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Lattice dynamics of aluminum: An investigation of exchange and correlation effects
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Using Harrison's first-principles, nonlocal pseudopotential theory, an investigation was made to
determine the influence of the electronic exchange and correlation interactions on the lattice dynamics
and on the structural, cohesive, and electronic properties of aluininum. DifFerent varieties of the local
statistical Xfx exchange and correlation approximation are used to describe the core-core and
conduction-band-core interactions. Exchange and correlation among the conduction electrons are taken
into account by using difFerent modified forms of the dielo:tric function. It is shown that a correct
formulation of the conduction-band-core interaction is crucial for a correct description of atomic as
well as electronic properties. The Lindgren approximation to this potential allows a nearly perfect
reproduction of the experimental dispersion relations, but is shown to be inappropriate for the
calculation of structural, cohesive, and electronic properties. The conventional p,",,', ansatz for this
potential, while being only moderately successful in the phonon calculations, still yields the best over-all
picture of the properties of metallic aluminum. The remaining discrepancies between theory and
experiment are to be attributed to the too long range of the p'" exchange and correlation potential.
Conduction-electron exchange and correlation are of only minor importance in the calculation of static
crystal properties. In the lattice-dynamical calculations, the exchange and correlation corrections to the
Hartree dielectric function strongly reduce the phonon frequencies. DifFerent forms proposed for this
correction are analyzed. It is demonstrated that the long-wavelength limit of the correction function
most efFectively influences the phonon energies. The satisfaction of the compressibility sum rule is a
neccesary, but not suAicient condition for a correct description of the dispersion relations.

I. INTRODUCTION

The use of the pseudopotential or model-poten-
tial approach to the electron-ion interaction in de-
termining the lattice dynamics of simple metals
has become widespread since its introduction by
Toya and Cochran. The problem can be consid-
ered from two different points of view. Formally,
dispersion relations may be computed from a suit-
ably chosen model potential whose parameters are
determined to reproduce the experimental results
from neutron spectroscopy. Qn the other hand,
one can try to derive the pseudopotential from first
principles and then use this potential to construct
the phonon-dispersion curves. A number of rather
successful calculations of the former kind have
been presented for Al. ' ' No unequivocal con-
clusion on the appropriateness of the different mod-
el potentials and screening functions being used
arises from this computations, and the application
of these potentials to the calculation of other crys-
tal properties (such as the binding energy, the
structural stability, the equilibrium lattice spac-
ing, etc. ), is only fairly successful. A first-prin-
ciples calculation has been presented by Harrison
for Al, achieving only a poor agreement with ex-
periment. The calculations presented. by Coult-
hard" and Williams and Appapillai, 's based on the
optimized Heine-Abarenkov-Shaw model potential
(OMP)1™are of intermediate nature, since only

atomic data are used to fit the parameters of this
potential. Coulthard' achieved nearly perfect
agreement, using the full nonlocal form of the po-
tential and the exchange and correlation correc-
tions to the Hartree dielectric function proposed
by Shaw and Pynn. a~ The dispersion relations ob-
tained by Williams and Appapillai' with the same
potential, but the exchange and correlation correc-
tions of Toigo and Woodruff, ' differ from experi-
ment by up to 25%. This underlines the importance
of exchange and correlation between the conduction
electrons in lattice-dynamical calculations, es-
pecially for multivalent metals.

The main source of difficulties in the first-prin-
ciples pseudopotential approach arises not from
the formalism itself, but from the construction of
a proper crystal potential. These are connected
with the electronic exchange and correlation inter-
actions. They are of outstanding importance at
three different stages of the calculation: (i) in the
calculation of the core states, (ii) in the conduc-
tion-band-core exchange interaction, and (iii) in
the screening calculation. In a recently presented
series of papers, ' one of us (J.H. ) studied the
influence of different varieties of the Xe exchange
and correlation approximation~ebs for the core-
core and conduction-band-core interaction and of
different conduction-electron exchange and corre-
lation corrections to the dielectric function
on a pseudopotential calculation of a wide range of
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static crystal properties of the simple metals from
lithium to tin. It was shown that, with a suitable
choice of the conduction-band-core exchange pa-
rameter, a satisfactory agreement with experi-
ment can be obtained for atomic as well as elec-
tronic properties.

In this paper, the X& pseudopotential method is
applied to the calculation of the lattice vibrations
in aluminum. It is shown that with the pseudopo-
tential defined in Ref. 24 a good, but not complete
agreement with experiment is obtained for the dis-
persion curves along the principal symmetry di-
rections. The remaining discrepancies are possi-
bly to be attributed to the too long range of the
(p„„)'~' approximation for the valence-core ex-
change interaction. A simple way to correct this
problem has been proposed by Lindgren and in-
troduced in pseudopotential theory by Moriarty. 33'3~

In this work, the Lindgren approach to the conduc-
tion-band-core exchange potential will be tested
as an alternative formulation.

In Sec. II, 25 different approximations for the
exchange interactions and the results of the calcu-
lation of the energy-wave-number characteristics
are presented. In the following sections, these
characteristics are applied to the calculation of the
lattice dynamics (Sec. III) and of properties of the
static crystal lattice (binding energy, structural
stability, zero-pressure density, and compressi-
bility), Sec. IV. In Sec. V the corresponding form
factors a,re tested against electronic (band structure
and liquid resistivity) data. In Sec. VI we try to
summarize the consequences of our calculations.

II. Xn METHOD AND PSEUDOPOTENTIAL THEORY

The expectation value of the total energy of the
electronic system may be expressed in the form

where T is the kinetic energy and U, describes the
interaction of the electrons with the nuclei, U„ is
the Coulomb, and Ux is the exchange and correla-
tion interaction between the electrons. At this
point, the local statistical approximation is intro-
duced: U„is approximated by a term proportional
to the exchange energy per particle of a homoge-
neous electron gas of the same local density p. In
rydberg units we have

where a is a constant to be determined. An effec-
tive Schrodinger equation for the set of one-elec-
tron functions g,. may be deduced from the energy
expression using the conventional variational
ansatz. %e obtain

