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Excitation of high-frefinency cyclotron waves in a semi-in~»te metal in the far infrared:
Ordinary waves

S. J. Allen, Jr.
Bell Laboratones, Murray Hill, ¹mJeaey 07974

{Received 24 April 1973)

An approximate theory of Axbel-Kaner cyclotron resonance in the retardation regime is derived and
compared mth experiment for the ordinary polarization in potassium and sodium at 29.69 cm
Although the theory is not rigorous, it accounts in a quantitative way for both the attenuation of the
subharmonics due to retardation effects, and the absorption on the high-field side of each subharmonic.
This absorption is sho~ to be related to high-frequency cyclotron vraves excited in the surface region.
The waves in the surface region differ from those in the bulk because of the damping and scattering of
the waves by electrons that strike the surface. The theory leaves only the mass and the relaxation rate
as adjustable parameters, relieving much of the ambiguity that existed in previous determinations of
electron mass and relaxation rate in potassium and sodium by far-infrared cyclotron resonance.

I. INTRODUCTION

The physical origin of cyclotron resonance in con-
ducting solids is quite well undex stood as a reso-
nance between incident electromagnetic radiation
and the circulation of the electron about the mag-
netic field. The two physically interesting param- '

eters that are measured at resonance axe the
charge-to-mass ratio e/m~ and the electron scat-
tering rate. Although, in principle, the measure-
ment and its interpretation is quite straightforward,
the experimental manifestation of cyclotron reso-
nance depends rather drastically on which electron
system we axe looking at, and theoretical treat-
ments require a detailed solution of Maxwell's equa-
tion for the electromagnetic radiation in the solid
and at the solid surface. For instance, cyclotron,
resonance in lightly doped semiconductors may or
may not occur at v„ the cyclotron frequency, de-
pending on whether or not the frequency of the inci-
dent radiation, ~, is much greater than or less
than the plasma frequency co~. In either case, how-
ever, the solution to Maxwell's equation is found

by using a conductivity which is strictly local and
exact solutions can be obtained, thereby, greatly
facilitating the interpretation of experimental re-
sults in terms of effective masses and relaxation
rates. '

Cyclotron resonance in metals, where +~ »v,
manifests itself by a series of resonances periodic
in l/H, where H is the magnetic field. Each reso-
nance is given by ~ =n~„where n is any integer.
Unlike the semiconductor case the solution of Max-
well's equation for the electric fields in the solid
requires a nonlocal conductivity and there exists
no exact solution of the electrodynamics for a semi-
infinite metal in a magnetic field parallel to its
surface, even for the simplest case of a spherical
Fermi surface. Approximate solutions have been
obtained, however, the most noteworthy, the orig-

inal work of Azbel' and Kaner on cyclotron reso-
nance in metals. An exact solution of the problem
formulated by Azbel' and Kaner was obtained by
Hartman and Luttinger, but the problem itself is
still approximate since the form of Maxwell's equa-
tion that is solved assumes that the electron leaves
the skin depth in a time vanishingly small compared
to the period of the incident field. Within the same
approximation Chambers solved the problem con-
sidering the possibility that only a very small frac-
tion of the electrons in the metal may be resonant
at a particular value of magnetic field. These the-
ories have worked reasonably well to explain cyclo-
tron resonance in real metals at microwave fre-
quencies.

Recently, however, experimental techniques have
been developed that enable cyclotron resonance to
be observed in metals at frequencies as high as
84. 32 cm, ' the primary motivation being to study
electron-phonon interactions by driving the metal
at frequencies close to the Debye peak in the pho-
non density of states. " The above-mentioned
theories do not properly describe the cyclotron-
resonance line shape in this regime. The failure
appears to be due to the fact that the incident radi-
ation is changing phase so fast that the electron
cannot escape the skin depth without having aver-
aged the incident field over an appreciable fraction
of its period. To extract meaningful values for the
electron mass and relaxation rate at these fre-
quencies it is clear that modification of the existing
theories is required so that the proper line shape
can be obtained and thence used to extract the mass
and relaxation rate.

