) for nonperiodic systems. Before
proceeding, however, we wish to outline the existing
Koster-Slater theory for nonperiodic systems.
To do this let us introduce a localized perturba-
tion V~(r) into the crystal so that the Hamiltonian
of the perturbed nonperiodic system is,

H=H + V~(r) . (2 5)

We denote the eigenfunctions of H by p (q, r),

HP, (q, r) = E (q) P, (q, r), (2 6)

where n is a band index and q an intraband quan-
tum number. Since the $„(k, r) form a complete
set we may expand the P (q, r) in terms of them,
or, equivalently, in terms of the Wannier functions
of the various bands,

P (q, r)= S~ IJ(,q.n ),
a''(r-, n'). (2. 7)

0.(q, r) = 4(r) + [E.(q) -H' ] 'V'(r)4 .(q, r),

where g(r) is any solution to the unperturbed prob-
lem with the same energy and boundary conditions
as P (q, r). For E (q) lying in band n, P (q, r) is
a continuum state and g(r) is taken as a Bloch
wave P (k, r) with energy E (k)=E (q). For bound
states g(r) is zero because E (q) lies in a band gap
and there is no unperturbed solution satisfying the
boundary conditions.

When (2. 8) is expressed in a Wannier-function
representation the Koster-Slater difference equa-
tions result,

This is the fundamental equation of the Koster-
Slater method. The Q (q, r) and the corresponding
eigenvalues E (q) are determined by converting the
Schrodinger equation (2. 6) into a set of difference
equations for the U, (q, n') as follows. '8'2 The
Schrodinger equation (2. 6) is multiplied by the
resolvent operator [E (q) -H ] ~ to obtain an ex-
pression for the wave function,

U (q, n)= HN
'~ e'"'5 z+Z Z G~(n —m; E (q)) V~ .(m, n') II .(q, n') .

os mms (2. 9)
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In (2.9), G~(n —m; E) is a Green's function for band P obtained by taking matrix elements of the resolvent
between Wannier functions,

o oik' ~ (n-I)
G~(n-m; E)=lim (a~(r —n)~[E+i& H-] '~a~(r —m))=N' lim 2 (2. 10)

where E is a positive parameter. Similarly,

V~~.(m, n') = (a~(r —m)
~

V~(r) ~a,.(r —n')),
(2. 11)

8=1, if E (q) lies in band n

= 0, otherwise (2. 12)

The fact that V~(r} is localized means that the ma-
trix elements (2. 11) are appreciable only on a cer-
tain finite number N& of sites.

Let us first consider the case that 0. is an iso-
lated band not overlapped by other bands. If
P (q, r) is a continuum state then there is a sin-
gularity in G', (n —m; E) which is circumvented in
(2. 10) in such a way that G (n —m; E) is an out-
going Green's function. However there are no
singularities in the Gz(n —m; E) of other bands so
they are nonpropagating and the contributions to
P (q, r) from these bands are damped. As a con-
sequence of this, sufficiently far from the per-
turbation, P (q, r) may be expressed in terms of
the Wannier functions of band ~ alone,

(q, r)=Q U (q, n')c (r —n').
ns

(2. 13)

We shall term the region where (2. 13) holds the
one-band region and the region of No unit cells
where it does not the many-band region. The rate
at which the contribution from a band ~' in the
many-band region decays is determined by the rate
of decay of the Green's function of that band. Ex-
amples of the behavior of the Green's function of
a model band as calculated by Koster and Slater
for energies outside its band are shown in Fig. 1.
Note that the many-band region extends only a few
lattice constants beyond the region for which the
perturbation has nonnegligible matrix elements.
The decay of the Green's function is of practical
importance to the method. We shall show that the
generalized Wannier functions need differ from the
a (r —n) only in the many-band region at most.
This greatly simplifies the variational methods of
Sec. IV. Note we study the near-distance localiza-
tion characteristics of the generalized Wannier
functions, that is, the behavior within a few lattice
sites of the defect.

The situation is more complex for bound states.
In this case since E (q) lies in a band gap, G (n
—m; E (q)) is also nonpropagating, and there is no
incoming Bloch wave to identify the band to which

I

the bound state belongs. We identify the bands to
which the various bound states belong by seeing
with which band they merge as the strength of the
perturbation is reduced. We thereby determine
the band index at for each bound state.

Equation (2. 13) still holds for bound states. For
energies E,(q) distinctly closer to band n than
neighboring bands, the contributions from band e
will be less strongly damped than the contributions
of other bands (see Fig. 1), and once the contri-
butions from other bands have decayed (2. 13) will
hold. For deep bound states the contributions
from all bands will be sharply damped and the en-
tire bound-state wave function can be confined to
the many-band region (by enlarging it if neces-
sary). Equation (2. 13}will hold in this case be-
cause the bound-state wave function vanishes in the
one-band region.

In the case where band n is overlapped by other
bands, there will be scattered waves from all
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FIG. 1. Plots of G (n, E) along a [100] direction as
computed by Koster-Slater (Ref. 9) for a model band pro-
duced by nearest-neighbor interactions in a simple cubic
lattice. D is the bandwidth and 6E is the distance above
the top (or below the bottom) of the band of the energy E
at which G (n, E) is evaluated. The decay of 6 (n, E)
goes asymptotically as e ' / ( n ( and X depends only on
the ratio ~/D. Note that for E less than 2% of the band-
width away from the band, G (n, E) has decayed to neg-
ligible values beyond four lattice constants.
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p, (q, r) = Q C, (q, n) a, ;(r —n). (2. 15)

In (2. 15) a~;(r —n) is a generalized Wannier
function of band 0, . The site subscript n denotes
that the a, ;(r —n) may vary from site to site be-
cause the system is not periodic. In addition to
this difference, the C„(q, n) are not plane waves
and will differ from band to band. This is denoted
by the subscripts no. .