(-&+ &„+Uc + V~gu;=e, u, ,
with the local statistical exchange potential Vx

= -', U . This variational argument has first been
used by Kohn and Sham with Q= 3 Previously,
Slater proposed a factor of &=1. A value be-
tween these extremes is better than either limiting
value. For atomic calculations, different criter-
ia 6' ~ for the choice of the parameter n have
been proposed. Of these, the method using the
virial theorem, suggested by Berrondo and Goszin-
ski and Sham and applied by Schwarz to a large
variety of atoms, allows the most accurate deter-
mination of the exchange parameter. With this op-
timized parameter a„, the Xe energy agrees well
with the Hartree-Fock (HF) energy, and the Xo!
orbitals reproduce the HF orbitals fairly well.
Moreover, it can be shown that the Xa method is
not merely an approximation to the HF theory, but
is in some respects superior to it ' ' ' For the
lightest atoms, the G„values are about 0.7'7, de-
creasing rapidly as the atomic number increases.
The reasons for this variation have been investi-
gated by Lindgren and Schwarz. A single ex-
change pa.rameter does not fit equally well all or-
bitals of an atom, the inner shells require a. higher
a than the outer ones, the self-interaction part re-
quires a considerably larger a than the interelec-
tronic part of the exchange interaction. It has been
shown that this last point is crucial for the cor-
rect description of the conduction-band-core ex-
change interaction.

There are two fundamental functions which enter
in the general theory of pseudopotentials: (i) the
pseudopotential form factor (R+ q I w ~ k) which de-
scribes the electronic properties of the metal, and
(ii) the energy-wave-number characteristic deter-
mining the atomic properties. The form factor
consists of the Fourier transform of a local crys-
tal potential, a nonloeal repulsive term, and a
screening potential arising from the conduction-
electron interaction (for any details see Ref. 4 and
our earlier work, Refs. 24, 25, 42-44). The:
crystal potential is builtup by the Coulomb potential
of the atomic nuclei and the core electrons, the
orthogonalization hole potential, and the exchange
potential between the core and the valence elec-
trons. The statistical approximation really applies
to the toggE electronic charge density of the sys-
tem. Because of the (p, + p„)'~~ dependence of the
total exchange potential, it is impossible to factor
out the conduction-band-core part of the exchange
interaction unequivocally. %e therefore decided to
use two different possible formulations: Formula-
tion (i),

(4)

This is the form conventionally used in pseudopo-
tential theory and in our previous calcula-
tions. ' ' It has the disadvantage of overes-
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TABLE I. Short-hand notation for the bare pseudo-
potentials used in the calculations.

Pseudo-
potential

K1
K2
K3

L1
L2

Valence-core
exchange potential

Vg= —60'( [(3/87t')P ) ~

Vg=-60. ) (3/87t') ~

+ ~p1/ 3 ~1/3)

0. 72795~
0.72795
I.00000

0.72795
1.00000

&ge

0. 3750
0.4380

2/3

1.3000
1.4000

n t, optimized exchange parameter for thd free atom
(Ref. 27).

Interelectronic exchange parameter describing the
3s-core interaction in the free atom (Ref. 2S).

mized value o.'„of Lindgren and Schwarz 8 (for
Al, u„=0.72795) and the Slater value u, = 1 as
well. Table I gives a short-hand notation for the
bare pseudopotentials calculated with different
forms of the valence-core exchange potential V and
different exchange parameters e, and a„.

The screening potential is calculated with the
full nonlocal form of the pseudopotential (cf. Refs.
24, 25, and 43). In order to investigate the effect
of exchange and correlation between the conduction
electrons, we used several different forms of the
dielectric function. In terms of the random-phase
(or Hartree) dielectric function «„(q), «(q) is given
by

«(q) =1+[1 —f(q)]«s(q) . (6)

timating the range of the exchange interaction.
Moreover, the interelectronic character of the va-
lence-core exchange interaction has to be consid-
ered. This together yields optimal values of +„
which are always notably smaller than the free-
electron value a= —', . For Al, a value between e„
=0.375 and 0.436 (this is the value determined by
Lindgren and Schwarz 8 for the 3s-core interaction
in the free atom) gives a very good description of
the properties of the static lattice. 2 '25 Therefore,
these two values will be used here.

A second possibility is to isolate the self-ex-
change among the conduction electrons and to for-
mulate the remaining part of the potential: Formu-
lation (ii),

Since we have no g pyi'ori information about the
charge density of the valence electrons in the met-
al, we approximate it by a homogenous distribution
p„=S/Q, where Z is the valence and Q is the
atomic volume. This is certainly consistent to
zeroth order with our general approach. Qutside
the core, p„»p„and the potential rapidly drops to
zero. However, with this choice of p„, p„ is not
small enough compared to p, inside the core, and
the ansatz (ii) considerably reduces the magnitude
of the exchange potential within the atomic sphere.
It will turn out (cf. Sec. III) to be necessary to
compensate for this fact by choosing a much great-
er a„than when using the form V~.

The nonlocal repulsive contribution to the pseudo-
potential depends on the core wave functions as
well as on the @=0 component of the crystal po-
tential. The core orbitals are calculated with the
Herman-Skillman atomic structure program, the
local Xu approximation with a variable exchange
parameter u, again being used for the description
of the exchange interaction among the core elec-
trons. To test the influence of this parameter upon
the results of the calculations, we used the opti-

The function f(q) appearing in (6) describes the
corrections due to exchange and correlation. In
the last years, a number of different approximate
expressions for this function have been pro-
posed. ' ' ' Some examples being used in
this work are listed in Table II.

The normalized energy-wave-number charac-
teristics are calculated with the full nonlocal pseu-
dopotentials. In Fig. 1 we plot the characteristics
computed with the five pseudopotentials introduced
above and with the Hubbard-Sham ' (HS) screen-
ing function, appropriate to an atomic volume of
00= 111.4 a.u. The general trends in the influence
of the exchange parameters and of the screening
function have been discussed in Ref. 24. However,
it is important to emphasize that the choice of the
Lindgren form for the conduction-band-core ex-
change results in a considerable reduction of the
normalized characteristic in the range of interme-
diate and high wave number. The typical minimum
in E„(q) is shifted towards greater values of the
wave-number vector and the subsequent maximum
is strongly reduced (in the case of pseudopotential
Ll, they are nearly completely smoothed out). We
can therefore expect that the structural energy dif-
ferences are severely reduced when this approach
is used.

In the following sections, these characteristics
will be applied to the calculation of dynamic and
static crystal properties.

