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A unified theory of hydrogen chemisorption on the surface of a metal is developed by taking

overcompleteness and nonorthogonality of wave functions and electron correlation into account. The
metal-atom system is described in terms of an overcomplete basis set consisting of the eigenstates {both
occupied and unoccupied) of the metal and the occupied electronic state on the adatom. A
pseudo-Green's-function formalism is set up to deal with the overcompleteness problem. The equations

of motion of the pseudo-Green's-function elements are derived and the system energy is expressed in

terms of them. The theory is applied in this paper to the situation where the intra-atomic Coulomb

repulsion is assumed to be sm~8 so that hydrogen che nisorbs in a nonmagnetic configuration and the

ground state is nondegenerate in spin. The Hartree-Pock approximation is worked out within the

overcomplete basis, and the correspondence between our theory in this»~it and previous work is

established. Possible extensions of the perturbation procedure are discussed.

I. INTRODUCTION

Chemisorption —the chemical bonding of an atom
or a molecule to a metal surface —is a process of
central importance in the study of catalysis. Al-
though chemisorption has enjoyed a long history'
of experimental investigation, serious theoretical
efforts at understanding the nature of the process
have been made only for a limited number of sim-
ple adsorbates. This is hardly surprising, in
view of the fact that a chemical bond which involves
a metal as a component must necessarily be com-
plex. The problem studied most extensively the-
oretically has been the chemisorption of hydrogen
on transition metals. Some theoretical work has
also been done on the adsorption of CO, which ap-
pears to retain its molecular character while par-
ticipating in the bonding, and of transition metals
on transition metals. ' Considerable interest has
developed lately in the adsorption of alkali atoms
with the accompanying change of the work function
of the substrate metal. '

Of all the adsorbates mentioned above, hydro-
gen is by far the simplest. Data on chemical ki-
netics indicate that hydrogen chemisorbs on a
transition metal atomically. The problem of hy-
drogen chemisorption is, therefore, essentially
the problem of binding of a one-electron atom to
the surface of a narrow-band metal. So far, the
problem has been approached most fruitfully with-
in the framework, of a one-electron Hartree- Fock
theory, starting with a generalized version of the
Anderson Hamiltonian. ' This theory has been
criticized on the grounds that it fails to take into
account properly the effect of the electron-electron
correlation on the atom. In fact, the intra-atomic
Coulomb repulsion U' is 13 e7 for hydrogen in free
space and is quite large. Even though U must

surely be reduced by dynamical screening when
the atom is brought close to a metal surface, it
still remains the largest parameter of the chemi-
sorption problem and should be treated exactly as
far as possible. One-electron theories of hydro-
gen adsorption are also believed' to give a larger
charge transfer from the metal to the atom than is
observed experimentally. The experimental evi-
dence is based, however, on work-function changes
which give direct information only on surface di-
pole moments. Any result drawn from it on the
exact amount of charge transfer cannot be re-
garded as conclusive.

Schrieffer and co-workers4'" have tried to set
up the theory of hydrogen chemisorption by allow-
ing correlation effects to play the dominant role.
They ignore the effect of charge transfer and as-
sume that a hydrogen atom sticks to a transition
metal in a neutral configuration. This assump-
tion explains the experimental fact that the chemi-
sorption of hydrogen on a transition metal pro-
duces an insignificant change in the metal work
function. The mechanism of bonding is based on
the coupling of the electronic spin on the hydrogen
atom to spin fluctuations in the metal localized in
the vicinity of the adsorbed atom. It is a direct
generalization of the Heitler-I ondon scheme for
the formation of the H2 molecule. The difference
between the present case and that for H& formation
is that one of the components participating in the
chemical bond is this problem, viz. , the metal, is
spin saturated in its ground state. The spin fluc-
tuations ia the metal can arise both from Coulomb-
exchange scattering and from scattering which in-
volves the nonorthogonality of the electron wave
functions in the metal and the atom. In fact, the
overlap of wave functions is a crucial part of the
theory and makes the exchange integral antiferro-
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magnetic rather than ferromagnetic. A number of
points are rather obscure in this theory. The
starting hypothesis (i.e. , zero charge transfer)
on which the theory is based is presumably exact
in the limit of an infinite U. For a realistic situa-
tion where U is finite and probably g lO eV, the ef-
fect of charge-transfer terms on binding should be
estimated before they can be considered truly neg-
ligible. There are also practical diff'. culties in