As noted in the introduction the practical ad-
vantage of the method is that a vari3tional principle
can be established for the a, ;(r —n) so that they
can be calculated by a variational procedure simi-
lar to that put forward by Kohn'3 for periodic sys-
tems. A knowledge of the a, ;(r —n) alone is suf-
ficient to calculate the local density of states for
band a, total energies (e. g. , heats of adsorption),
and the charge density. There is a further ad-
vantage in that me mill shorn that the coefficients
C (q, n) can be obtained from a set of difference
equations similar to the Koster-Slater equations
but involving the single band o. . Thus the mave
functions can be obtained by a simpler procedure
than that of Koster-Slater.

The above points mill be discussed in subsequent
sections. Qur purpose in Sec. II is to study the
transformation C, (q, n) and to show that it may
be chosen in such a way that the ao ~(r -n) are in-
deed %'annier-function-like. Note that there is no
question that one can define a set of a;(r —n) such
that (2. 15) is satisfied. In fact, if the C,(q, n}
are the elements of an arbitrary unitary matrix,
a~ z(r —n) defined by

(2. 16)

these bands contributing to P (q, r) in the "one-
band" region and (2. 13) must be replaced by

P (q, r)= Q U, (q, n')ao, (r-n'),
e 'a'

where the prime denotes that the sum is only over
interconnecting bands.

We shall make considerable use of the formal
results of the Koster-Slater theory in the following.
However, me note that as a practical calculational
procedure the Koster-Slater procedure is difficult.
Not only must one know the Wannier functions of
all the bands which contribute to P (q, r) but also
the Green's functions of these bands as well. The
latter requires a knowledge of E (k) as a function
of k for all bands which contribute to P (q, r)

The generalized-%anni er- function formalism
circumvents most of these difficulties. The many-
band expansion (2. 7) ls replaced by an equation
analogous to the single-band expansion (2. 4) for
the unperturbed system, namely,

are orthonormal and automatically satisfy (2. 15).
What we wish to show is that me may construct the
C„(q, n) so that the a, ;(r —5) are localized about
their sites. We mill actually demonstrate that the

a,;(r —n) can be localized and that away from the
perturbation they reduce to the a (r —n) of the un-
perturbed system.

If we insert the form (2. 7) for P, (q, r) into (2. 16)
we see that the a, I(r —n) are linear combinations
of the a .(r —n),

a;(r —n) = Q T~~.(n, n')ao, (r —n'),
nant

(2. 17)

T,(n, n') = Q C~ (q, n) IJ .(q, n').

Note first that the localization of the a, ,(r —n)
depends on the localization of the Wannier func-
tions themselves. The question of the localization
of the ao(r —n) has been extensively studied. "'~3'~~

It has been found that in many cases exponentially
localized Wannier functions can be constructed for
simple or composite bands isolated from other
bands by energy gaps. In many real solids the
bands are connected to adjacent bands. In such
cases it has been argued' that exponentially local-
ized Wannier functions yield arbitrarily accurate
results for general points in the interior of the
zone, but may give incorrect results at points on
or near the zone boundary or at any interior point
where there is attachment to another band.

We do not address the question of the localiza-
tion of the ao(r —n). We will assume that they can
be adequately represented by localized functions
and will consider the other aspect involved in the
localization of the a, ;(r —n), namely the form of
the transformation matrix T in (2. 18). For the
a;(r —n) tobe localized itmustbe that the T (n, n')
diminish sufficiently rapidly as n' becomes'
distant from n. Further, if s, ,;(r —n) is to go to
a, (r —n) for n distant from the perturbation, we
must have that T, .(n, n') -5 ~ 5;„ifor n distant
from the perturbation.

The generalized Wannier function formalism is
applicable to perturbations mhich are localized in
at least one dimension. However, in the following
development and, for the most part, in the re-
mainder of the paper we will assume that V~(r) is
localized in all three dimensions, corresponding,
for example, to the presence of an impurity.

For the time being me mill assume that the bands
of H are nonoverlapping. This is an artificial as-
sumption except in one dimension but it is the sim-
pler case and will be dealt with first. Further,
for purposes of illustration me mill consider just
tmo bands. The derivation can be easily gener-
alized to an arbitrary number of bands. Just how
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U
U11 U12

LP21 U22-
(2. 19)

where the submatrices U, have the elements
U .(q, n). If we arrange the wave functions and
Wannier functions into column vectors similarly
partitioned, (2. 19) may be written,

U» Uia l(ai
03'a Uai Uaa .sa

(2. 20)

Let us order the site index n so that the per-
turbed sites are located at the top of each subvec-
tor a, and so that moving down the subvector cor-
responds to moving to sites more remote from the
perturbation. With this ordering we see from our
previous discussion that U will have the form

many bands are needed for a given accuracy will
depend upon the perturbing potential. It is the
spirit of the Koster-Slater equations (2. 9) that only
a manageable number of bands will be required.
This RppeRrs to be born out by the cRlculRtlons of
Callaway and Hughes for vacancies in silicon.
They found that the calculation converged as the
number of energy bands included was increased,
and that low-lying bands were considerably more
important than higher bands.