Drew' has generated a theory of cyclotron reso-
nance in this frequency regime using a variational
form for the surface impedance. " The key as-
sumption is the same used in the Chambers4 theory
of microwave cyclotron resonance, namely, that the
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number of resonant electrons is few. This theory
has been used successfully to account for line-
shape changes in Ga by Kamgar, Henningsen, and
Koch, "and Henningsen. " Despite the fact that the
assumption of relatively few resonating electrons
is not valid in potassium, attempts were made to
use this theory to understand the line shape ob-
served for potassium at frequencies between 29 and
58 cm '. Although it proved useful in extracting a
relaxation rate, the failure to account for the com-
plete line shape leaves a certain amount of uncer-
tainty with regard to the actual values of electron
mass and relaxation rate at these frequencies.
Since then experiments have been performed in Na
(these will be reported in detail at a later date), "
which reveal the same discrepancies as seen in K
and point to the incompleteness of the theory of cy-
clotron resonance in real metals in the far in-
frared.

This paper presents another theory of cyclotron
resonance in the retardation regime. It differs
from Brew's calculation by considering the pos-
sibility of real electromagnetic wave propagation,
which has been seen to be intimately connected with
Azbel' -Kaner cyclotron resonance in metals like K
and Na, where all bulk electrons have the same
electron mass. Ne consider in this paper only
resonances for the incident field parallel to the ap-
plied magnetic field. In this polarization only or-
dinary waves are excited. The perpendicular polar-
ization, which is slightly more complicated owing
to the presence of the Hall field and two types of
wave propagation, will be discussed in a subsequent
publication. Although the theory is not rigorous,
it reproduces in some detail the line shape ob-
served for the ordinary polarization in both K and
Na, leaving only the mass and relaxation rate as
adjustable parameters.

II. THEORY

%e consider a semi-infinite metal in a uniform
magnetic field parallel to the sample surface (Fig.
1). The metal has a simple spherical Fermi sur-
face and aB the electrons can be characterized by
a single mass m~ and relaxation rate I/r The.
surface impedance is found by solving Maxwell's
equations for the electric field distribution in the
metal. For E parallel to H0, the applied field, we
have

s'E(x)
8x

= i(oi10Z(x)

where x is measured from the surface, ~ is the
frequency of the incident radiation, amd p, 0 is the
permeability of free space (mks units). E and 4
are the components of the electric field and cur-
rent along the field. None other need be consid-
ered in this polarization.
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FIG. 1. Semi-infinite metal in an applied field.

J is of course related to E by the nonlocal con-
ductivity o,

d(x) = f, o(x, x') E(x') dx',

and Eq. (1) becomes

8 E(x) =i~ g, o(x, x ) E(x ) dx
0

(Throughout o stands for o„, the only relevant
component of the conductivity tensor. ) The solu-
tion for E(x) immediately yields the surface im-
pedance by

Z = —i&a )10 E(0')/E'(0')

In the infinite medium we have o(x, x') =o(x —x')
and the lower limit in the integration in (3) ex-
tended to —~. In this case (3) can be readily
solved by Fourier-transform techniques to yield
the infinite-medium dispersion relations for the
high-frequency cyclotron waves with ordinary
polarization. '~' In particular, if

E(x) =Xe-'

then k must satisfy

—k ' = i(u p,o o(k),

where

3 Ne
o(k) =—

~ d8 sin8 cos28
2 8g+QP~

s „(kR,sln8)
i(&t&/(0~ —0) + I /(d~7'

