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The lowestwrder cubic (E,) and quartic (E,) anharmonic contributions to the Helmholtz free energy
have been calcuhated at several temperatures and lattice spacings for sodium and potassium using
interionic potentials developed by Taylor and co-workers. The effect of using either the Geldart-Taylor
or Vashishta-Singwi screening on these calculations has been examined. F, and F, are not sensitive to
the choice of screening. A method of calculating E, has been developed which is more suited to
long-range potentials. At all temperatures the anharmonic spccNc heat at constant volume (C"„) is
found to be positive for potassium, For sodium, Cr is positive for T ~ 293'K at which temperature
F, and E~ appear to cancel each other; the sign of C"„becomes negative at T = 361 K.

I. INTRODUCTION

1In two recent pubs. ications Glyde and Taylor and
Duesbery et a/. have calculated anharmonic-
phonon frequency shifts and widths as functions of
temperature in Na and K. In both cases self-
consistent phonon theory was used with the cubic
anharmonic term treated as a perturbation. How-

ever, it was also concluded' that straightforward
use of perturbation theory gives similar results.
Hence, we felt that it would be both useful and
interesting to use perturbation theory to calculate
the Helmholtz free energy for these metals.

In this paper we present the perturbation-theory
calculations of the two lowest-order terms in the
Helmholtz free energy E3 and E4 and the resulting
anharmonie contribution to the speeifie heat C~
for Na and K. In Sec. II we describe the model
used to calculate the interionic potentials which
are the same ones that were used by Glyde and
Taylor and Duesbery g] gl. Since this model de-
pends on the use of electron-gas screening, it
contains long-range oscillations arising from the
well-known logarithmic singularity in the slope
of the screening function. This means that calcu-
lations of E3 and E4, the cubic and quartic contri-
butions to the free energy, must be extended to
many neighbox s. This can be very time consum-
ing unless maximum use of symmetry is made.
In See. III we outline the method used to reduce
E3 and E4 to a form which enables their calculation
in a reasonable amount of time even on a medium-
size computer, such as the 2SK word Burroughs
5500, where our calculations were performed.

In Sec. IV we present the calculations of E,
and E4. To calculate the potentials we used the
Geldart and Taylors screeing function in both Na
and K. However, there are a number of other eal-
eulations of electron-gas screening available4'5
and to test the significance of the choice of screen-

ing we repeated the Na calculations at two tem-
peratures using the Vashishta and Singwi' version
of screening. Both of these screening functions
satisfy the compressibility theorem but differ
somewhat for q-k~. Fortunately, though, the two
sets of E, and E4 were quite similar and therefore
the choice of screening does not appear to be very
critical. A more detailed discuss'ion of this and
the significance of the data is given in Sec. V.

II. THE INTERIONIC POTENTIAI.

Calculations of E, and E4 necessarily rely heavily
on the use of models developed for the theory of
lattice dynamics in metals. Now the lattice dy-
namics of Na and K have attracted a great deal of
attention in recent years. Prompted by the publi-
cation of a number of accurate experimental mea-
surements of phonon dispersion curves, ' elastic
constants, liquid structure factors, and
specific heats" a vast number of calculations based
on a wide variety of models has appeared in the
literature. If we exclude those models which are
essentially parametrization schemes to fit exper-
imental data, we find that the rest of the calcula'-'

tions rely on the use of a two-body effective inter-
ionic potential which is eonstrueted in the follow-
ing manner. First, the Coulomb repulsion between
the ions is introduced. This is then screened by
the conduction electrons interacting with the ions
via the electron-ion interaction. The bare elec-
tron-ion interaction is usually calculated using a
pseudopotential model, which is then screened by
some form of screening function based on eleetron-
gas theory. Finally some workers have introduced
a Born-Mayer-type of repulsive interaction to
take into account any possible overlap between
neighboring ion cores. Vosko" has shown that the
core-core overlap interaction in Na is negligibly
small and a similar result is to be expected in
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any material, such as K, which has a tightly
bound core. Hence, the Born-Mayer interaction
shouM not be used in these materials.

Geldart eP al. were the first people to provide
a fundamental calculation in Na which gave good
agreement with the experimental phonon disper-
sion curves of Woods et al. without resorting to
the Born- Mayer interaction. To describe their
model let us note that in a material such as Na or
K, where nonlocal effects are small, '~ the inter-
ionic potential may be written in the form

V(r) = (Z'e)'/r- [2(Z'e}'/v] J E(q}sinqr/qr dq,

(1)

E(q) = 1/Z "»(q)'{q(q)/[q'+ q(q)]] . (2)

»(q) is the bare electron-ion matrix element, Z'
is the valence, and Q(q) is the static electron gas
screening function related to the dielectric func-
tions by the equation

e(q) =1+q(q)/q' .
To calculate M(q) a single orthogonalized-plane-
wave {OPW) model was used to represent the con-
duction electron state and the nonlocal terms were
averaged over the Fermi sphere. In this approxi-
mation M(q} takes the form~4'~4

M(q) = G(q~, ) —&q' U,(q), (4)

where

G(x) =3(sinx- xcosx)/x',

5 =Go/8~Z go~

Qo being the volume per ion, ao the Bohr radius,
and Uo(q) is basically a pseudopotential arising
from the non-plane-wave-like component of the
OPW. Uo(q} must be expressed in rydbergs.