Before proceeding to construct the C matrix we
will display schematically the properties of the U
matrix set forth above by partitioning it into sub-
matrices U

Since U is unitary we have U U=I and in particular

Q U~(q, n) U@„(q,n') = t);;n .
Bsa

(2. 22)

If we assume that the form (2. 21) for U is exact
it follows that, for n and n' in the one-band region,
(2. 22) reduces to

Q U (q, n) U, (q, n') = ii;;, . (2. 23)

Equation (2. 23) is the key to the construction of
the C matrix. It shows that we may consider the
N-N columns of U in the one-band region as
comprising a set of N-N0 linearly independent
vectors in an abstract vector space of N dimen-
sions, where, as before, N is the number of sites
in the crystal, and N0 the number of sites in the
many-band region. It follows that we are at liberty
to define N0 additional vectors in this space which
are mutually orthonormal and which are orthogonal
to the original N —N0 vectors. Thus we may
replace the columns of U in the many-band re-
gion with these new vectors to define a new NxN
matrix. We do this for each diagonal submatrix
UBB and form a matrix with the resulting matrices
as diagonal submatrices and zero off-diagonal sub-
matrices. This is the C matrix. It is block dia-
gonal, unitary and is identical to U in the one-band
region. For the two-band example, C has the form

q~ 11
11

C (2. 24)

The hatched regions are the many-band regions and
the unhatched regions are the one-band regions.
We have used the symbols A to indicate that the
elements of U are nonvanishing in the one-band
region and indicated the effective vanishing of the
elements of U, . (c(4(a') by zeros. In some of the
matrix manipulations which follow it is conceivable
that by assuming the elements of U, , in the one-
band region to be strictly zero could lead to ignor-
ing an infinite sum of terms which are individually
negligible but which add up to a non-negligible
quantity. To simplify the following presentation
we ignore this possibility. However, we have car-
ried through the analysis with exponentially decay-
ing terms retained in the elements of U, ~ (a oa')
in the one-band region and have confirmed that the
results below are correct.

We proceed now to construct the C matrix~

We now show that this form for C leads to the re-
quired form for T. First simply from the form of
(2. 21) and (2. 24) we see that the matrix equation
T =CtU will have the form

0 A11 0

0 Af 0 A22

(2. aS)
Vie now show that the elements of T in the one band
parts of the hatched regions of (2. 25) vanish by
making use of the unitarity of T. %e consider
the product (TT ) (n, n') for n and n' in the one-
band region and break the site sum in the prod-
uct operation into a sum over many-band and one-
band sites,

(T'r') (, n') =E Z T'„(n, )T'( m)+mp n7'n„gn, m) (,',ntn', m)) = n;,;..
B lml &N0 Im(&N0

(2. 26)
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The sum over one-band sites is itself 5;,;, because
of (2. 23). Thus

Z T ~(n, rn) T ~{n', m) =0,
y Iml&Np

and in particular for n=n',

(2. 27)

~T,gn, m) ~'= 0.
m&Np

This establishes the desired form for T,

No%
0 y 0 0

@0 +0
0 0 0

(2. 29)

From (2. 29) we see that the generalized Wannier
functions are indeed localized:

(1) An a,i(r —n) in the many-band region will
only contain contributions from az(r —n') (for any
P), which are themselves in the many-band region.
Thus these a, ,;(r —n) are localized to the vicinity
of the many-band region.

(2) The a;(r —n) in the one-band region are just
the unperturbed a (r —n).

We emphasize that the many-band region is not,
in general, large. It includes only those lattice
sites which fall within the range of V ~(r), extended
by the range of the decaying Green's functions from
other bands (see Fig. 1).

The many-band region is an upper limit on the
extent of individual a, z(r -n) located in the many-
band region. Since, apart from orthonormality
requirements, the matrix C is as yet unspecified
in the many-band region, it is probable that a
judicious choice of those vectors of C in the many-
band region can improve the localization of the
a;(r —n) about their sites. Finally, it is possi-
ble that the flexibility in the C's may permit the
contributions from various upper bands to com-
bine destructively so that the many band region is
made effectively smaller.

It is interesting at this point to make contact
with the asymptotic behavior derived by Kohn and
Onffroy in one dimension. We have shown that
as n approaches the one-band region, a „(x—n)
approaches a (x -n). It remains to determine the
functional dependence on n of this approach for
n-~ (asymptotic region). It is straightforward to
show in one dimension that the G ~(n —m; E) decay
exponentially in n —m as n —m ~, provided E lies
outside the band P. Further, since Ggn -m; E) is
the Green's function of a periodic band, the ex-
ponent is dependent only on the properties of the
unperturbed solid.

From Eqs. (2. 9) it is clear that the approach to
the one band region is governed by the decay of the

Ggn- m; E), P e~. By replacing the zeroes in Eq.
(2. 21) with exponentially decaying terms, it is
tedious but again straightforward to show that
a, „{x—n) approaches a (x -n) exponentially in n,
and the exponent is that of the most slowly decay-
ing G z(n —m; E), P g o, . The form of the decay is
consistent with one of the results listed in Ref. 2.
That is, asymptotically a„(x -n) approaches
a (x-n) exponentially in n, where the exponent is
independent of the perturbing potential.

We now extend these results to the ease of com-
posite bands. The wave function in the "one-band"
region is now given by (2. 14) rather than (2. 13),
and Q (q, r) will in general contain undamped scat-
tered waves in all bands which overlap band o,

(q, r)= Q C .(q, n')a;, (r-n').
I',ns

(2. 30)

We illustrate the form of U with a three-band ex-
ample with the second band overlapping the first,

A22 0

0 0 A33

(2. 31)

A~2 0

c (2. 32)

A33

We may now go through the same reasoning
which led to (2. 29) to obtain a similar form for
T

Ro IN'0NN 0

0 X 0 0, 0 0

@0%0@0
0 0 0 y 0 0

0 g 0 + 0

0 0 0 0 0

(2. 33)

It follows that the occurrence of composite bands
does not qualitatively alter the localization of the
generalized Wannier functions.

In Sec. IV a variational procedure for the
a„;(r—n) will be described. Equations (2. 29) and

The matrix C is no longer strictly block dia-
gonal. Only those submatrices connecting nonover-
lapping bands can be made to vanish. For the
three-band example, C has the form
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III. A VADE-BAND-GAP KXAINPI. K

In this section we calculate via perturbation
theory generalized %'anni. er functions for a two-
band model of an insulator. The two bands are the
valence and conduction bands denoted by sub-
scripts g and e. %'e suppose both bands are sim-
ple (not overlapped by other bands) and that they
are separated by a gap which is large relative to
the width of either band. The assumption of sim-
ple bands is a convenience: it is straightforward
to generalize to complex bands. The large gap,
however, is necessary to the perturbation devel-
opment.