carrying out a binding-energy calculation on this
model for a real chemisorption system. Paulson
and Schrieffer give prescriptions for calculating
the chemisorption energy in the tmo opyosite limits
mhen the coupling betmeen the adatom and the
neighboring atoms of the substrate metal is either
very weak or very strong. It mill be necessary to
set up a reasonable interpolation scheme, joining
the tmo limits, in order to calculate the chemisorp-
tion energy for the case of intermediate coupling,
which is the situation prevailing experimentally.

It appears, therefore, that the adsorption of the
simplest adsorbate, hydrogen, on a metal surface
is a problem of fundamental theoretical interest,
and it is by no means fully understood. The chemi-
sorption problem is dominated by the large intra-
atomic Coulomb correlation U which ought to be
treated accurately before any approximation can
be made. This implies that any simple one-elec-
tron picture is of limited validity. This is not a
criticism of the Anderson model for chemisorp-
tion which has been widely treated ' ' in the litera-
ture. Such theories are generally based on the
Hartree-Fock approximation and must be correct
when the Coulomb repulsion U is small. In other
words, one-electron theories may be of great
validity for a host of adsorbates other than hydro-
gen. Conversely, the theory of Sehrieffer et al.
is strictly valid in the U- ~ limit. It would be of
interest to construct a theory which goes over
smoothly from the small-U to the large-U limit.
Another point of theoretical interest is the recogni-
tion that the overlay of electronic wave functions
plays an important role in the bonding of a one-
electron atom. It is convenient, in setting up the
theory of chemisorption, to deal mith the combina-
tion of the set {y,j of metallic wave functions and
the set {q&,j of atomic wave functions. But the set
of metallic wave functions (including both bound
and running-wave states) is complete, so that the
addition of atomic wave functions makes one deal
with an overcomplete set of states. This introduces
additional theoretical complications in the problem.
In their theory, paulson and Schrieffer ignore the
overcomyleteness problem by confining their atten-
tion essentially to electronic wave functions bound
mithin the metal. These constitute a subset of the
complete set of states {@~j. Paulson and Schrief-
fer use the variational theorem to generalize the

Hayleigh-Schrodinger perturbation theory in terms
of a nonorthogonal set of states. They also outline
a procedure for writing down the many-body Ham-
iltonian in a second quantized notation after taking
overlap into account properly.

In this and a succeeding paper, our main interest
is to set up the theory of hydrogen chemisorption
by dealing systematically with the questions of
overcompleteness and nonorthogonality of metallic
and atomic wave functions, and of the electron-
electron interaction. Two limiting cases can
arise, depending on the strength of the intra-atom-
ic Coulomb repulsion O'. When U is small com-
pared to the other parameters of the problem, e.g. ,
the bandwidth, the hydrogen atom chemisorbs in
a nonmagnetic configuration, and the ground state
of the system is nondegenerate mith respect to
spin. This is the situation studied in this payer.
Standard procedures of the many-body perturba-
tion theory can then be applied straightforwardly
to the problem. If, on the other hand, the Cou-
lomb correlation U is very large, the hydrogen
atom carries an electronic spin and the chemi-
sorption ground state is spin degenerate. This
introduces further complications in the formal
development of the theory. Our analysis of that
situation will be contained in a later paper.

In this payer, then, we are concerned with small
U when hydrogen chemisorbs in a nonmagnetic
state. The total spin S of the system is zero, and
the ground state in chemisorption is nondegenerate
in spin.