To calculate Uo(q) the Prokofjew~ potential
was used to represent the Na' ion and a similar
type of potential constructed by Duesbery et al.
was used to represent the K' ion. The calcula-

tions were performed at five values of the lattice
parameter a in Na and four values of a in K. For
sodium at 90 'K, lattice parameter (a = 4. 234 A)
values of Uo(q) can be obtained from Geldart,
Taylor, and Varshni. '6 Similarly for sodium and
potassium Uo(q) can be obtained at other lattice
parameters and is available upon request from the
authors.

For the screening function Q(q), the Geldart and
Taylor calculation was used.

The choice of model for our calculations is pre-
cisely the same as was used by Glyde and Taylor'
and by Duesbery et a/. This model has already
been used very successfully to calculate phonon
frequencies, ' '~6 elastic constant, ~' ' 0 and the Na

liquid structure factor. Hence, we feel that we
can use it confidently for the extensive calcula-
tions required to determine E3 and E&.

IH. EXPRESSIONS FOR F3 AND Ii~

The formal exyressions for the cubic (Eo) and
quartic (E,) terms of the Helmholtz free energy,
valid for all temperatures, have been derived by
many authors 2 after Ludwig's original deriva-
tion and we shall only state the results.

A. Quartic term (I'„)

The finite temperature expression for the quartic
term is given by

2

@{k&A ~ koj ol —kgj4, ko jo)
"j. "2 & 2

x {2n,+ 1)/(u4 (2no + 1)/(uo, (v

where v„=- &o(k,j,) is the eigenvalue associated
with the k,j, normal mode of vibration, N is the
number of unit cells in crystal, P =—1/ks T, n&

=-n(k, j,) =1/(e""4 —1), and @(k,j„k,j,;k,j„k4j4}
(=- y) is the Fourier transform of the fourth-
order atomic force constant defined by

, &C(~„) - - - - -.- - - 2fl(~)
C(kqj4kojo', kojo', k4j4)=.2M4- Z

~

-", (n e, )(n eo)(n'eo)(n e4)+
g } lnl a)n)

x [(n ~ e,)(n ~ eo)(e, ~ e,)+ (n ~ eo)(n e,)(e4 ~ e,)+ (n ~ e,)(n ~ e4)(e, ~ eo)

+ (n e4)(n ~ e~)(eo ~ e,)+ (n ~ eo)(n ~ e,)(e, ~ e,)+ (n ~ e~)(n ~ eo)(eo ~ e4)]+ a'-lnl '
4

x [(e, eo)(e, e4) + (eo ~ eo)(e4 ~ e,)+ (e~ ~ e, )(eo e4)] Q (1 —8 ' &'),
gag

(8)

where g„=- I r„I =--,' ) an), a is the lattice constant,
n is a vector with integer components determined
by the lattice geometry, M is the atomic mass,
and e, =-e(k, j&) is the eigenvector corresponding
to the mode k,j,. Substituting for g in Eq. (V)

we find

S2
E4= ~ Z' [S„(n)+S4,(n)+S„(n)],
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ss, (n)=[c(r„)/I nl ]f (n),

Sss(n)= ~"3 I
4Eg (n)+2f(n)fI(n) I)

S„(n}= 3)-('3 I
2 Z I'(n)+4 2 Z'2(n)+fI'(n)l

)

f (n) =Z [n ~ e(kj)] c(kj,n),
tg

g (n) =Q [n ~ e(kj)]8 (kj)c(kj., n),

h(n)=Z [e(kj) e(kj)]c(kj, n),
Rj

I (n) =Z 8, (kj)c(kj, n),

J,2(n) =5 8, (kj)82(kj)c(kj, n},

q(kj, n) = [1—cos(21/ak ~ n)][2n(kj)+1]/Id(kj),

and ax [x,y, 8] and P = ///+ 1 (i. e. , if /// is x, P is
y, etc. ). A(r„}, B(r„), and C(s„) are defined by

A(r„) = [4 "(r)—(1/r)p'(r)]„.„
B(r„)= [p"'(r) —(3/r)p" (r)+ (3/r )p'(r)],
C(r„)= [f'"(r)- (6/3 )y"'(r) + (15/r')y "(I)

—(15/rS)y'(3 )]„,„„,
where p'(3), /t/ "(r), ... etc. denote the various
derivatives of p(r) with respect to r evaluated
at r=r„and a is the lattice constant.