III. LATTICE DYNAMICS

A. Dispersion relations

The calculation of phonon dispersion relations
within the framework of the pseudopotential theory
is straightforward and is described, e.g. , by
Harrison and by Heine and Weaire. The results
of our calculations, using the pseudopotentials E1
and E 2, and the Kleinman-Langreth screening
function are p. sented in Fig. 2. With potential
E1, the longitudinal modes are nearly perfectly
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TABLE II. Exchange and correlation corrections to the dielectric function.

Hartree
approximation

Hubbard-Sham~
(HS), Refs. 46, 47

Singwi et al. (SSTL),
Ref. 29

Kleinman-Langreth"
(KL), Refs. 30, 31

Shaw-Pynn', (SP),
Ref. 22

f(q)

1 q
2 q ~~k2

A [1—exp(- Bq /k&2)]

q2 q2

4 q +kp+k~ kp+k~

2(1-exp[-q /p kz)]
2

+ 3 exp(-o, q /pk2)
F

P = 2, y = 0.0123, a = 0. 0538

limf(q) k&/q2

q ~0

1
27

AB

1
2(1+a'/k~~)

1/2P + &/k~

llmf(q)
q ~oo

A-1

y may be calculated from p =2/[1+0. 153/ (hark&)] (Ref. 48) such that e(q) satisfies
the compressibility sum rule with the Nozieres-Pines interpolation formula (Ref. 49).

In our calculation, we choose k~ = (4k+/&) to be the inverse Thomas-Fermi
screening length. The compressibility sum rule is then only slightly violated.

'A value of P =2 corresponds to the Kohn-Sham approximation for exchange be-
tween the conduction electrons. The compressibility sum rule is satisfied by con-

structionn.

reproduced, but the transverse branches lie some-
what too high, especially in the [110]and [111]di-
rections. With an enhanced conduction-band-core
exchange potential (K2), the indirect ion-electron-
ion interaction is reinforced, the negative band-
structure contributions to the squared phonon fre-
quencies are increased, and the dispersion curves
lie deeper. As is to be expected, the longitudinal
modes are somewhat more affected by the change
in the exchange potential than the transverse
branches. With a still greater exchange parameter
(e.g. , u„=—,'), the phonon frequencies become
imaginary over at least a part of the Brillouin

zone. This is also valid when the core wave func-
tions are calculated in the Slater approximation
(n, = 1). Only when the screening is treated in the
Hartree approximation (cf. below), the phonon en-
ergies calculated with potential K3 (or with a po-
tential corresponding to n, = u„and u„= —', ) are
real throughout, but are much too low.

To investigate the influence of the exchange and
correlation corrections to the Hartree screening
function, we replaced the Kleinman-Langreth ' ' (KL)
dielectric function in pseudopotential K1 by the
other functions listed in Table II, and calculated
the dispersion curves. The results are shown in

10

05

—Q02

—0.01

FIG. 1. Normal-
ized-energy wave-
number characteris-
tics calculated with the
KS approach (solid
lines, bold: pseudo-
potential Kl; thin line:
K2, double line: K3),
the L approach to the
conduction-band-core
exchange interaction
(dashed lines, bold:
Ll; thin line: L2),
and the HS screening
function. The dotted
curve represents the
OMP characteristic
(Ref. 16).
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FIG. 2. Phonon dis-
persion relations in the
principal symmetry direc-
tions, computed with the
KS approach to the valence-
core exchange and the KL
screening function (solid
line: pseudopotential Kl,
dashed line: K2). The ex-
perimental points are taken
from Stedman and Nilsson
(Ref. 51). The vertical ar-
rows indicated the theoreti-
cal site and direction of the
Kohn anomalies for a
spherical Fermi surface.

Fig. 3. Generally, the influence of the screening
function upon the longitudinal modes is much
stronger than on the transverse ones. The fre-
quencies calculated in the Hartree approximation
for the screening are much too high, those com-
puted with the HS function nearly coincide with the
KL result. When the Shaw-Pynn~ (SP) or Singwi-
Sjolander-Tost-Land (SSTL) functions are used,
the transverse frequencies are only slightly af-
fected, but the longitudinal modes are sensibly re-
duced, especially in the SSTL approach. This
shows that a correct relation between the longitudi-
nal and the transverse branches is obtained only
when the compressibility sum rule is at least ap-
proximately satisfied. When the parameter B in
the SSTL function is adapted to satisfy the compress-

ibility sum rule and A is chosen in order to yield
a positive electron pair correlation function in the
limit r —0, as proposed by Schmuck, ' the longi-
tudinal frequencies are increased and the agree-
ment with experiment is greatly improved. Qn the
other side, the limit of the exchange and correla-
tion correction for very small wavelength is of
minor importance in phonon calculations. This can
be seen by comparing the results obtained in the
HS and KL approximations [lim, „f (q) = —,

' in the
HS approximation and ~ in the KL approximation. ]
It is also interesting to collate the SP and HS re-
sults. By construction, both f(q) functions satisfy
the compressibility sum rule and have the same
limiting value f(q)- ~ for large wave vectors.
Nevertheless, the energy of the longitudinal pho-

FIG. 3. Phonon dis-
persion relations calcu-
lated with pseudopotential
K1 and different dielectric
functions. Solid line: KL;
dashed line: HS; dot-
dashed line: SP; dash-dot-
dot-line: SSTL; dotted line:
Hartree (see Table II).

0.4

q/Zna

0.8

[1101
08 0.4

[100]
0.4

[1 11]
o.e
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I I
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FIG. 4. Phonon disper-
sion relations computed
with the L approach to the
valence-core exchange in-
teraction and the HS screen-
ing function (solid line:
pseudopotential L2; dashed
line Ll). The experi-
mental points are taken
from Stedman and Nilsson
(Ref. 53.). The vertical
arrows indicate the theo-
retical site and direction
of the Kohn anomalies.

0.4

q lZea
0.8 1.2

[110]
0.8 0.4

[100]
0.4

[111]
0.8

nons is always smaller when calculated in the SP
approximation. This can tentatively be attributed
to the faster increase of the SP f(q) for small and
intermediate wave vectors: A greater f(q} reduces
the screening potential, therefore enhancing the
negative band-structure contributions to the
squared phonon frequencies. This would also ex-
plain the relatively poor results obtained with the
SSTL function: Even when adjusted to fit the com-
pressibility sum rule, fas»(q) increases more rap-
idly than any other of the exchange correction func-
tions. Although the KL function yielded the best
result, a slight change in the screening constant
jp, would alter the situation. A KL function wi.th 0,
adjusted to fit the compressibility sum rule in-
creases steeper than the HS function and would

therefore yield lower phonon energies. Within this
approximation for the conduction-band-core ex-
change it appears to be impossible to close the re-
maining gap between theory and experiment by
choosing another screening function.