In (7), N is the electron density, &u, the cyclotron
frequency equal to eB/m*, e the electron charge,
R, the maximum cyclotron radius equal to V1,/&u„
and 8„are nth order Bessel functions of the first
kind. The solution of (6) for the allowed k values
using (7) for o(k) is given by Walsh and Platz-
man, '6'" Platzman, %alsh, and E-Ni Foo~
Dunifer, Schmidt, and Walsh, '9 and E-Ni Foo. ~
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In the presence of a surface, the solution of (2)
is more difficult. Mathematically speaking, in the
presence of the surface, a(x, x ) x o(x —x ), and the
reduction of (3) by Fourier transform to a simple
algebraic equation for possible waves, as in (6),
is no longer possible. Physically, if we are within
2A, of the surface, electrons on trajectories such
as B in Fig. 2 strike the surface and do notcontrib-
ute to the resonant conductivity. In fact, as one
approaches the surface, the fraction of electrons
that contribute to the conductivity in a resonant
manner becomes vanishingly small. The fraction
of resonant electrons is given by

,'- [(x/2R, ) —3 (x/2R, )3], x & 2R,
N x2 RR,

0)

0
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and shown in Fig. 3. Stated a third way, the prop-
agating modes of the infinite medium do not exist
as such in the surface region defined by 0 & x & 2R, .
They are damped and scattered by the presence of
the surface. (It should be made clear that it is of
little importance whether the electrons that strike
the surface are diffusely ox' speeularly scattered;
neither are resonant at v =n&o, . )

Solutions of (3) and (4) for the resonant part of
the surface impedance have been obtained in a
number of physically intexesting situations. The
original work of Azbel' and Kaner~ found an ap-
proximate solution in the limit that R,/5» n,
where 5 is the skin depth and n is the subharmonic
index, n = &o/&u, . Hartman and Luttinger~ found an
exact solution in this limit. Chambers considered
the case where the number of resonant electrons
is small even in the infinite medium. This is tan-
tamount to assuming no cyclotron wave px'opagation
in the bulk. All of the above solutions assume that
R,/5» n ~; that is to say, the infinite-k solution to
the nonlocal conductivity dominates the surface im-
pedance.

The opposite limit R,/5& n 2, the so-called re-
tardation regime, is always obtained in far-infra-
red cyclotron resonance in metals. The resonant
contribution to Z in the ease where the number of
bulk resonant electrons is small compared with the

Ho

FIG. 2. Resonant and
nonresonant trajectories
near the surface.

FIG. 3. Fraction of resonant electrons versus dis-
tance from the surface for a spherical Fermi surface.

nonresonant electrons has been obtained by Drew
by means of a variational'~ approach. This corre-
sponds to the Chambers limit at microwave fre-
quencies where R,/5»n~. More complicated Fer-
mi surfaces have been considered by Henningsen'
using this approach. Cyclotron resonance in the
retardation regime, R,/5 &n, for the case where
real wave propagation can occur in the bulk is the
ease under consideration here,

The first approximation we make is that the elec-
tric field can be separated into a nonresonant field
that decays rapidly as we leave the surface and a
resonant field which is excited near cyclotron res-
onance ox' at a subharmonic resonance,

E(x) = E'(x) + E"(x),

where E (x) is the nonresonant field and E'(x) is the
resonant contribution to the field. That one can
make such a separation is not obvious and may in
fact not be mathematically correct. However,
such a separation does seem reasonable on physi-
cal grounds. Experimentally one observes small
fractional changes in surface impedance near res-
onance in K and Na in the far-infrared, ~' despite
the fact that all bulk electrons resonate at the same
frequency. This implies that the resonant electric
field is small compared to the nonresonant field at
the surface This does n.ot, however, mean that
at distances large compared to the skin depth the
resonant field remains small compared to the non-
resonant field. In fact, if the resonant fields were
much smaller than the nonresonant field at all dis-
tances from the surface, the variational approach
formulated by Drew" would have been successful
in explaining the cyclotron-resonance line shape
in potassium.

Further, we separate the nonlocal conductivity
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into resonant and nonresonant parts,

o (x, x') = a'(x, x') + o„'(x,x') .