We begin our study with the overcomplete basis
set ({y~jU{y~j, (y~[p, ) &0) and construct a gen-
eralized many-body perturbation theory in terms
of this set. We do this by introducing appropriate
pseudo Green's functions. This is a generaliza-
tion of the approach of Kanamori et al. '3 to the
local-moment-formation problem when electron-
eleetron interaction is taken explicitly into account.
We define the model in Sec. II and work out, in
Sec. III, the equations of motion of the pseudo
Green's functions and the expression for the ener-
gy in terms of them. This analysis mill form the
core of our later study of a degenerate ground
state in chemisorption. In Sec. IV, me first adopt
previous procedures' and present a formal solu-
tion to the problem in terms of the undetermined
yroper self-energy. Next we introduce the Har-
tree-Fock approximation and relate the proper
self-energy to the pseudo-Green's function ele-
ments. Finally, we display explicitly the simpli-
fying assumptions that must be made in order to
derive the Newns model of hydrogen chemisorp-
tion from our mork. We conclude in Sec. V mith
a discussion of possible improvements in the treat-
ment of electron correlation by going beyond the
Hartree- Fock theory. We indicate horn higher-
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order many-body perturbative techniques can be
adapted to the overcomplete basis, and point out

possible areas of future investigation.

H. THEORETICAL MODEL

%e define in this section the model that we use
to study the chemisorption of an atom or a mole-
cule on the surface of a transition metal. Specif-
ically we wish to consider hydrogen as the adsor-
bate and treat it as an unyolarizable one-electron
atom. Generalization to the case of many-elec-
tron adsorbates is easy to carry out. Let us sup-
pose that there are K electrons in the conduction
band of the metal which participate in the forma-
tion of the chemisorption bond. %'e assume that
there are N~ ions in the substrate. If —e denotes
the electronic charge, and if Z e is the charge on

the mth ion in the metal, then charge neutrality
requires that

x= Zz. . (2. l)
fft= $

In the absence of the adsorbate atom and at abso-
lute zero, the N metal electrons occupy all states
of the conduction band below the Fermi energy.

At large separation between the atom and the
metal, we have a free atom and the metal without
interaction. As the atom is brought close to the
metal surface, electron-electron and electron-ion
interactions lead to chemisorption. Figure 1 shows
a hydrogen atom close to a metal surface. The
metal potential is sho~n, for simplicity, as a
square well and electrons fill up all states up to
the Fermi energy e„. The Hamiltonian of the com-
bined metal-atom system can be written

R~ =, tf; —)( I 1&t„((r,—r, ( ) „., I)( —)(.(

+
2 IF —)(,l).

N 2

}r;—r, } (=g }rg —5, } =g }r,-& } =g }5 -&, }
(2. 2)

where r&(%„)denotes the position of an electron
(ion) in the metal and r, (5,) refers to the electron
(proton) of the atom. The Hamiltonian is ex-
pressed as a sum of parts which have a simple
physical interpretation. We may rewrite Ec}. (2. 2)
as

(2. 3)

where K~ and X, refer to the Hamiltonian of the

metal and the free atom, respectively,
Ng g p

~=~, }m.-"n.
}

is the repulsive energy of interaction between the
proton and the metal ions, and

N 2 g 28 8

Z„eNg 2

=, }r,—5 }
(2. 5)

Although the separation of the Hamiltonian of
E(l. (2. 3) displays clearly the terms which are
responsible for chemisorption, it is not in the
most suitable form for the development of a
Green's-function theory. For that purpose, it is
more convenient to treat the N+ 1 electrons of the
metal-adsorbate system on the same footing and
write the Hamiltonian as (h= l)

M+1 2
z = Z —" .v„(r.), v(.-,))2 7%

FIG. 1. Schematic representation of a hydrogen atom
close to a metal sux face. The Fermi energy is denoted
by e&, ft) is the work function, and e~ the unperturbed en-
ergy of an electron on the adatom.

+ —Z U(r; —r&)+PCS .
&s)

~u(r )= —~ &m&
N

(2 6)

(2. 7)
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represents the attractive one-electron potential
due to the metal ions,

V(r ) = - e / ~

r —~.
~

is the potential of the proton, and

U(r4 —r&) =e /~r& —r&
~

(2. 8)

(2. 9)

(2. 10)

where %„, ,=%, is the location of the adsorbate
nucleus. For fixed %„3C„is a constant term in

the energy and will be generally omitted unless
otherwise specified.