Therefore we decided to use the Lindgren ap-
proach to the valence-core exchange [Eq. (5)].
With the same a„, the spatial average of the ex-
change potential is then strongly reduced with re-
spect to the Kohn-Sham approximation. Hence it
is not surprising that the phonon energies calcu-
lated with V~, +,=0.„, and o„=0.375 or 0.438
are much too high. To obtain agreement with ex-
periment, it turns out to be necessary to choose
u„= 1.3 (for c.,= a„, potential Ll), respectively,
c.„=1.4 (for c.,= 1, L2}. With these two possible

I I I I

FIG. 5. Phonon dis-
persion. relations computed
with pseudopotential L2
and different screening
functions. Solid line: KL;
dashed line: HS; dot-dot-
dash line. adjusted SSTL
(see Table II and text).

0.4

q/2+a
0.8

[110]
1.2 0.8 0.4

[100]
0.4

[111]
Q8
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choices of the exchange parameters and the HS di-
electric function, the theoretical result nearly per-
fectly reproduces the measured phonon spectrum
(Fig. 4). We are now to interpret the great values
of the interelectronic exchange parameters. It is
important to note that the spatial averages over the
atomic sphere (ro= 2.985 a.u. for Al), (V f&)„
= —0.1743 Ry, (V~&)„=—0.1786 Ry, (Vr, )„
= —0.141 Ry, and ( Vxrm)„= —0.1648 Ry are approx-
imately of the same magnitude. The main features
of the phonon spectrum, namely, the frequencies
at the zone boundary, are determined by the spatial
average of the conduction-core exchange potential.
The spatial variation of this potential is, however,
important for the correct shape of the dispersion
curves: e.g. , the unrealistic crossing of the
transverse branches in the [110]direction is re-
moved when the unsatisfactory behavior at long
distances of the p, approach is compensated by
the choice of the Lindgren potential.

Here again we have tested the influence of differ-
ent exchange and correlation corrections to the di-
electric function (Fig. 5). The effect is much the
same as described above, but a bit less pronounced.
Again the results calculated with the HS and KL
functions are almost identical, but also the modi-
fied SSTL function yields nearly as good a descrip-
tion of the dispersion curves.

those of Schmuck and Williams gg g$. 6 show Kohn
anomalies in the dispersion relations. In view of
the investigations of Appapillai and Williams, '6

this casts some doubt on the numerical accuracy
of the other calculations.

C. Effective interionic pair potential, elastic shear constants

It is interesting to throw a rapid look on the ef-
fective interionic pair potential tt', «, although we
did not use it in our phonon calculations (which
were performed in R space). V„, is the sum of the
direct Coulomb repulsion and an indirect ion-elec-

(a)

8

4
a

B. Kohn anomalies

In our calculations we used a fine mesh of 40
equidistant points for the values of the wave vector
in each symmetry direction. This was necessary
to discern Kohn anomalies in the dispersion curves,
where they appear as slightly s-shaped wiggles
(see Figs. 2 and 4, the theoretical site and direc-
tion of the anomalies are indicated by the vertical
arrows). They are only moderately expressed for
the potentials K1 and K2, but appear very distinct-
ly for potential L2, because of the sharp maximum
in the characteristic. For L1, they are smoothed
out because of the near coincidence of the mini-
mum in Ez(q) and the subsequent maximum at q
= 2k+. Examples for &&a/b q for q in the [100] di-
rection are given in Fig. 6 for the pseudopotentials
Kl and Ll and the HS screening. The Kohn anoma-
lies are exhibited very accurately and can be seen
very clearly, much more clearly than in the ex-
perimental curves with their finite resolution. The
experimental points are those given by Stedman and
Nilsson and show that Kohn anomalies shifted due
to the nonsphericity of the Fermi surface.

In summary, these results suggest that the ac-
curacy of our characteristics is good and that the
tabular interval of 0.05k„chosen for the interpola-
tion is small enough to allow even details of the
function to be adequately reproduced. From all
other phonon calculations presented for Al, ' only

04
q/2'

0.8

f2

0.4
q/2na

0.8

FIG. 6. 6+/Aq in the IlOOJ direction calculated with
the HS screening function and pseudopotential, respec-
tively, (a) Kl and (b) L2. The experimental points are
those of Stedman and Nilsson (Ref. 51). The arrows in-
dicate the theoretical site and direction of the Kohn
anomalies for a spherical Fermi surface.
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= —,'(C» —C,a) turns out to be greater than C4~ —this
corresponds to the crossing of the transverse
branches in the [110]direction. With the V f ex-
change potential and the HS dielectric function we
obtain (in units of 10"dyn/cm ) C44 = 4. 28 (Ll),
C«-—3.15 (L2), C' = 2. 52 (Ll), and C' = 3.04 (L2).
However, due to the well-known convergence dif-
ficulties associated with this method, "the accu-
racy of these results is certainly not better than
10%%ug. With this restriction, the agreement with the
experimental values of Kamm and Alers' (C44
=3.16, C'=2. 62) is rather good.

-20—

6
r l'e. ~.2

10

FIG. 7. Effective interionic pair potentials, calcu-
lated with different pseudopotentials. Same symbols as
Fig. 1. The circles represent the pair potential of Shyu
et al. (Ref. 51), computed with the OMP and SSTL screen-
ing. The vertical bars indicate the position of the next-
nearest neighbors in the fcc lattice, the coordination num-
ber is given on the top of the bar.

tron-ion interaction represented by the Fourier
transform of the normalized characteristic. ' '
The prominent features of the metallic pair poten-
tials are a deep minimum at the nearest-neighbor
distance and the long-range Friedel oscillations.
The influence of the core-core, the valence-core
(with the p'~' approach), and the valence-valence
exchange interactions has recently been discussed
by Hafner. ' Thus we may confine ourselves, here,
to present the pair-potentials computed with the
yseudopotentials E1 to L2 and the HS screening
function (Fig. 7). It is shown that the main char-
acteristics are unchanged when the Vx& conduction-
core potential is replaced by the Vx~ approximation,
but the first minimum is slightly shifted towards
greater distances, and it's depth is strongly re-
duced. This brings the potential into closer agree-
ment with the OMP result of Shyu et al. [Shyu
gg ~E. used the SSTL dielectric function; when we
replace the HS function in our potential L1 by the
SSTL form, this results in a still shallower mini-
mum (2.5x10 Ry for SSTL, 4.05X10 Ry for HS
at &= 5. 6 a. u. ).] Recalling that in a first approxi-
mation the phonon frequencies depend on the shape
of the effective interionic potential at the nearest-
neighbor shells, we expect V,«calculated in the
V~ approximation to be the more realistic one.
This may be checked by computing the elastic
shear constants using the method proposed by
Squires. The results are entirely consistent with
our phonon calculations: In the Vx~ approach, C'