In order to be more precise, we must first specify
that we are concerned with say the nth subharmonic.
Then the resonant part is that part that is singular
at & =neo, and the nonresonant part is not. We
make this point for the following reason: o (x, x }

obviously includes the contribution from all elec-
trons that strike the surface, but those electrons
that do not strike the surface also make contribu-
tions to the conductivity that are not singular at
&u =ne, and are included in a (x, x').

To be more specific, we write down the Fourier
transform of the conductivity from all electrons
that do rat hit the surface (see Appendix B, Ref.
s) ~

3 N

3 Nep ~ . p ~ s„(kR, sin8)s„(k R, sin ) sin(k —k}R,sin8
d8 sine cos~8 ~

2 m(u, p „ i((u/(u, -n)+I/(o, v v(k' —k)

x [E'(x') + E'(x')] . (10)

We separate this equation into two by isolating
those terms that are singular at co =neo, from those
that are not. In fact we assume that the solution
of Eq. (10) can be found by simultaneously satis-
fying the following two equations:

8'E'(x)
ex2 = AOP0 dx' o'(x, x')E'(x')

8'E'(x)
p

—i&@pp dx' a(x, x')E'(x')
X 0

= i(o Pp dx' o„'(x, x')EP(x') . (12)
0

Clearly if (11) and (12) are both satisfied, then
so will (10). If our separation of the electric field
into a nonresonant and resonant part is justified,
then (11) is an adequate prescription of it. If we
were to include any other terms, E (x) would be
singular at ~ =neo„which we have explicitly as-
sumed is not the case. If the nonresonant field
E (x) is given by (11), then (12) follows directly.
In summary the separation of Eq. (10) into Eqs.

The conductivity is a sum over terms each reso-
nant at a different subharmonic n. o„"(k,k ) and its
corresponding transform o„"(x,x ) is the nth term
in the sum. The remaining terms are included in
o(x, x') along with the conductivity caused by elec-
trons that hit the surface.

Having defined how we partition the fields and
nonlocal conductivity into resonant and nonresonant
parts, we can rewrite the wave equation (3) as fol-
lows:

8 E (x) 8 E"(x)
&x ex

+

= i(opp dx'[o'(x, x') + o'„(x,x')]
0

(11) and (12) follows from our assumption of the
separability of conductivity and electric field into
nonresonance and resonant parts.

The solution of (11) simply gives us the spatial
dependence of the nonresonant field. We assume
for simplicity that it is an exponential,

E'(x) =Ae '" (13)

where n is a complex constant given by the H0= 0
surface impedance Z0,

0 = Ad Pp/Zp (14)

This approximation is least appropriate in the
anomalous-skin-effect regime, i.e. , at microwave
frequencies and at low temperatures. At far-in-
frared frequencies, however, we are returning to
the classical limit and the exponential approxima-
tion is more satisfactory.

The second equation, (12), is a wavelike equa-
tion for E"(x), driven by a resonance current

Z„(x) = f dx'o„"(x, x')E'(x') (ls)

The resonant current is produced by the resonant
nonlocal conductivity and the nonresonant exponen-
tial field. On the left-hand side of (12) o is the to-
tal conductivity.

We find an approximate solution to (12) in the fol-
lowing manner: To facilitate a Fourier transform
of (12) we first extend the metal to (- ~) but keep
a diffusely scattering boundary at x=0. No current
is carried across the boundary; i. e. , o(x, x ) =0
for x&0, x'& 0 or x& 0, x'&0. The driving cur-
rent J„(x) in (15) exists only for x &0 so this does
not alter the exact solution for E'(x) Then.
o(- x, —x ) may be taken equal to o(x, x ). [This is
true for the ordinary polarization where we con-
sider only one component of the conductivity tensor
o„(x,x ). In a magnetic field the system is invari-
ant with respect to a twofold rotation about the s
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=Au p, J„(k)

J'„(k) can be found exactly:

(17)

)
3 Pea 1

4w m"u), (n —ik)

x d8 sin8 cos 8 I„-ioR e "g„kR e™.
0 (19)