Ignoring X„, then, the Hamiltonian of Eq. (2. 6)
may be written in second quantized notation as

is the electron- electron interaction. The prime
over the second sum of Eq. (2. 6) indicates that
the term i =j must be excluded. $C„stands for the

repulsive energy of the ion cores,

2 ....=, I R.-R., i

(rn~s }

X= a'xy~x — V +V„x +Vx x
2m

+ — d'xd'x' 'xy'x' px-x' x'yx .
(2. 11)

The iI(x)'s obey the usual Fermi anticommutation
rule

(g(x), ())f(x'))= 5(x —x'); (g(x), (I)(x')j = 0 . (2. 12)

We consider here the case of small intra-atomic
Coulomb repulsion when the chemisorption ground
state is nondegenerate. The single-particle
Green's function is then defined as the expectation
value of the time-ordered product

g(x f; x'0) = —i(Tg(x t)g~(x'0) ) . (2. 13)

The notation (~ ~ ~ ) stands for the expectation value
in the full interacting ground state of the entire
system. The equation of motion of 9 is easily
worked out.

= 5(f)5(x - R') —i(T[g(x f), 3C]gf(x'0)) = 5(f)5(x —x')+ — V + V„(x)+V(x) i g(x f; x'0)

~'~, Ux-x, r ~x, ~" x, ~' x~ ~xlo (2. 14)

The superscripts on t mean t"= t'+ 0' and t'= t+ O'. We introduce superscripts to resolve ambiguities in the
definition of time ordering. Let us define the one-particle part of the Hamiltonian as 3C,(x) such that

X,(x) = —
2
—V + V„(x)+V(x)

We also define the two-particle Green's function'4

G (X&f»X&f2) X4f&t X4f4)= (T{()t(xf fgf( Xfp2)$ (X4f4)$ (X4f4)j) .
The equation of motion of Q is

'O'*,'*"
=O(t)O(d *),tt (O)O(*-t;-* O).;fd -U-(d *)G'(*tt;-*t, '0),

(2. 15)

(2. 16)

(2. 17)

(2. 18)

- The equation of motion can be formally simplified by introducing the self-energy operator. The proper
self-energy Z(xf; x'f') is defined through the equation

—i f d'xrr(x x)(t'O, t(xtt )d(xit—)d(xt)d (x 0)') /z(xt 't )O(x t ;xxt'o=)d x dt'" . "'
In terms of Z, Eq. (2. 17) reads

) = OIt)O( — ') ~ tt ( )Omt; O),fo( t x*t )4( 't ;x' )
'*"Od". dt""

Bt
(2. 19)

Equation (2. 19) is the starting point of our sub-
sequent development of a pseudo- Green's- function
formalism. Qur basic aim is simple. We should
like to describe the metal-adsorbate system in
terms of the eigenfunction of the atom plus the
metallic eigenstates such that the energy of the
combined system goes over trivially to the sum
of energies of the atom and the metal for large
separation of the two. The set of metallic eigen-
states is complete, however, and the addition of

l

the atomic eigenstate to this set makes it over-
complete. This introduces arbitrariness in the

description of the problem. In the following sec-
tions we try to show how this arbitrariness can be
used to our advantage in setting up a simple and

physically meaningful perturbation theory. In

particular, we discuss the Hartree- Fock factoriza-
tion and show how previous theories of hydrogen
chemisorption based on this approximation follow

as simple limiting cases of the present formalism.
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In Sec. III, we turn to the construction of a system-
atic many-body theory, taking overcompleteness
and nonorthogonality in% account.

III. PSEUDONREEN'S-FUNCTION FORMALISM VflTH

ELECTRON-ELECTRON INTERACTION

It ls necessRx'y, Rt this stRge, to define px"eclse-
ly what we mean by the eigenstates of the metal
and the atom that we talked about in Sec. II. The
question of an overcomplete basis set must also
be clarified before a pseudo-Green's-function for-
malism can be introduced. %'6 are interested here
in the chemisorption of an unpolarizable one-elec-
tron atom. This means that we have to consider
only a single atomic wave function y, (x). The eigen-
state p, of the one-electron atom obeys the Schro-
dinger equation

&.(x)P.(x)-=(- 2
v' ~ &(x))0.(x)= a.8.(x),

(3. 1)
with soD16 Rppx'opx'1Rte boundary condltlon, where
V(x) is given by Eq. (2. 8). For a free atom, the
boundary condition demands that far from the nu-
cleus, y, (x) decays exponentially. The problem of
the boundary condition is more involved when the
atom is brought close to the metal surface, and it
will be discussed briefly later on. The metal is
described by a set of one-electron eigenstates {y»]
which are defined in the following manner. For
the metal alone, without the adsorbate, the one-
electron Green's function satisfies an equation
similar to Eq. (2. 19). Denoting functions with a
superscript M (for metal), we have