IV. CRYSTAL BINDING

A. Structural energies

We have used the conventional second-order per-
turbation theory ' for the calculation of the struc-
ture-dependent parts of the binding energy for the
face-centered tetragonal structures as a function
of the axial ratio (c/a = 1 corresponds to face-cen-
tered cubic, e/a=1/~ to body-centered cubic),
for the hexagonal close-packed lattice as a function
of c/a, for rhombohedrally distorted fcc structures
(a compression of 5 = 1.585 along the axis of dis-
tortion corresponds to the simple cubic (sc) struc-
ture) and in the orthorhombic GaI lattice. In Ta-
ble III we have listed the computed energy differ-
ences relative to the energetically most favorable
structure, calculated with the pseudopotentials K1
to L2 and different screening functions, together
with the corresponding OMP results of Williams
and Appapillai and some available thermochemi-
cal estimates for these quantities. Except for po-
tential K 3 (which has already been recognized to
be unrealistic), fcc is the stable phase in each
case. The structure is also seen to be stable
against both tetragonal and rhomboedral shear.

The energy differences are only slightly affected
by the choice of the screening function. As is to
be expected from the form of the normalized char-
acteristics, these differences are strongly reduced
when the Kohn-Sham form for the conduction-core
exchange potential is replaced by the Lindgren ap-
proximation. The thermochemical estimates for
the structural energy differences given by Kaufman
and Bernstein and Lupis 6 may be used as refer-
ence values. However, the large differences in
the estimates for the energy difference between the
fcc and hcp phases shows that they must be re-
garded with some reserve. In each case it seems
to be reasonable to assume that bE should not be,
at least for close-packed structures, greater than
the heat of fusion {for Al, AE~,«,«„«——81.9X10
Ry"). Hence it appears that the pseudopotentials
E1 and K2 overestimate the structural energy dif-
ferences, whereas those computed in the Lindgren
approximation are rather too small (especially for
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TABLE III. Calculated energy differences relative to the energetically most favorable
structure and equilibrium axial ratio in the hexagonal phase.

Pseudo-
potential

Screening
function fcc bcc

AE (10 Ryd)
hcp c/a sc

K3
K2
K1

L2

OMP
(Ref. 16)

thermochemical
estimates

SSTL
SSTL
SSTL
SSTL
HS
SSTL
HS

Ref. 55
Ref. 56

82. 4
0
0
0
0
0
0

185.2
106.7
130.4
36.2
33.0
56. 1
51.2

106.4

77. 0

111.3
18.7
35.1
0.7
1.0
7.1
8. 1

29. 2

41.8

3.8

Ref. a
1.72
1.70
1.73
1.69
1.75
1.71

1.73

44. 5
203. 0
384. 0
176.6
285. 9
203. 5
282. 9

175.1

0
54. 4
98. 0

236. 2
353. 0
223. 5
335. 5

140.6

~The hexagonal structure is instable against shear deformation in the calculated range of
the axial ratio (c/a =1.5-2. 0). The energy difference is quoted against the ideal hcp struc-
ture.

the hcp structure, see below).
The absolute values for the calculated binding

energy at the observed density are (in Ry) Es
= —4.185 (K1)$ —4. 245 (K2)$ —4. 266 (Ll SSTL)$
-4.260 (Ll HS), —4.211 (L2 SSTL), and —4.208
(L2 HS). For the potentials Kl and L2 they com-
pare favorably with the experimental value E~
= -4.171 Ry.

B. Equilibrium lattice spacing and binding energy

For a complete description of the cohesive prop-
erties it is necessary that the calculation yields
not only a correct binding energy at the observed
density, but also a reasonably accurate zero-pres-
sure density. For this purpose, we varied the
atomic radius and computed the equilibrium lattice
spacing, the corresponding binding energy and
compressibility with the methods outlined in our
previous work. 4 The results are compiled in Ta-
ble IV. The atomic radii calculated with the Kohn-
Sham approach agree with experiment within 31,
whereas those calculated using the Lindgren ap-
proximation differ by as much as 10% from the
measured value, and the accuracy of the computed
binding energies is also reduced. The differences
between the Kohn-Sham (KS) and the L approach
stem from a different variation of the band-struc-
ture energy E~ with the atomic volume: For the
pseudopotentials El to E3, E~ is nearly constant
over the whole range of the atomic radius consid-
ered in these calculations (+10% of the observed
radius). In opposition thereto, Eh, is more than
doubled for the potentials Ll and L2, when the
atomic radius is increased from 0.90 to 1.15 of
its observed value. This different behavior can be
explained by considering the different shape of the

normalized characteristics (cf. Fig. 1). For the
potentials Kl and K2 (and, as should be noted, for
the OMP potential), the first minimum lies between
the two shortest vectors of the wave-number lattice
of the fcc structure (q&/k~=1. 54, qn/k+=1. 77),
whereas for L1 and L2 it lies beyond q~. For the
expanded lattice, the site of the minimum in F„
travels towards a greater q/kr. Therefore, the
contribution of q& to E~, is increased, whereas that
of q2 decreases for the potentials E1 and K2, thus
E~ remains essentially constant. On the other
side, both contributions increase for the potentials
L1 and L2. This behavior is contrary to what is
generally expected in pseudopotential theory. In
spite of the excellent results obtained for the lat-
tice dynamics, this casts some doubt on the ap-
propriateness of the Lindgren approximation in the
case of Al. We shall explore this point further
when considering the electronic properties.

In the two last columns of Table IV we listed the
isothermal compressibility Kr and the ratio be-
tween K~ and the compressibility of a noninteracting
electron gas of the same density, Ko. It can be
seen that the theory considerably underestimates
the compressibility of the metal. The reason for
that is not completely clear, but lies perhaps in
the assumption of a rigid core over a very wide
compression range.