Finally we reduce (17) to an algebraic equation

by using an approximation due to Chambers. ~~ In
the large-k limit Chambers argues that, to good
approximation, we find an effective nonlocal con-
ductivity o„,(k) such that

1 dk' cr(k, k ') g'(k') = o„,(k) g "(k) (20)

This is tantamount to replacing the surface region
or the region near the diffuse boundary in Eq. (16)
by a unifox'm region with nonlocal conductivity
o,«(k). In effect, the lack of translational invar-
iance is ignored by removing the spatial perturba-
tion of the surface. In place of the surface or dif-
fuse boundary one writes down a nonlocal conduc-
tivity that treats in some approximate way the fact
that some electrons strike the suxface while others
do not. Equation (17) is thus reduced to finding the

electromagnetic wave 8"( )kthat is excited in an
infinite medium by the resonant current J„(k)where
the conductivity is not the bulk conductivity but a
conductivity approximating the surface region

This should be a good approximation in the large-
kR, limit. The spatial perturbation of the conduc-
tivity, due to the surface, extends out to 2R, (Fig.
3). For a wavelike solution to exist at all, then,
we must have wavelengths sufficiently short that
kR, »1. That is to say, the spatial variations that
can be described by an effective conductivity must
have a length scale much shorter than the length
scale of the variation in the conductivity, 2R,.
The wavelength of the relevant excitations may be
taken as 1/5, where 5 is the skin depth. In the far-
infrared, in the alkali metals, in magnetic fields
of -100kG, R,/b-kR, &10. Chambers originally
used the approximation (20) for kR, —~, although it

axis sending x- —x, x --x. Therefore, a„(x,x )
= o„(-x,-x'). ]

Equation (12) is rewritten as

S'E (x) —i(ohio dx o(x, x )E"(x ) =i(opaT„(x)
(1.6)

and its Fourier transform

-k'g"(k) i~-q, f dk'o(k, k') g"(k')

Sx tqe' [(kRp-1] If(kR-i)
4 m*(o l (kR) I' (22)

pggse froAts

(h)

FIG. 4. (a) Two types of orbit that contribute most
strongly to the conductivity at x in the short-vravelength
limit. (b) Near the surface one of these collides with
the surface; the other does not.

is not exact even in this limit. In these calcula-
tions we have used this approximation at large but
no infinite values of kR, .

The form of o,«(k) that is suggested by Cham-
bers is

au~(k) =-' [as~(k)+ os(k)]

Chambersa argues that at a point x in space, Fig.
4(a), the large-k conductivity is produced by two

types of oxbits indicated by A and B. Those orbits
that are moving through the point x at an angle to
the phase front see a rapidly fluctuating field and
contribute little current at x, whereas the orbits
nearly tangential to the phasb front make a larger
contribution. If we place a surface to the left of x
and sufficiently close that it cuts off the extremal
orbit 8, it is clear that one-half of the resonant
conductivity is removed. Since the resonance in
the conductivity is produced by electrons returning
to the point x with phase information, Chambers
further axgues that the contribution to the large-0
conductivity by those electrons that do stx'ike the
surface is approximately one-half the infinite me-
dium conductivity in the abseqce of the field, hence
the form of o„f(k) given in (21).

For os(k), we take Eq. (7). For as.owe take the
usual form for o(k, v)z.o given by the Boltzmann
equation

.2 ice' [(kR)'-1] 1+kR
4 m*&o I (kR) t 1 —kR (kR)IJ~
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where R =vr /rd. For arr. o(k) we have taken the
vv - limit, since the finite scattering rate is of
little consequence for the background, nonresonant,
conductivity.