B. Cubic term (F~)

The full expression for F3 is given by

5I'3 = — Q Z /3 (kI + k2+ kS)
~1~2~3 ~1~2 3

xl @(fsIiI }'32j2 )tSjS)l f(1»3) (io)

where

f(1,2, 3) =
(d 14tl2C03

n 1Pg2 + Pl2Pl3 + Pl3Pl 1 + Pl 1 + Pl2 + 1

(KI + (d2+ IdS)

+3 Pl2Pl3 + Pl3Pg1 —n1Pg2 + Pg3

(QPI + Id2 —I'dS)

4(~ljI ~2j2 ~3j3)

3/3 + ~ (kIjI)82( 2j2}8 (kSj3)
a eA'

x @ 3„(n)[sI+s2+ sS],

where s, = sin(vak, n) and a, P, y each take the
value xyg in summation. The summation over n

implies the sum over neighbors considered in the
anharmonic interaction. When the summation is
carried out over a, p, y, in Eq. (11) the resulting
27 terms can be grouped into 10 terms by using
the symmetry properties of p ~ (the third-order
tensor derivative) and we find

and ~(kI+k2+k, ) is unity if k, +k2+k, is zero or
2g7, where v is a vector of the reciprocal lattice,
and zero otherwise. @(kIj»}'32j2,}'33j,) is the

Fourier transform of the third-order atomic force
constant and other symbols appearing in Eq. (10)
have been defined before in connection with F4.
Using the restriction of 4 function on the three
wave vectors k„k„and k„C (}' 3jI„fjs2„k jS)Scan
be written as

4(1» } 3/ 2 [Axxx Ix Sx Sx + Ayyy( } Iy82y 3y+ 4'ggg( Ig82g83g
M g

+ P,~(/S)(81,82„83,+ 81„82„83,+ 81,82„83„)+ P„,(SI)(81,82,83„+81,82,83„+81„82,83,)

+ Pyxy(SI)(ely82x83y+ 8Ix82y83y + 81y82y83x) + Aygy(y/) (81y82g83y + 81g82y83y + 81y82y83g}

+P~g(n)(81,82,83, +81,82g83g+81,82,83,)+fgyg(n)(8Ig82„83g+81„82,83,+81,82,83 )

+ /f/ y (33)(81 82y83, + 82*83„81g+ 83„81„82,+ 8Ix82g83y + 8Ig82y83, + 81,82„83g)]

[xs (nI) s+(2)/Is+(3)y]I) . (i2)

Now for a given wave vector k the summation over
neighbors would involve sums of the type

I

The final result is

D,„,(k) =Z P,y, (n) sin(I/ak ~ II) .
IL

(i3) x[s„(s,„s„+s„,s,„}+s„y(s„s +s„s )

-This sum can be easily carried out for a nth lat-
tice point -in the sth shell having n' lattice points
with coordinates 3 a[n'„, ng„, /I ], whegre n'„n'„n',
are three non-negative integers with n„' ~ n'„~ n', .

+ s„,(s s,„+s,„s )], (14}

where s 3= sin(va|t~ngs). Due to the invariant na-
ture of the summand, the right-hand side is to be
evaluated for one representative point only in a
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given shell. The sum over s implies the summa-
tion over shells. Similarly other sums of the type

D,„,(k) =Z y„„(n)sin(vak. n),

etc. , can be evaluated.

IV. NUMERICAL RESULTS

When evaluating E, and E4 one has to decide (a)
how many neighbors over which to perform the
sums and (b) what mesh size to use for the sums
over the k vectors. Let us discuss (a) first. We
have carried out the calculation of both E3 and E&

for as many as 23 neighbor shells in both materials
and at aD temperatures. In each case, E3 con-
verged very nicely and it was almost certainly not
necessary to sum over so many neighbors. On

the other hand, as each neighbor contribution was
added in to E4 it tended to oscillate, sometimes
quite wildly, and by the time the 23rd neighbor
was reached, it still had not converged. However,
it was possible to estimate what the final number
would be within certain confidence limits and
these estimates are the numbers that are listed in

this paper.
The reason for the slow oscillatory convergence

is easy to understand. Both the Na and K poten-
tials show an asymptotic behavior of the form2'20

cos(2k+x+ 8). Therefore, the nth derivative
of these potentials will also contain a term of the
same form. Now for a given neighbor distance
from the origin r„, the number of neighbors situated
at the distance is roughly proportional to r„' for
large x„. Thus we can expect that contributions
to E4 from individual neighbor shells will show

roughly an y„dependence, which of course gives
rise to rather slow convergence. Exactly the
same problem has been encountered in the calcula-
tion of elastic constants. The more rapid con-
vergence of E3 is attributable to the fact that this
term contains essentially the square of the poten-
tial and its derivatives, and thus the individual

neighbor contributions show an y„6 dependence,
which rapidly became negligibly small as r„ in-
creases.