The large difference between the equilibrium
value of the atomic radius and its experimental size
in the Lindgren approximation rises still another
difficulty: we cannot assume the very small struc-
tural energy differences to be independent of the
atomic volume. Hence we computed the structural
energy differences between the common metallic
structures (fcc, bcc, hcp) as a function of the
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TABLE IV. Equilibrium atomic radius, binding energy, and isothermal compres-
sibility.

Pseudo-
potential

Screening
function ~p (a. u. ) E~ (Ry) K~[(a. u..)'/Ry] Kz/Kp'

K3
K2
K1
Lg

L2

experiment

SSTL
SSTL
SSTL
SSTL
HS
SSTL
HS

2.91
3.05
3.07
3.28
3.25
3.29
3.26

2. 98

-4.453
-4.248
-4.189
—4. 299
-4.288
-4.243
-4.235

-4.171

101
148
137
216
193
238
211

185.5'

2.21
2. 56
2 ~ 33
2. 59
2.43
2. 82
2. 51

3.6

'Kp is the compressibility of a noninteracting electron gas of the same density.
bReference 54.

atomic radius. The results are given in Table V.
The energy differences are seen to vary continuous-
ly with the atomic radius, those between the cubic
lattices increase with increasing compression.
The energy difference between the fcc and the hcp
phases decreases when the crystal is expanded.
Moreover, there is a progressing tendency for the
hcp structure to distort; whereas an augmented
density favors a structure which is nearer to the
ideal close packing. Unfortunately it must be rec-
ognized that the most stable structure at the theo-
retical zero-pressure density is a distorted hcp
phase, when we use the Lindgren approximation
for the valence-core exchange. Qn the other hand,
nothing is changed against the calculations at the
observed density with the KS approach, the energy
differences are only slightly reduced, improving
the agreement with experiment.

Hence we are led to conclude that, in spite of the
excellent results obtained for the phonon energies,
the Lindgren approximation does not lead to a satis-
factory description of the structural and cohesive
properties of aluminum.

V. ELECTRONIC PROPERTIES

Ne are now to test our pseudopotentials against
electronic properties. Instead of performing a
complete band-structure calculation, we restricted
ourselves to compare our OPW form factors (with
the conventional on Fermi-sphere geometry) with
the empirical form factors fitted to the Fermi sur-
face, ' optical data, ' and to the soft x-ray spec-
trum60 (Fig. 8). It can be seen that the Kl and K2
form factors pass slightly above the empirical
points, whereas the L1 and L2 curves are definitely
too low. This is independent from the choice of the

TABLE V. Variation of the structural energy differences relative to the face-centered
cubic phase, ~(fcc-bcc, hcp) with the atomic radius.

do-
tial

Screening
function m (10~ Ry)

p/rp (exp t) 0. 90 0.95 1.05 1.10

bcc

hcpa

K1
K2
L1
L1
L2
L2

Kl
K2
L1
L1
L2
L2

SSTL
SSTL
SSTL
HS
SSTL
HS

SSTL
SSTL
SSTL
HS
SSTL
HS

57. 4
52. 8
90.6
83. 5

8. 9(1.67)
8. 5{1.66)

20. 8(1.67)
20. 4(1.67)

159.1
145.4
46. 6
42. 8
73.8
68. 4

49. 7(1.68)
42. 8(1.69)
4. 4(1.69)
4. 5(1.68)

15.4(1.7O)
14.5(1.69)

130.4
106.7
36.2
33.0
56. 1
51.2

35. 1(1.7O)
18.7(1.72)
0.7(1.73)
1.0(1.69)
7.1(1.75)
8.1(1.71)

101.5
99.4
25. 3
23.3
39.4
35.8

22. 1(1.77)
14.6(1.80)

—7.1(1.81)
—3.1(1.73)
—4. 7 (1.88)

O. 3(1.75)

76. 0
65.3
15.8
14.8
25. 7
23. 5

8.1(1.80)
1.7(1.8)

—5.3(Ref. b)
—2. 6(1.67)
—8.1(Ref. b)
—5.9(1.82)

The equilibrium axes ratio is given in parentheses.
"The hcp lattice is instable against shear deformation in the considered range of the axies ratio (c/a

=1.5-2. 0). The energy differences refer to a structure with c/a =2. 0.
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FIG. 8. OP% form fac-
tors for the different pseu-
dopotentials. Same sym-
bols as Fig. 1. The cir-
cles represent the empir-
ical form factors (for
references see text).

-05

q/ Irp

dielectric function. The OMP passes nearly exact-
ly through the fitted points.

Another simple possibility to test the electronic
scattering properties of the pseudopotential is to
calculate the electrical resistivity of the liquid
metal. Using the Ziman formula with the Percus-
Yevick hard-core structure factor, ~ a packing
fraction of g = 0.46, and an atomic volume of 00
=138.96 a.u. (this corresponds to the density of
liquid Al at 785 'C), we obtained the results listed
in Table VI. The structure factor for this tem-
perature has recently been measured by inelastic
neutron scattering and it has been shown that a
hard-core model with g =0.46 gives an excellent fit
to the experimental values. ~~ It should be pointed
out that in our calculations, the form factor has
been computed anew for the density appropriate to
the melt, therefore the results do not involve any
of the scaling assumptions for the pseudopotential
as a function of the atomic volume usually made in
such calculations. The peak of the structure factor
(hard-core model and experimental) occurs at
q/kz = l.59, this is within 0.03 of the first node of
the form factors in the case of the L1 and L,2 pseu-
dopotentials. This leads to a very low value of the
electrical resistivity. On the other side, the re-
sistivities calculated within the KS approach and
different screening functions are in good agree-
ment; those computed with E2 are in even excel-
lent agreement with experiment. This is just what'
we expected from our comparison of the theoretical
form factors with the empirical ones. Thus it ap-
pears that the Lindgren approximation is definitely

inappropriate to a treatment of the electronic prop-
erties of metallic Al.

TABLE VI. Electrical resistivity of liquid Al at 785 K
(in pQ cm).