Using (20) and (21), Erl. (13) becomes

I

or

E(0') =Ep(0') +E'(0') =Ep(0') + f dk 8'(k)

E(0') =E (0') —iron, o ) ko . "
(

. (25)
dk J„(k)
+ rrpiroosrr k

[-k' —irdirprr„r(k)]g'(k) =i(oirp J„(k)

8~(k)
'kd go Jp(k)

ko+irdir, orr~r(k)

The total electric field at x=0' is

(23)

(24)

Correspondingly, the derivative at the surface is
given by

dk +ik J„k
k +i rdporhrr(k)

Using (4) for the surface impedance, we have

f'" dk [Jp(k) +Jp(- k) ])[ ( ("dk (ik) [J„(k)—J'„(-k)]
k + ZCO p, pO'ef fyk)

If we assume, as is the case, that the resonant
fields near the surface are small compared with the
nonresonant fields, we can write for the change in
Z at the nth resonance

5Z . dk J k+J„-k
Z P

Pp k oi&+ireooirr(k)

f' ik J„(k)—J„(-k)
+$4) p, p )

dk —
2

4) rr k + rrdirpo'err(k)
(28)

It should be made clear, in order to assume that
the resonant fields at the surface remain small
compared with the nonresonant fields, we cannot
allow arbitrarily large ~,7. It appears unlikely,
however, that in the far-infrared values of co,7- will
be found that invalidate this assumption. At least
for K and Na, the examples used here, the values
of co,r measured experimentally allow us to make
this assumption.

Before using (28) to calculate numerically the
resonant line shape for potassium and sodium, we
would like to relate (28) to the variational solution
found by Drew. " If we assume that the number of
resonant electrons is small compared with the num-

ber of nonresonant electrons even in the bulk, then
we may take for a«(k}

It is also interesting to point out that (24} is sim-
ilar to the result one obtains if one assumes the
pseudospecular boundary condition. Then we have

1(d p, p dk

rr ~ k +1Qppprrrr(k)
(32)

The differences between (32} and (28) are instruc-
tive. Replacing o„"(k) in (32) by rr,«(k) accounts
for the fact that the waves that are excited near the
surface are only vestigially related to the waves
that can in fact propagate at distances greater than

2A, . They are less dispersive and are damped by the
presence of electrons scatteredby the surface. Also
substituting the large-k limit of o«(k) into (32) one ob-
tains precisely the Azbel'-Kaner result. ' It can
be seen then that (28}differs from the usual Azbei'-
Kaner result in the following way: Substituting the
full o,«(k), rather than its infinite-k limit, makes
the solution sensitive to the finite-k behavior of the
dispersion relations. Second, we weigh the waves
excited at resonance by the current J„(k}, which
will have the effect of diminishing the strength off
the resonance due to retardation effects. This
manifests itself by the rapid decay of the subhar-
monic structure.

o.rr(k) = oe.o(k) (29)
III. COMPARISON WITH EXPERIMENT

rorirorrrr o(k) = of ~ (30)

That is to say, we ignore all wave propagation ef-
fects. Within the spirit of our approximation, that
the nonresonant field was exponential, we can re-
place

To numerically compute 5Z/Zo from (28), we are
forced to make two more approximations. First
we write down an analytic approximation to j„(k),
which is valid for k &2n/R, :

3 Ne2 1 4&/e

4rr nrr(g (Q ik) (2rr) r (rrk) r Rj (k)=—

(31}

Making this substitution in (28) and transforming
back into real space, we obtain

8Z=-Z'o 5 dx f dx'e o*rr, (x, x'}e '"
26,Rc f ri2/2ABc

X
(2. 08+n /2erR i +/noR2k~) r (33)

which is Drew's result.
This approximation is derived in the Appendix and

compared with the exact expression, Erl. (19).
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FIG. 5. Cyclotron resonance in potassium for E I H

at 29.69 cm . Top figure shows infinite medium dis-
persion relations for high-frequency cyclotron waves.
Solid line at middle is experimental trace. Result of
Eq. (24) on lower figure. Dashed curve, variational
result from Ref. 5.