%e decompose the localized perturbing potential
.V~(r) as follows:

V~{r)= V~@)+ V,~(r}+V~„(r),

where, with

(S.1)

V .(n, n')= (a'(r —n) i
V (r) ia, .(r -n')), (3.2)

V ~(r) = Q
~

ao(r —n)) V„~„(n, n') (a„(r —n') ~,
nin

V,~{r)= Z ~a,'{r—n)) V,~,(n, n')(a', {r—n') ~, (S.S)
v

(2.33) show that such a method is feasible. That
is, one need vary only those loca/ functions in the
vicinity of the defect from their periodic counter-
parts, a (r —n). This is significant in that it
greatly lessens the number of parameters neces-
sary in the variation, as will be discussed in Sec.
IV.

In Sec. III we calculate by perturbation theory
generalized Wanniex functions for the valence
band of a wide-band-gap insulator. The calculation
shows explicitly how the localization of the gener-
alized %annier functions depends on the band gap,
bandwidths, and the number of neighbors retained
in the expansion of the energy bands in the direct
lattice. The results also suggest a form for trial
functions to be used in a variational calculation of
the generalized %'annier functions.

V'.(R=X [la.(r- ~)&V.~.(n n) &a.(r-s)~
nsn

+ ~ao(r-n)) V„'(n, n')&a,'(r-n') ~].

V~(r) and V~(r) are thus the intraband parts of
V~(r) while V~„(r) is the interband part. Because
of the localization of V (r) the sums in (3.3) are
restx icted to be in the neighborhood of some lat-
tice site (for a localized perturbation in the bulk)
or in the vicinity of a plane of lattice sites (for a
surface perturbation).

The Hamiltonian of the perturbed system is then

B=a'+ V„o+ V,'+ V,'„, {3.4)

where H is the Hamiltonian of the unperturbed in-
sulator. Our purpose is to obtain approximate
wave functions, and from them approximate gen-
eralized %annier functions, for the valence band.
To do this we first solve the Schrodinger equation,
HP = Zg, where

H=H'+ V„'+ V,~. (s. 6)

P „(q, r) = Z B (q, n) ao(r —n),

p, (q, r) =Q Bcc(q, n)a, (r-n),
(3.6)

and the energies corresponding to these solutions
by E„(q) and Z, (q).

Note that E7 may have bound as well as continu-
um states. %'e now write H as

(3. 'f)

and calculate to first order in 'V,~„ the corrections
to the valence-band wave functions in (3.6). The
perturbation theory expression for the corrected
wave function is

This problem is not amenable to perturbation
theory because of contraband degeneracy. However,
it can be solved exactly by the one-band Koster-
Slater resolvent technique. %e suppose this has
been done and denote the one-band Koster-Slater
solutions by

~ ( q ~ ( ) g &4.(q r)IV. lfv(q r))
~ (

i
)vqlI vqlI + g() B { &)

cq~r

We use (S. 6) to write this in terms of Wannier functions,

(3.8)

P„(q, r)=KB (q, n')a„(r-n')+Q Z B„(q', m')B (q, m)B (q', n')
&

{'" —', ,
)
ao(r-n'). (3.9)

Cs mmsn

To obtain the generalized Wannier functions we must specify the matrix C (actually C ) which transforms
the P„(q, r) into the a;;(r —n). By inspection of (3.6) or (S.9) we see that, in the one-band region [cf. dis-
cussion following Eq. (2. 13)], Q„(q, r) = p„(q, r). This is because the first-order correction term involves
only conduction-band wave functions and therefore cannot contribute a scattered wave. This means that in
the one-band region we must have C =B. The elements of C in the many-band region may be chosen in
infinitely many ways provided only that the columns of C be orthogonal [cf. discussion following Eq. (2. 23)].
We make the obvious choice and set C =B everywhere (note that B is block diagonal and unitary). This
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choice simplifies the analysis which follows and leads to a neat and easily interpreted expression for the
generalized Wannier function. Thus we have

a„;(r—n) = Q B„*„(q,n) P „(q, r)
q

= Q Q B*„,(q, n) B„„(q,n') a„(r —n')
n'

qq' mm'+'
(3. 10)

F.„(q) —Z, (q') = W(m, m)+ E ' —$„(m, 1)
1M B~q, m)

where

B~,(q, 1)
rem' ~cc&q ~ m ~

(3.11)

W(m', m) = g„(m, m) —Z, (m', m'), (3.12)

and where the 8 (n, 1) are

g (n, 1)= (a (r —n) ~H~a (r —1)). (3.13)

In the Appendix we derive an analog of the famil-
iar expansion of E (k) of a periodic system in the
direct lattice. This allows us to write the energy
denominator as

To clarify the meaning of the quantities appear-
ing in (3.11) we show in Fig. 2 how the corre-
sponding quantities for a one-dimensional nearest-
neighbor periodic system are related to its band
structure. The W(m', m) are analogous to W of
Fig. 2, and will typically be at least as large as
the unperturbed band gap. No W(m, m) can be
smaller than the energy difference between the
lowest perturbed conduction-band state and the
highest perturbed valence-band state. Further,
the $,(n, n') appearing in the sums on the right in
(3.11)determine the bandwidths as do the h (d)
of Fig. 2. One can show that these sums are
never larger than the widths of the perturbed bands
and typically will be less. Then, to first order in
the ratio of the sum of the bandwidths to the band

gap,

(3. 14)

When this is used in (3. 10) and the unitarity of B is used to simplify the resulting expression we obtain

a„,;(r- n) =a,(r -n)