An important consequence of the slow conver-
gence of E4 is the fact that it can be extremely
hazardous to terminate the sums at a small num-

ber of neighbors when using an oscillatory poten-
tial. For example, if we had terminated our sums
at the second-neighbor shell we would have ob-
tained values of E4 which differed from the final
numbers in Na by about 15/g or so. However, in

K, the same procedure would have yielded values
of E4 which were typically 100Vo too large.

Turning our attention to the mesh size for the
sums over 0 vectors, we have used a simple cubic
mesh of wave vectors (k piL) an=d boundaries of

The experimental specific-heat data for all the
alkali metals in the solid phase have been analyzed

by Martin' from the viewpoint of extracting the

anharmonic contribution to the specific heat at
constant volume (C~). In each case he has pre-
sented the results in the form

C"„=3%A(V)ks T,
where the coefficient A refers to the O'K volume.
Thus, we can make a meaningful comparison of
our results of A(V) with experiment only at low-

temperature volumes.
For potassium we find that A is positive over

the entire temperature range. At T=9 K our
value of A is within 75/0 of the value given in Table
VII of Martin's paper, which can certainly be re-
garded as reasonable agreement for this type of
calculation.

For sodium the situation is not so simple. Our
values of A, although positive over most of the
temperature xange, becomes -0 at 293 'K and ac-

TABLE I. F3, F4, and the coefficient A in C~ for so-
dium and potassium. FB and F4 are in units of 10' N+T)
e~r

' and A in units of 10 4.

Lattice
parameter F3 F=F3+F4

A

(CAV = 3NAICT)

4. 2247 A

(T = 5'K)
4.234 A

(T=so K)
4. 251 A

(T = 160 K)
4. 288 A

(T=293 K)
4.309 A

(T= 361 K)

5.233 A

(T = 9'K)
5.261 A

(T = 99'K)
5.305 A

(T = 215 K)
5. 343 A

(T = 299'K)

Sodium
—2. 56 2. 10+0.20 —0.46+0. 20 0.42+0. 2

—2. 47 1.42 + 0. 10 —1.05 + 0. 10 0.97 + 0. 1

—2. 58 l. 95 w 0. 05 —0.63 *0.05 0. 58 + 0. 05

—3. 01 2. 90+0~ 2 —0, 11+0.2 0. 10 +0. 2

—3.08 3„10+0.15 +0.02 +0.15 0.02 +0. 14

Potassium
—1.66 0, 70 + 0. 15 —0, 96 + 0. 15 0.88 + 0. 14

—l. 91 1,30*0,10 —0.61 + 0. 10 0. 56 + 0. 1

—2. Ol 1„10+ 0. 05 —0.91 + 0. 05 0.84 + Q. 05

—2. 28 l. 70 + 0. 10 —0. 58 + 0. 10 0, 53+ 0, 1

the first Brillouin zone defined by p„+p„» L, ,
P, +p, - I., p, +P„-1., a d I.-p„op„p, 0,
where p„, p„p„and I. are integers. This yields
2I.' points in the whole zone. %'e find that for
I.=6, E, converges to two significant figures.
For L = 7, the computing time involved becomes
prodigious and does not seem to justify the slight
improvement in accuracy. For E4, I.- 20 seems
to be necessary to get good convergence but the

computer time is no problem in this case since
E4 is a much simpler quantity to calculate. Hence,
the numbers for E4 quoted in this paper are for
I.= 20.

V. DISCUSSION
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tually turn out to be negative at T= 361 K. This
situation arises because of the strong cancellation
between F3 and F4. Our low-temperature value
differs from Martin's result by a factor of 4 which

is still not unreasonable, although it is not as
satisfactory as for K.

As mentioned in the Introduction we felt that it
was of interest to check the influence of the choice
of electron gas screening on the final results.
Hence, we recalculated the Na potential at two

values of the lattice parameter using Vashishta
and Singwi (VS) screening instead of Geldart and
Taylor' (GT) screening. These two screening
functions both satisfy the compressibility theorem,
but differ somewhat for q-k~. The values of F,

and F4 resulting from VS screening differ slightly
from the GT values but the difference does not
seem to be significant. For example, at
g=4. 234 A, VS screening gives F,= —2. 525, F,
= l. 55 + 0. 10 in units of 10 1V(k~ T) erg as com-
pared to the GT results of F, = —2.468 and F4
= 1.42 + 0. 10 in the same units. Quite clearly
then the choice of screening for the type of cal-
culations in this paper is not critical.
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