Since (33) is only valid for k & 2n/R„we truncate
the integration in (28) and impose the lower limit
k = 2n/R, rather than carrying the integration all
the way to zero. The assumption that the dominant
contribution to the resonance came from the high-
k part of (28) is, however, implicit in the use of
(20) to solve the integral equation (17). (It is gen-
erally correct in discussing the surface impedance
of a semi-infinite metal that the short-wavelength
behavior at the surface is most relevant. This is
quite different from transmission or two-sided ex-
periments, which are intrinsically sensitive to the
long-wavelength behavior in the bulk. ~ '~

)
The only adjustable parameters we have to fit

the line shape are the mass m* and relaxation rate
I/r, which we leave as fitting parameters. The
skin depth I/n we calculate from the H = 0 surface
impedance Zo, which can be calculated by either
Dingle~' expansions or by using a two-exponential
variational calculation provided by Baraff. 6 We
use the latter.

In Fig. 5 we show the results of the calculation
for K at 29.69 cm '. At the top of the figure is
shown the infinite-medium dispersion relations

Cg

N 10~

CI

10060 80
MAGNET IC FIELD, kG

FIG. 6. Cyclotron resonance in sodium for E )t H at
29.69 cm '. Top figure experiment; lower figure calcu-
lation.

which are discussed in Ref. 5. The solid line at
the middle of the figure is the experimental re-
sult. (The reader should ignore the base-line drift.
In particular the upward motion above 100 kG is not
real. ) The calculation given by (24) with the above-
mentioned approximation for j„(k) and truncation of
the integral is shown in the lower part. The dashed
curve superimposed on the experimental trace is
the result of the earlier calculation' based on the
variational result. It fails in two regards. There
is no absorption on the high-field side of cyclotron
resonance as is seen experimentally. Second, al-
though it gives a reduction in the subharmonic
structure as one goes to lower fields, the rate of
decay is too fast compared with experiment. - In
comparison, the results of the present calculation
give the observed line shape, especially with re-
gard to the absorption on the high-field side of each
subharmonic, and also give the experimentally ob-
served rate of decay of the subharmonic structure.
We have fit the lower curve to experiment with a
mass of 1.216 and a relaxation rate of 1/~ = 0. 21
cm ~. In a previous publication we fit just the
leading edge of the subharmonic resonance with the
variational calculation due to Drew. " This re-
quired a 0. 5%%uq larger mass and substantially the
same relaxation rate. It appears that the more ex-
act calculation gives the line position and shape with
the microwave value of the mass~' and a relaxation
rate dominated by electron-phonon scattering.

A similar calculation is shown for Na'7 in Fig. 6.
We have fit the leading edge and position to a mass
value of 1.253 and a relaxation rate of 1/r = 0. 22
cm . As can be seen, the rate of decay of the sub-.
harmonic structure and the absorption on the high-
field side of each cyclotron resonance are repro-
duced in a quantitative way. There appears to be a
departure from experiment, however, on the low-
field side of resonance. It is not clear what this
rather modest failure is due to. Since it is notice-
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TABLE I. Cyclotron resonance in metals.

Azbel-Kaner limit

Chambers limit Variational
calculation (Drew)

ably stronger for Na than K, it may signal a fail-
ure of the approximation of the nonresonant field by
an exponential. This approximation is worse in

Na than K. Although less likely, it may be some
failure in our expression for oz(k), which is used
in o,«(k), due to departures from the one-electron
solution to the conductivity caused by Fermi-liquid
effects.

SUMMARY

Although this derivation of Azbel'-Kaner cyclo-
tron resonance in the retardation regime is hardly
rigorous, the assumptions used to arrive at the fi-
nal answer appear to be physically quite reasonable.
The relationship of this approach to previous solu-
tions of the Azbel'-Kaner problem is best seen by
referring to Table I. We can characterize the type
of resonance seen by two parameters. The first
is the fraction of resonant electrons, N, /N, in the
infinite medium. For a large fraction of resonant
electrons we must allow the possibility of real wave
propagation in the bulk; for a small fraction, no

wave propagation occurs and the resonance may be
described by resonances in the single-particle cur-
rents, near the surface. Second, we must deter-
mine whether the resonance is retarded or not. As
discussed previously, "'3'4 if the electron es-
capes the skin depth before the incident field
changes phase, we may consider the usual cyclo-
tron resonance, but if this does not hold, the
resonance is retarded. "' ' For circular pieces
of Fermi surface the resonance is retarded or not
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APPENDIX