V, „(n', n) ~ V „(n', m) g„(m, n) g V,„(m', n) $,(m', n')

~ W(n', n) -~; W(n', m) W(n', m) -.~, W(m', n) W(m', n)
(3.15)

This expression for the generalized Wannier func-
tion shows that, at every site, a„;(r-n) is pre-
dominately the valence band Wannier function of the
unperturbed system, but for sites in the vicinity
of the perturbation there are correction terms
involving the conduction band Wannier functions.
The first term in brackets mixes an a,(r —n') into

an a„,(r —n) only when sites n and n' are con-
nected by the interband perturbation. The second
and third terms in brackets involve the iF (m, 1) in

addition to the V~(m, 1 ). The second term mixes
an a,(r —n') located on a perturbed site into all

a„,,(r —n) such that the product V~„(n', m) g„(m, n)

is nonvanishing for some m. The effect of this

term is to mix a, 's from perturbed sites into a„s
located within a certain range of the perturbed re-
gion. The range is determined by the width and
shape of the valence band, that is, by how rapidly
the g„(m, n) fall off with increasing )m —n(. The
third term mixes into a„~(r- n) located on per-
turbed sites all a, (r —n') such that the product
V~„(m, n) h, (m', n ) is nonvanishing for some m .
The effect of this term is to mix a, 's located with-
in a certain range of the perturbed region into
a, s on perturbed sites. This range is deter-
mined by the width and shape of the conduction
band. The situation is illustrated in Fig. 3.

We see, therefore, that for a wide band gap, the
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48 (d)

ENERGV the given band but different sites into a; is sec-
ond order. This result may prove very helpful in
selecting trial functions for the variational calcula-
tion of the a; described in Sec. IV.

IV. CALCULATION OF THE aa n~~-K): WAVEFUNCTIONS,
LOCAL DENSITIES OF STATES, AND CHARGE DENS1TIES

E * W + 28 (d) - 28 (d)
g C V

w- 8,(o) - 8„(o)

48 (d)

rtd WAVE VECTOR

a„;(r—n) will be strongly localized and will dif-
fer from a„(r —n) only very near the perturbation.
The narrower the gap, the'more influential are the
distant sites. Furthermore it need not be that the
contributions to an a„;from distant sites serve to
delocalize it. They may in factdo the converse in
some cases. We expect an attractive potential to
accumulate charge and this suggests, at least for
an insulator (see Sec. IV), that the a„„on per-
turbed sites will be large in the vicinity of their
sites. Because the a„„'smust be normalized,
this implies that they are small on distant sites.

Equation (3. 15) is an example of the transfor-
mation a= Ta of (2. 17). It shows that to first or-
der in the interband perturbation T has the form

FIG. 2. Illustration of the relation between E„(R) and
E~ (k) and the parameters in the direct lattice expansion
of these quantities [Eq. (A. 5)). The illustration is for a
one-dimensional periodic system with only nearest-neigh-
bor interactions. Et is the band gap, and d is the lattice
constant.

In Sec. II we demonstrated the localization of the
generalized Wannier functions for localized defects
in solids. In Sec. III we derived by perturbation
theory an explicit expression for the generalized
Wannier functions associated with local defects in
a wide-band-gap insulator.

The perturbation approach is not appropriate in
many cases and it requires knowledge of the peri-
odic Wannier functions for all the bands used in the
basis set. Thus a more practical method for ob-
taining the generalized Wannier functions is re-
quired. The lack of an analogous method for peri-
odic systems is the primary reason for the rather
academic nature of Wannier functions. It was not
until quite recently'3 that a viable variational meth-
od for calculating Wannier functions was presented
in full generality.

The method we present in the first part of Sec.
IV is a straightforward extension to nonperiodic
systems of Kohn's' variational method.

Once the local functions have been calculated,
one must be able to directly obtain wave functions,
local densities of states, and charge densities.
This is an important point because Koster and
Slater ' have shown that a direct algebraic solu-

v, n

I 0 Q 0

0 X 0 0

0 I 0

0 0 0

(3. 16)
vI'+o

(a)

which is a special case of the general form.
sketched in (2. 29). That is to say, there are no
a„'s from neighboring sites mixed into a„, 's in
the vicinity of the perturbation. Note however
that were we to carry the perturbation calculation
to second order (by calculating also first-order
perturbed conduction-band wave functions and then
using Q, (q, r) and p„(q, r) in a second-order cal-
culation) we would obtain the general form (2. 29).

Thus we see that mixing of a, from other bands
into an a; of a given band is first order in the in-
terband perturbation whereas the mixing of a from

FIG. 3. Illustration of the spatial distribution of con-
duction-band contributions to the a„»(r —n). R„and R~
are the radii of the most distant sphere of neighbors re-
tained in the expansions of E„(q) and E (q). Fig.
3(a) illustrates the condition for an a, » outside the per-
turbed region to contain contributions from a~'s within
the perturbed region, namely, that a portion of the per-
turbed region falls withih a sphere of radius R„centered
at n. Note that there are no contributions to a„» from
a~ outside the perturbed region. Figure 35) illustrates
the extent of the region over which a~'s contribute to
a„» located within the perturbed region. The region is
a sphere centered in the perturbed region of radius R~
plus the radius of the perturbed region.
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tion of finite difference equations is workable only
for one-dimensional systems (see especially p.
1173, Ref. 7). This led to their derivation of the
Koster-Slater equations (2. 9). In the second part
of Sec. IV, we derive a set of difference equations
for the C, (q, n) which are the counterparts of the
Koster-Slater equations but which are consider-
ably simpler to deal with.

Finally, in the third part of Sec. IV we discuss
a powerful means for obtaining the local density of
states and charge densities in terms of the gen-
eralized Wannier functions. This is a most useful
method because it does not require prior deter-
mination of the wave functions.