. 88s(xt; x'0)
8t

= 5(t)5(x- x')+3C", (x)9"(xt;x'0)

ignore it, omitting finite lifetimes. Moreover, we
are not very much interested in renormalization
effects associated with the energy dependence of
Z"(x, x'; ur). We choose to ignore these by setting
8Z"/8&v= 0, thus essentially evaluating Z"(x, x'; &d)

at &o= ez. Equation (3.4) then reads

&08 (x x ' (0)

—f X"(x,x")g"(x",x'; &o)d x"= 5(x —x') (3.6)

where

&"(x,x') =3C", (x)5(x —x')+ Z"(x, x'; er) . (3.7)

If we rewrite Eq. (3.6) in operator notation as

[&d&&1-Z"]g"((g)=1, (3. 8)

then we are left with the result that the metallic
electrons can be treated as though they move in the
energy-independent single-particle effective Ham-
iltonian X".

It is now possible to introduce the eigenstates
{y»] of the metal Hamiltonian $C" such that

(3.9)

In an actual situation, it is often difficult to find
the states y& and the energies eI, explicitly. %6
assume, however, that these are known. Since
X" of Eq. (3.7) is Hermitian, the set {y») is com-
plete. It represents the entire set of one-electron
eigenstates of the metal, including occupied states
below the Fermi energy and unoccupied states for
both positive and negative energies. The atomic
eigenstate y, can be expanded, of course, in terms
of the. complete set {p»]. If tk) and (a) denote the
state vectors corresponding to the wave functions
y»(x) and &&,(x), respectively, then

gN x t. &~»t» BN x»t». xIO d&&r dt» (3 2)
(3. 10)

ICs&(x) = — V +y„(x) .
2m

(3.3)

Z"(x, x'; &0) = f"dte'" &'-"Z"(xt;x't'),
and a similar definition holds for 9"(x,x'; &0); Now

we are often interested primarQy in electrons near
the Fermi energy. The imaginary part of
Z (x, x'; ur) is small for &u near er. We therefore

Recognizing that g" and Z" depend only on the time
difference in their argument, and effecting a Fouri-
e tasfo tm, bta

[&u —$C ", (x)]g"(x, x'; &0)

—f Z"(x, X; &0)8~(x~, x'; u&) d»x = 8(x —x') .
(3.4)

where &», = (0 )a) is the overlap integral. We pro-
pose to describe the metal-adsox'bate system in
terms of the manifestly overcomplete set of states
{y», y, j. Considerable literature exists on the use
of an overcomplete basis set of states in describing
a system of (effectively) noninteracting electrons.
The problem has been studied in connection with

magnetic impurities in a nonmagnetic host met-.
RI xs, xs.I the band-structure calculationj7'18 of d-
band metals, and pseudopotential theory. ' The
principal feature which distinguishes the present
paper from previous work is that we take electron-
electron interaction explicitly into account. V'fe

should note, however, that some of the previous
work was concerned with the many-body effect in
band-structure calculations' and foreshadowed our
investigation.



A. BAQCHI AND M. H. COHEN

We begin by expanding the field operator g(x) in
terms of the overcomplete basis.

lfl{x)= g (Pk(x)ck= Z Pk(x) k+ ~ ~(x}'k. (3. 11)

'The spin subscript o is understood in Eq. (3. 11).
We regard y, (x) as the solution of Eq. (3. 1) with

the boundary condition appropriate for a free atom.
Such a choice is in the spirit of the previous works"
on hydrogen chemisorption, but is by no means es-
sential. For the purpose of this work, it is simply
necessary to assume that y, (x) and e, are known,

and any boundary condition' ' ~ can be incorporated
naturally into the formalism. It follows from the
orthonormality of the functions (yk(x)) that

ck= J dsxyk(x)g(x) . (3. lla)

G». (t) = —i {Tbk(t)cke),

G,kr(t) = —i (Tb,(t)c~),

G»(t) = —i &Tbk(t)c.'&,

G»(t) = —i(Tb, (t)ct) .