We wish to find an approximate but analytic form
for the resonant current, Eq. (19),

3 Ne~ 1
j„(k)=— . d8 sin8 cos'8

4w m*cg, 0. —ik

x s„(-faR)e '"e„(kR)e"a (AI)

where R =R, sin8. By using the method of station-
ary phase one can find an asymptotic form for
e„(z) for large z:

as Rgt) &n or R,/f) &n, respectively .The theory
constructed here describes resonance for N„/N= 1,
in the retardation regime RJ5 &n . In the retarda-
tion regime it is apparent that cyclotron resonance
may be described as the excitation of high-fre-
quency cyclotron waves by resonant currents gen-
erated by the dominant, rapidly decaying nonreso-
nant field. The high-frequency cyclotron waves
near the surface are related to the bulk waves, but
have reduced dispersion and an increased damping
rate produced by the electrons that strike the sur-
face. The retardation effect manifests itself by re-
ducing the strength of the current exciting the high-
frequency cyclotron wave as one goes to high sub-
harmonics.

In a future publication we consider the problem
for the extraordinary polarization, E incident per-
pendicular to Ho. The problem is slightly more
complicated owing to the presence of the Hall field
and the possibility of longitudinal as well as trans-
verse wave propagation. The problem, however,
should be amenable to the same basic approach
used here.

5x 10
3 cu

Z.'
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Rc=4.83 x 10~ 0
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(b) cf Rc =9.387
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FIG. 7. (a) Real resonant current for real skin depth. Solid curve Eq. (19); filled circles, approximation given by

Eq. (33). (b) Imaginary resonant current for real skin depth. Solid curve Eq. (1.9); filled circles, approximation given

by Eq. (33).
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( ) [
ig int/2(2 / S)l/ 2&-ir/4 in /2g1

e-ig inr/2(2 /g)1/2eir/4e-in /2g] (A2)

In the integral (Al) the Bessel function 4/„(z) is
multiplied by e"'.

By substituting 1/ = 1/sin8 —1 we can rewrite the
integral in (A5) as

no

( 2 2~)1 /2 i n /2aii~itP/22sr)r
(v+ 1)'

(A6)
The important region of the integral is e & 1 and we
can approximate quite accurately

8 ( ) ig (I/2 ) [e2ig -inr/2(2~/g)1/28-ir/4ein /2g
~Z

inr/2(2&/2)1/2&ir/4 -in /2g] (A3)
(1/ + 24/) ~ 2 I

(AV)

The first term is rapidly oscillating for large z
and hence makes no contribution in the integral
(Al). A similar argument for 1/„(iaR)e '" gives the
following for the important part of the integrand:

The integral can now be quickly done giving for
j„(k) the following form:

3 Ng
j„(k)=—

41/ mnid. (n —ik) (21/)1/2(nk)1/2 R,
2„(-inR)e s„(kR)e'""

-tP/20fR -st(/ /2AR
i&/4

21/ (aR)' R~in8

The integral then becomes

3 Ne 1 1 1 1
411 114'id, (n - ik) (2ir) R, (42k)"'

t
de sag rP/2NB grP /2'

(A4)

(A5)

-8/aa z-s8/ pnme

(2.03+n'/2', +in2/2kR. )2/2

which is used in Eii. (33) in the main text.
A comparison between the approximate result

and the exact integral is shown in Fig. V. A real
@=1.94xlo m ' has been assumed for the pur-
poses of this figure. As can be seen the approxi-
mation is quite good for the range M, & 2@, for both
real and imaginary parts.
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