Variational procedure for the local functions

=N'Q (ag(r —n) IHIa",(r —n)) . (4. 2)

Note that this energy is specified completely by
the generalized Wannier functions. E(@o}is a
stationary value of

E @) N g (4'lg!"=gH! I@)
(+14') (4 3)

Because of the orthogonality requirements be-
tween the a;(r —n), these functions have oscillatory
tails which are difficult to specify in terms of a
parametric form. Therefore, following Kohn, ' we
expand the generalized Wannier functions in terms
of simple, localized, but nonorthogonal' ' trial
functions h;(r —n) by means of Lowdin's symmetric
or thogonalization procedure, '

Consider first a simple perturbed band composed
of N allowed states, P(q, r). The state%0(r) of N
spinless fermions is given by either of the following
Slater determinants:

a;(r —n) = Z F;. - h;.(r —n'),
n'

where

(4 4)

q' = (¹!)' ~det[Q(q, r, )]
= (Nl) ~det[a, (r, —n)], (4. 1)

E(%,)=N'(4,
I
Z H!I@0)
f=i

since the matrix C relating the!t!'s and a's is uni-
tary. The energy of the band per atom is given
by

(4. 5)-F;;,-=(h:(r n)Ih '(r n ))

and the matrix F ' is the inverse of the square
root of F. F ' can be constructed via well-known
mathematical techniques (e. g. , first transform F
to diagonal form, replace the diagonal elements
with their inverse square roots and then apply the
inverse transformation).

Combining Eqs. (4. 2) and (4. 4), we have

E(q }=N ' Q F;; F;„;(h;.(r —n')IHIh;„(r —n")) .
n n'n"t ~

(4. 6)

Equation (4. 6) would be difficult to deal with if all
the h;(r —n) were unknown. However we saw in
Secs. II and III that for a localized V~(r), the
a.(r —n) deviate significantly from a (r —n) only in

n
the vicinity of V~(r). One can take advantage of
this fact by allowing the h",(r —n) to deviate from
their (known) periodic counterparts only in the
vicinity of the perturbation. This will in general
mean that only a relatively small number of pa-
rameters will need to be varied in the search for
the minimum of the energy. For bands other than
the lowest there is the problem of restricting the
form of the variational functions so that contri-
butions from other bands are excluded. This is
accomplished as described for the periodic case
in Ref. 13 by making the trial h;(r —n) orthogonal
to the a . ;(r-n) of all lower bands. This con-
verts the stationary principle for upper bands to
a minimum principle and insures that one cannot
get a wrong set of a;(r —n).

There remains a question of ambiguity. Because
of the flexibility in the choice of the C, (q, n) there
are infinitely many correct generalized Wannier
functions with, for example, differing degrees of

(q, r) = A Q C ~.(q, n) a~. ;(r —n).
e'=1 n

(4. 8)

The energy per atom is

E(4)=N f Q (a,;(r —n) IHIa, s(r —n)),
e~i n

(4. 9)

I

localization. The problem of finding the most ap-
propriate a's and thus fixing the C-matrix elements
is basically a problem of choosing appropriate
trial functions h (r —n). One would of course like
to find the most localized version, since this would
lessen the number of neighbors necessary in Eq.
(4. 6). The kinds of localization to be expected
were illustrated in Secs. II and III.

It is straightforward to generalize the preceding
to the case of overlapping perturbed bands. The
overlapping bands are treated as a composite, and
the energy of the composite bands is minimized.
If there are P overlapping bands, then the following
basis set of generalized Wannier functions is used:

a;(r —n), a=1, 2, . . . , p,

so that
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or
E(@)=N-'Q Q Q F, ;. , ;,F,„,....;(h, .,;,(r —n')~H~h ",;"(r-n")) .

I fK 'S sn O,a" (4. 10)

Many-band wave functions from a one-band resolvent

Once the local functions have been computed,
they can be used to obtain the wave functions and
the band structure. In the following a Green's-
function method is used to derive finite difference
equations~'~s for the C (q, n).

The wave functions are given by [see Eq. (2. 8)
and discussion following it],

P, (q, r)=g(r)+ f d r'G [.r-r';E (q)]

x V~(r')P (q, r'), (4. 11)

where g(r) is a Bloch wave, P (k, r), for E,(q)
lying within the energy band a of the periodic

solid. If E,(q) lies in a band gap, P(r) = 0.
The Green's function is first written as a spec-

tral resolution,

Go(r r~. E} I g P, (k', r')P~ ~ (k', r)
-o ~' ~ E+ff Eo (k')

(4. 12)
where E is a small positive number. One can then
expand the p (k, r) in terms of Wannier functions

and the Q (q, r) in terms of generalized Wannier
functions.

Let us first consider the case of simple (non-
overlapping) bands. Combining Eqs. (4. 11) and
(4. 12), one obtains

Q C,(q, n') a, ,;.(r —n') = 8 N-' 2 Q &'"' a (r —n')
n K~

x V~(r') C (q, n') a, ;,(rr™n'),(4. 13)

where 8 is defined in Eq. (2. 12). Multiplying by ao~(r —n) and integrating, one obtains

5~ T (n, n') —Q G [n —m';E (q)]&~ (m', n') C (q, n')= 8N '~2c'"
5 8 m

(4. 14)

where G (n —m';E) is defined in Eq. (2. 10), and

(m', n) = (a,(r —m')
~

V~(r)
~

a ...(r —n'))
(4. 15)

T (n, n'}=(a (r —n}~a „.(r —n')). (4. 15)

These T, (n, n') are just elements in the diagonal
sub-blocks of the matrix T of (2. 17) or (2. 29)
which relates the a's to the a 's.