{8.18a)

(3. 18b)

(3. 19a)

(3. 19b)

If Eq. (3.17) is combined with Eqs. (3. 19), we
obtain

G»(t)=( i) Q(Tbk(t)ck)~k&k

ground-state expectation values of the time-or-
dered products:

The expansion of g(x} in terms of the complete set
(yk) is unique, and the operators ck, which are the
coefficients of expansion, obey the Fermi anti-
commutation rule:

= ~Gkk~(t) k~k ~

a'

Similarly

(3.20a)

(c„,ci,)=6„,; (c„c„)=0. (3. 12) G (t)=~G.k ~ (t) k" ~ (3.20b)

(3. 13)

where ~» is defined in Eq. (3. 10). This means
that the operators 5~ are arbitrary so long as b,
is not specified explicitly. The b~'s and b, will

not, in general, obey any definite commutation re-
lation. A choice of b, specifies the expansion
uniquely. For example,

&a=&a (3. 14a}

~a ~a ~A ~A +hia y
(3. 14b)

where e, is the destruction operator for an elec-
tron in the state ~a), i.e. ,

c,= J'd'x yg(x)g(x) . (3. 15)

Equation (8. 14b) shows that, for the given choice
of b„bk creates the OPW state from yk(x). We

find, withthe help of Eq. (3. 10), that

The expansion in terms of the overcomplete basis,
however, is not unique. We see this by noting that
Eq. (3. lla) implies

which shows that Gkk. (t) and G,k. (t) are the only
independent elements of the pseudo Green's func-
tion. We call the functions defined in Eqs. (3. 18)
pseudo Qreen's functions in contrast to the real
Green's function whose elements, in the represen-
tation of the y, 's axe

Bkk. (t) = —i(Tck{t)ckt. ) . (8. 21)

Equation (3. 13) enables us to relate the real and

pseudo Green's functions as

'kk ~ (t) = Gkk (t)+ ~»G.k ~ (t) . (3.22)

At first sight, the definitions of Eqs. (3. 18) and

(S. 19) seem puzzling. But we have achieved our
objective of expressing the one-particle propagator
in terms of an overcomplete basis set of states.
We have done this by resorting to an asymmetrical
definition of the elements of the pseudo Green's
function. Our next task is to relate the pseudo
Green's function to quantities of physical interest.
This is done very simply for the single-particle
density of states, which is related to the trace
of the real Green's function, and the trace can be
written as

(3. 23)

(3. 16)

7he conjugate operator can be expanded as

(S.17)

We now define pseudo Qreen's functions as the

where Eqs. (3. 22) and (3.20b) have been used. The

trace of the pseudo Qreen's function is, therefore,
the same as the trace of the true propagator.

It is possible to derive the equations of motion
of the pseudo Green's function from Eq. (2. 19) in

terms of the proper self-energy. Combining Eqs.
(2. 13), (3. 21) and (3. 22), we obtain
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Q(xt; x'0) =2 pa(x)fai(x')Baa (t)= Z 4'a(x)pa" (X') [Gaa.(t)+ AaaG, a. (t)] . (3. 24)

We subsitute this equation into Eq. (2. 19) and make use of the orthonormality and completeness of the metal

eigenstates,

&klk'&=5-; ~ lk&&kl= l. (3. 25)
k

The result is

Q pa(x)V'a. (x') i "" + 6a, i ' = 5(t)Z 4'a(x)4'a. (x')5aa ~ + X s(x)Z 4'a(x)pa. (x')[Gaa. (t)+ha, G,a.(t)]

+ d x"dt"Z(xt; x"t")Z0'a(x")A)x')[Gaagt")+ 6 aGa, ~a (t")] .
(3. as)

Let us define the Fourier transform of the self-energy as

Z, &(v)= f dte'"" "' f d'x f d x'y&*(x)Z(xt;x't')y&(x') (y&=ya, y, ) . (3. 2V)

(3.28)
ps'

Then the orthonormality of pa's may be utilized to rewrite Eq. (3. 26), after transforming to the frequency

space, . as
I

~ [&k l(~-30') lk &- Z .-(~))G -"(~)+~ (&k l(~-5I: i) lk" &- Z.a ~ ~ (~))&.-.G.'(~) = 5" .