Pseudo- Screening
potential function KL SSTL HS

Theory

Experiment
(aef. 64)

K1
K2
K3
L1
L2

29. 5 31.0
24. 9 26. 3
23. 3 24. 8

15.5
13.7 15.1

26. 0

13.0
13.3

VI. CONCLUSIONS

The above results, while not being in perfect
agreement with experiment for a single pseudopo-
tential, are very instructive regarding the nature
of the conduction-band-core exchange potential:
For those properties depending only on the values
of the characteristic of the form factor for wave
numbers greater than the shortest vector in the
wave-number lattice [structural and cohesive prop-
erties; electronic properties —although the elec-
trical resistivity formally depends on an integral
over q from 0 to 24» the particular form of the
integrand heavily outweights the values of g(q) at
the upper boundary], the KS-approach of the p', '
type is more appropriate. On the other hand, the
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l, -approximation (p, +p„) -p„' yields better re-
sults for properties depending also on the long-
wavelength limit of the pseudopotential (phonon dis-
persion, interionic potential, and elastic shear-
constants}.

This can easily be understood: the p,'~3 approach
is certainly a good approximation inside the ionic
core (small r), but overestimates the range of the
exchange potential. This is compensated in the
(p, + p„)'~~ —p'„~' approach, which in turn is certain-
ly inappropriate inside the core. Fourier trans-
forming the exchange potential, we expect the I.-
type potential to be more reliable for small q,
while the KS approach should be more appropriate
for larger wave numbers. Our results confirm
these expectations: the pseudopotential E2, yield-
ing the best results for cohesive and electronic
properties, also gives the best description of the
transverse phonon branches in the KS approach,
while for the longitudinal modes, a slight modifica-
tion of the potential (Kl) is necessary to obtain
agreement with experiment. For small q, this
modification goes into the direction of the L, -type
pseudopotentials. These potentials (Ll and I,2)
produce phonon dispersion curves in nearly perfect
agreement with experiment. However, we must
reject them because they are not consistent with
the structural, cohesive, and electronic band-
structure data. It is of interest to mention that the
form factor of these potentials closely resembles
the local four-parameter model fitted to the phonon
spectrum by Schneider and Stolls and that it pro-
duces the same characteristic deviation from ex-
periment in the low-q region of the [110]transverse
branches. %e refer to the comments of Cohen and
Heine (Ref. 50, p. 109) regarding this potential.
On the other hand, the OMP form factor and char-
acteristic of Appapillai and Williams'~ are similar
to our potentials FC1 and IC2 (see Figs. 1 and '7) and
their phonon curves show the same unphysical
crossing of the [110]transverse modes. Coult-
hards calculation' with the same potential, but a
different screening function does not produce this
particular feature. %hy this is so remains an open
question. From our results it appears unlikely
that the different exchange and correlation correc-
tions are responsible for this discrepancy.

Generally, we find a decrease in all phonon fre-
quencies when going from the Hartree approxima-
tion to any other dielectric function containing ex-
change and correlation corrections, but the shape
of the dispersion curves is essentially unchanged.
The amount of the reduction depends primarly upon
the low-q limit of the correction function lim, „o y{q)xg/q: For those f(q) yielding smaller values
than required by the compressibility sum rule
(KL), the frequencies are higher than for those
satisfying this rule (SP, HS) or showing a deviation

in the opposite direction (SSTL); and on the in-
crease of f(q) for small wave numbers. These re-
sults are in basic agreement with the findings of
Coulthard 5 and Price gg g$. They explain why
the Toigo-Woodruff correction function~' [which
nearly satisfies the compressibility sum rule, but
increases quadratically with q for small wave num-
bers —i.e. , faster than any of the f(q) functions
tes'ted in this work] employed by Williams and Ap-
papillai'6 is inappropriate for phonon calculations.
There is a strong evidence from these works'5 ~ 6

and ours that a screening function of the Hubbard-
Sham or Shaw-Pynn type, adjusted to satisfy the
compressibility sum rule is most suitable for pho-
non calculations in Al.

The exchange parameter e, is only of minor im-
portance: a different o, may be largely compen-
sated by a modified e„, so it becomes difficult to
assess whether a variation of the results with e,
reflects a physical property of the system or sim-
ply a compensation of another shortcoming of the
theory. In each case, the choice e, = o„ is cer-
tainly well founded.

At first sight, our results appear to contradict
the calculations of King and Cutler on Be and Mg,
using the same type of first-principles pseudopo-
tential approach. They obtain excellent results for
Mg, using e, = 1, e„=—'„and a HS-type screening
function, and they note a not perceptible influ-
ence of the exchange and correlation corrections
to the dielectric function on the phonon energies in
most branches. This is due to two important differ-
ences: (i) Their orthogonalization contribution to the
core-energy shif t is not consistent with Harrison's
formulation (Ref. 4, p. 28V: it should be noted that the
formula given by Harrison is incorrect for a factor,
—,', but he quoted the correct numerical value) . The
difference acts in the same manner than Harrison's
phenomenological correction to his Al pseudopo-
tential (Ref. 4, p. 295), i.e. , enhancing the phonon
frequencies. It has been noted that such a correc-
tion goes in the opposite direction to that required
to obtain a good description of the electronic prop-
erties. (ii) In the screening contribution to the
characteristic, a factor [1 —f(q)] is missing in
their formulation. This explains the relatively
small influence of the valence-valence exchange
upon their results.

In summary, the application of the Xe pseudo-
potential method to the theory of aluminum is quite
hopeful, though a more refined treatment of the
conduction-band-core exchange being valid both
inside and outside the core appears to be desirable.

ACKNOWLEDGMENTS

One of the authors (J.H. ) acknowledges useful
correspondence with Professor P. H. Cutler and
Dr. %. F. King. The numerical calculations were



4150 J. HAFNER AND P. SCHMUCK

performed using the computing facilities of the In-
terfakultares Rechenzentrum der Universitat Wien

(IBM 360/44). The second author (P.S.) would like
to express his thanks to Dr. M. Graef, Director
of the Zentrum fur Datenverarbeitung at the Uni-

versity of Tubingen, and to Professor Dr. K.
Wirtz, Director of the Institut fur Neutronenphysik
und Reaktortechnik at the Nuclear Research Cen-
ter, Karlsruhe, for providing the possibilities to
perform part of this work at their institutes.

Supported by the Fonds zur Forderung der wissenschaft-
lichen Forschung in Osterreich under Project No. 1318.

tPart of the work described in this paper was performed
while employed at the Computer Center of the University
of Tiibingen.
T. Toya, J. Res. Inst. Catal. , Hokkaido Univ. 6, 161
(1958).