Equations (4. 14) are the analog in the present
theory of the Koster-Slater equations (2. 9). How-
ever they represent a substantial simplification
over the Koster-Slater equations because they are
one-band equations. No knowledge of the Wannier
functions of other bands is required. In the Kos-
ter-Slater theory, if one makes the approximation
that only m bands contribute to the P, (q, r), one
has to deal with mN simultaneous equations. In
principle m is infinite and in practice it may be
necessary to have m large (Callaway and Hughes
found that perhaps eight bands were sufficient to
describe vacancies in silicon). One must know

the interband and intraband matrix elements, and
the Green's functions of all these bands in order to
solve the Koster-Slater equations. The difference
equations (4. 14), on the other hand, comprise a

Q M~~(n, n') C~~(q, n ) =8N- ~ e'~" (4. 17)

If the sites are ordered as in Sec. II so that those
in the vicinity of the perturbation come first, the
matrix M of the quantities M, (n, n) will have the
form

.M
(4. 18)

Koster and Slater show that the corresponding ma-

I

set of only N simultaneous equations and one need
know only the intraband matrix elements and the
Green's function for the single band 0. .

The difference equations (4. 14) retain the sim-
plifying feature of the Koster-Slater equations that
only a small number of the coefficients have to be
solved for simultaneously. To see this let us de-
note the quantity in brackets in (4. 14) by M, (n, n ),
so that
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trix in their theory has a similar form. Equation
(4. 18) has the feature that one only need solve the
first N' equations simultaneously for the first N'

of the C (q, n}. The remaining values of C (q,
n') are given in terms of the first N' by Eqs.
(4. 14), since M (n, n') = 5;,.outside the shaded
region. Further, the condition for a bound state
is the vanishing of the determinant of the N'&&N'

matrix. For the Koster-Slater equations, N =m
xNp where Np is the number of sites on which the
perturbing potential has non-negligible matrix
elements. For our difference equations, N' is the
greater of Np or N0, where N0 is the number of
sites in the many-band region (that is, the region
in which T, (n, n') differs from 5;;.). No may be
less than or greater than Np, depending on the
perturbing potential. The decay of the Green's
function (see, e. g. , Fig. 1), insures that N~ and

N0 are nearly equal for a local defect.
Now we generalize to the case of P overlapping

bands. In this case'3

Z Q " (k)Q " .(k) =5„.,e"=1
(4. 20)

whose purpose is to make up linear combinations
of the quantities in brackets in (4. 19) which are
eigenfunctions of the Hamiltonian.

P, (q, r) is given by Eq. (4. 8). The difference
equations (4. 14) become

P, (k, r) = N '~2 Q a .(r —n) e'"' Q, (k),
e '~1 n

(4. 19)
where the Q~ .(k) are elements of a unitary. trans-
formation

T@„i(n,n')+ Q Gz „[n—m';E, (q)]t)~" .(m', n ) C„.(q, n')
e s=1 n' e"=1 ms

where

& jar, ' ~ (n-m')

G~„(n —m;E)=N' lim 4 2 . O,vi) Q, i.~ ~ (k )Qs„~(k),
0 es~1 ~s E +ZC Eer

Il~„,,(m', n') = (a .(r —m') ~V~(r)
~
a, .(r —n')),

(4. 21)

(4. 22)

(4. 23)

and P=1, 2, . . . ,P.
There are now PN equations to solve.

Charge densities and local densities of states

I

the a, ;(r —n). The local density of states for
band z is

n, (E, r) =g ~P, (q, r}~'5(E—E (q))
For a filled band, it follows immediately from

Eq. (2. 15) and the fact that C„(q, n) is a unitary
transformation that the charge density is given by

(4. 24)
where

= - v
' lim ImG „(r, r, E +is ),

e 0
(4. 28)

as shown by Kohn and Onffroy. If there are p
overlapping filled bands, the charge density is

e'=1 n

(4. 25)

Thus if a perturbation alters the band charge
density, then the local functions deviate from the
(periodic) Wannier functions of the band. Here we
see a powerful result of the method. For filled
bands, the charge density as well as the total en-

ergy can be obtained directly from a variational
calculation, without use of the E,(q) and P, (q).
Therefore the analysis of the effect of charge re-
arrangement on binding energies can be obtained
rather simply.

We will see in the following that the local density
of states can also be written directly in terms of

(
I E) g Qe(q~ r )Qe(q~ r)

E -E~(q) (4. 27)

Combining Eqs. (2. 15), (4. 28), and (4. 27) and

making use of the unitarity of the transformation
C,(q, n), one obtains

n (E, r) = —v ' lim Imp a,;(r —n)
Ia0 n

1 a~;(r —n) . (4. 28)

n~;(E) = —v lim ImG~;(E+ic),
I 0

(4. 29)

where

The contribution of each local function to the total
density of states is
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G;(&)= (a,(r —n) I
(E —P) ~

I
a;(r —n))

(4. 30)
If 0. is a composite of P overlapping bands, the

local density of states is

n (E, r)= —v limfm 0 Q a, ;(r —n)
6 0 est n

(4. 31)

Equations (4. 28) and (4. 31) show that the local
density of states depends only on the generalized
Wannier functions.

Haydock et al. ' have recently provided a
means for evaluating terms of the form given in
Eq. (4. 30). They write Eq. (4. 30) as an infinite
continued fraction, and use bulk or atomic orbitals
for the local functions as an approximation. In the
preceding we have seen that an exact local density
of states can be obtained if one uses generalized
Wannier functions as the local functions. Thus a
combination of the variational formalism [Eqs.
(4. 3) and (4. 6) or (4. 10)], and their continued-
fraction method will allow calculation of self-
consistent local densities of states at surfaces
and other local defects.

V. DISCUSSION

The generalized-Wannier-function formalism
possesses special advantages as a calculation tool
for the solid-state defect problem. In Sec. V we
wish to reiterate these advantages in the context
of certain applications where the formalism is
particularly useful.

Consider, for example, the case of a silicon sur-
face. The bulk valence-band Wannier functions can
be obtained variationally as described by Kohn'

using s-type and P-type atomic orbitals for the lo-
cal functions used in constructing the trial Wan-
nier functions. The introduction of the surface
disrupts the tetrahedral bonding of the bulk sili-
con leading to distortion of the surface orbitals
relative to those of the bulk. These distortions
can be accounted for by parametrizing the
local functions to allow for changes in bond angles
and strengths, or by including components of dif-
ferent symmetry in the local functions. These new

symmetries correspond to the introduction of Wan-

nier functions of other bands into the generalized
Wannier functions of the valence band, as sug-
gested by the analysis of Secs. II and III. By mini-
mizing the band energy as a function of the parame-
eters in these local functions at the surface as de-
scribed in Sec. IV one can determine quantitatively
the distortion in the electronic structure at the
surface. Furthermore the atomic positions in the
surface can be found by using the ion core positions
in the surface region as parameters in the varia-

tional calculation. Thus surface changes such as
reconstruction can in principle be predicted theo-
retically.

A related but more difficult problem is the cal-
culation of potential surfaces for the interaction
between molecules and solid surfaces. With these
potential surfaces one can in principle determine
reaction rates on catalytic surfaces. When com-
puting these potential surfaces as a function of the
coordinates of the atoms of the molecules and of
the solid surface, one does not even have at his
disposal the symmetries of the bare surface be-
cause the translational symmetry of the crystal
parallel to the surface is destroyed by the chemi-
sorbed molecule. Thus a variational approach
like that proposed in this paper is the only viable
means of determining these potential surfaces at
present. The fact that the generalized Wannier
functions need change only in the vicinity of a de-
fect means that only those Wannier functions as-
sociated with the molecule and with nearby sur.-
face sites need change upon chemisorption. Thus
only a small number of local functions need be
parametrized and varied in Eqs. (4. 6) or (4. 10).
This makes the calculation tractable.

The fact that the formalism allows for changes
in the local functions (and hence the charge density)
in the vicinity of a defect means that charge rear-
rangements can be accounted for. It is well known

that when a surface is cleaved there is a charge
rearrangement which produces the surface dipole
barrier. There is an analogous charge rearrange-
ment around bulk defects. Faulkner has concluded
that isoelectronic trap calculations must include
polarization of the host crystal. In the context of
this discussion this means that the generalized
Wannier functions must change in the vicinity of
the trap.

That the charge density changes in the vicinity
of a def ect means that there is a self- consistency
problem. Self-consistency has been shown to be
of critical importance in the electronic structure
of bare surfaces and surfaces with chemisorbed
impurities. The generalized-Wannier-function
formalism is particularly suited to this self-con-
sistency problem in insulators and semiconductors.
It was stated in Sec. IV, but deserves reemphasis,
that in these materials with filled bands the charge
density and thus the potential is determined entirely
by the generalized Wannier functions. Thus calcu-
lations may be done self-consistently without ever
having to calculate wave functions.

Next, we discuss two consequences of the gen-
eralized-Wannier-function formalism which bear
on the bond concept in solids. A feature of loca-
lized functions made orthogonal by applying the
symmetric orthogonalization procedure has been
pointed out by Halpern. This is that they decay
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smoothly in regions where there are no other func-
tions to which they have to be orthogonal. Thus
in a vacancy problem, the generalized-Wannier
functions will have no unphysical oscillations on
the vacancy site whereas the Wannier functions of
the host crystal will have such oscillations. Sim-
ilarly, the generalized Wannier functions in sur-
face layers will have no oscillations in the vacuum.
The smoothly decaying tails of these generalized
Wannier functions which protrude into the vacuum
are the dangling bonds of surface chemistry.

Finally, we mention how the generalized-Wan-
nier-function formalism supports the covalent bond
theory of solids. Covalent bond theory presumes
that cohesive energies of covalent solids are the
sum of the energies of the covalent bonds. That
is, it is assumed that the bonds have a rather in-
dependent character. Suppose one introduces a
perturbing potential V~(r) which is localized to
site n'. If the band gap is wide enough relative to
the bandwidths, we know fromSecs. II and III that
the only Wannier function that will be changed sig-
nificantly is the one centered on site n'. From this
one can see that the only term in Eq. (4. 2) for the
total energy which is changed significantly by the
perturbation is the one associated with site n'.
Thus the "bonds" are approximately independent.
The wider the band gap, the more valid the concept.

In a recent paper, ' we have presented calcula-
tions on a model insulator surface. Surface- and
continuum-state wave functions, charge densities,
and surface-state energies are obtained from the
generalized Wannier functions. The simplicity and
accuracy of the method are demonstrated.
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APPENDIX

We derive an analog for nonperiodic systems of
the expansion of Eo (k) of a periodic system in the
direct lattice. It stems from Eq. (2.6) of the text:

E,(q)if, (q, r) =HP, (q, r)

Making use of Eq. (2. 15), we have

(A1)

Z (q)P (q, r)=5~ C (q, n)Ha;(r —n). (A2)

Taking the inner product of both sides with the gen-
eralized Wannier functiona a, ;.(r —n') yields

E (q)=Q '~q' ~ h (n', n),
n Centi n

where it is assumed that C, (q, n') ii0 and where

(AS)

8,(n', n) = (a, ;.(r —n') ~H ~a, ",(r —n)) . (A4)

This can be compared with the familiar expansion

E,(k) = Z e'" ' ' ' h (n, n)

Q eit R go (R)
R

where R = n' —n, and

(A5)

g (n', n)= 8 (n' —n)= (a, (r —n') ~H ~a, (r —n)).
(A6)

Note that the E (q) in Eq. (AS) may be either the
energy eigenvalues of bound or continuum states,
whereas the E (k) include only the periodic con-
tinuum states.
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