2W. Cochran, Proc. Roy. Soc. Lond. A 276, 308 (1963).
3W. A. Harrison, Phys. Rev. 139, A179 (1965).
4W. A. Harrison, PseudoPotentials in the Theory of

Metals (Benjamin, New York, 1966); Phys. Rev. 136,
A1107 (1964),
T. Schneider and E. Stoll, Phys. Kondens. Mater. 5,
331 (1966).
T. Schneider and E. Stoll, Neutron Inelastic Scattering
(IAEA Vienna, 1968), Vol. 1, p. 101.

7G. L. Krasko and Z. A. Gurskii, Fiz. Tverd. Tela 13,
2463 (1971) [Sov. Phys. -Solid State 13, 2062 (1972)].

D. C. Wallace, Phys. Rev. B 1, 3963, 4521 (1970).
H. C. Gupta and B. B. Tripathi, Phys. Rev. B 2, 248
(1970).
D. C. Wallace, Phys. Rev. 187, 991 (1969).
W. M. Hartmann and T. O. Milbrodt, Phys. Rev. B 3,
4133 (1971).
P. Schmuck, Z. Phys. 248, ill (1971).
B. Prasad and R. S. Srivastava, Phys. Lett. A 38, 527
(le72).

' C. M. Kachlava, Physica 65, 63 (1973).
M. A. Coulthard, J. Phys. C 3, 820 (1970).
M. A ppapillai and A. R. Williams, J. Phys. F 3, 759
(1973); A. R. Williams and M. Appapillai, J. Phys. F 3,
772 (le73).
V. Heine and I. V. Abarenkov, Phil. Mag 9, 451 (1964).
A. O. E. Animalu, Phil. Mag. 11, 379 (1965).

' I. V. Abarenkov and V. Heine, Phil. Mag. 12, 529
(1965).
R. W. Shaw, Jr. and W. A. Harrison, Phys. Rev. 163,
604 (1967).
R. W. Shaw, Jr. , Phys. Rev. 174, 769 (1968).
R. W. Shaw, Jr. and R. Pynn, J. Phys. C 2, 2071
(1969).

23F. Toigo and T. O. Woodruff, Phys. Rev. B 2, 3958
(le71).

4J. Hafner, Phys. Status Solidi (B) 56, 579 (1973); 57,
101 (1973); 57, 479 (1973).
J. Hafner, Acta Phys. Austriaca 38, 70 (1973).
J. C. Slater and K. H. Johnson, Phys. Rev. B 5, 844
(1972).
K. Schwarz, Phys. Rev. B 5, 2466 (1972).
I. Lindgren and K. Schwarz, Phys. Rev. A 5, 542
(le72).

2 K. S. Singwi, A. Sjolander, M. P. Tosi and R. H.
Land, Phys. Rev. B 1, 1044 (1970).
L. Kleinman, Phys. Rev. 160, 585 (1967).
D. C. Langreth, Phys. Rev. 181, 753 (1969).
I. Lindgren, Int. J. Quantum Chem. Symp. 5, 411

(1971).
3 J. A. Moriarty, Phys. Rev. B 6, 1239 (1972).
34J. A. Moriarty, Phys. Rev. B 6, 4445 (1972).
3~W. Kohn and L. J. Sham, Phys. Rev. 140, A1133

(le65).
J. C. Slater, Phys. Rev. 81, 385 (1951).
M. Berrondo and O. Goszinski, Phys. Rev. 184, 10
(1969).

3 L. J. Sham, Phys. Rev. A 1, 969 (1970).
3 I. Lindgren, Phys. Lett. 19, 382 (1965).

A. W. Overhauser, Phys. Bev. B 3, 1888 (1971).
4'K. J. Duff and A. W. Overhauser, Phys. Bev. B 5,

2799 (1972).
42J. Hafner and H. Nowotny, Phys. Lett. A 37, 395 (1971),
43J. Hafner and H. Nowotny, Phys. Status Solidi B 51,

107 (1972); Phys. Status Solidi B 55, 843(E) (1972).
44J. Hafner, Nuovo Cimento Lett. 5, 503 (1972).
45F. Herman and S. Skillman, Atomic Stmcture Calcu-

lations (Prentice, Englewood Cliffs, N. J. , 1963).
6J. Hubbard, Proc. Roy. Soc. (Lond. ) A 240, 539 (1957);
A243, 356 (1957).

4~L. J. Sham, Proc. Boy. Soc. (London) A283, 33 (1965).
N. W. Ashcroft, J. Phys. C 1, 232 (1968).
P. Nozieres and D. Pines, Phys. Bev. 111, 442 (1958).

5 V. Heine and D. Weaire, in Solid State Physics, edited
by F. Seitz, D. Tur'nbull, and H. Ehrenreich (Academ-
ic, New York, 1970), Vol. 24, p. 242; M. H. Cohen
and V. Heine, ibid. , p. 50.

5 R. Stedman and G. Nilsson, Phys. Rev. 145, 492
(1966); Phys. Rev. Lett. 15, 634 (1965).

2W. M. Shyu, J. H. Wehling, M. R. Cordes and G. D.
Gaspari, Phys. Rev. B4, 1802 (1971).
G. L. Squires, Ark. Fys. 25, 21 (1963).

4G. N. Kamm and G. A. Alers, J. Appl. Phys. 35, 327
(1964).

55L. Kaufman and H. Bernstein, Computer Calculations
of Phase Diagrams (Academic, New York, 1970).
C. H. P. Lupis [unpublished result quoted by L. Kauf-
man, in Metallurgical Chemistry Symposium, 1971,
edited by O. Kubaschewski (HMSO, London, 1972)J.
K. A. Gschneider, in Ref. 50, Vol. 16, p. 332.
N. W. Ashcroft, Philos. Mag. 8, 2055 (1963).
A. J. Hughes, D. Jones, and A. M. Lettington, J.
Phys. C 2, 101 (1969).
G. A. Rooke, J. Phys. C 1, 776 (1968).
J. Ziman, Philos. Mag. 6, 1013 (1961).

62N. W. Ashcroft and J. Lekner, Phys. Rev. 145, 83
(1966).

63K. Kunsch, thesis (Technical University, Vienna, 1969)
(unpublished).

4A. Roll and H. Motz, Z. Metallkd. 48, 272 (1957).
5D. L. Price, K. S. Singwi and M. P. Tosi, Phys. Rev.
B 2, 2398 (1970).
W. F. King and P. H. Cutler, Phys. Rev. B 2, 1733
(1970); Phys. Rev. B 3, 2485 (1971).