Making use of the completeness condition of Eq. (3. 10), we obtain

[&kl( -3I' )lk"&-Z--( ))G.-'( )+[&kl( -IS )I &-Z .(~)]G.'( )=5.~, (3.29)

where we have introduced the summation conven-
tion over repeated k indices in order to avoid any
confusion with the s elf-energy operator. The
summation convention over k indices will be fol-
lowed in the rest of the paper, unless otherwise
specified.

Equation (3.29) cannot determine all of the un-

known pseudo-Green's-function elements, Gaa, (ur)

and G„.(&o). In fact, there are fewer equations
than there are unknowns, so that Eq. (3. 29) can
be used merely to express G».'s in terms of the
G,a, 's. Thus far, the elements G„(&u) are totally
arbitrary, and this arbitrariness is related to
the freedom in the choice of b, discussed earlier.
We follow the procedure of Kanamori et al. ' and

take care of this arbitrariness by introducing a
further set of equations

&~l4 lk"&G.-'(~)
+ [&a

~

((u -Z, ) ~

a &
—Z.,(~)]G„.(~)= &„. (3. 30)

where the coefficients &a I4 Ik"
& are unknown and

at our disposal. Equation (3. 30) transfers the ar-
bitrariness in G~. to the arbitrariness in the
choice of &a I 4 Ik"). Conversely, once the coeffi-
cients &a14' Ik"

& are chosen, the description of the
interacting-electron system in terms of the pseudo
Green's function is complete. Equations (3. 29)
and (3. 30) are the generalization of the pseudo-
Green's-function equations of Kanamori and col-
laborators" when electron-electron correlation is
taken into account. We should emphasize the fact
that, although the choice of &a I4 Ik") is arbitrary,

X,(x)=30.(x)+ V„(x)= X",(x)+ V(x) .
Therefore

(3. 31)

and

&k I&ilk" &=&k IICi lk"&+&k IVlk "& (3 32a)

&k IISils &= &k I3t'. I.&+

&klan.

I.&

If we define

(3.3ab)

Zg) ——f d xd x' pj~(x)Z (x, x'; e~)p)(x'), (3. 33)

where i and j stand for any of the k states and/or
a, then Eqs. (3. V) and (3.9) lead to

&k iK" ik'&= &0 iX, ik'&+Zaa ~ = ea5aa ~ . (3.34)

In deriving this relation, we have used the ortho-
normality of the y~'s. Using this result in Eq.
(3. 32a), we obtain

I

not all choices will correspond to a sensible sepa-
ration of the chemisorption problem into a metallic
part and an atomic part. We may start from a
meaningful choice of b, and derive the coefficients
&a I4 Ik") from it. Since one of our major aims is
to set up a theory which goes over to an indepen-
dent atom and the metal in the limit of large sepa-
ration, a reasonable choice of &a l41k & is of cru-
cial importance to the theory.

Equation (3. 29) can be simplified considerably
if we use the metal part of the self-energy,
Z"(x, x'; sz), and the effective one-particle metal
Hamiltonian X". Equation (2. 15) defining X,(x)
can be written with the help of Eqs. (3. 1) and (3.3)
as



4&io A. BAGCHI AND M. H. COHEN

&k I&ilk" &=e»5~ ~ +&klvlk" &- z" - (3 35a}

&klan,

la&=e.~„.+&k lv„la&. (3.35b)

Also Eq. (3.32b) can be combined with Eq. (3.1)
to give

Skk e (K) Zkk e(N) Zkk e (3.36)

When Eqs. (3. 35) and (3. 36) are substituted in
Eq. (3.29), we obtain

I.et us now define the self-energy S of metal-ad-
sorbate interaction through the equation

{(~ e,)5„,.-[&klvlk"&+s„-( )]]G.-;(~).{(~-e.)& -[&klv la& z, .(~)]]G., ( )=5„.
Similarily, Eq. (3. 30) can be rewritten as

&a l4 lk')Gk-„((d)+{(~—e.) -[&a
l v& la)+ z-(&)])G.» (~)= ~ k ~ ~

(3. 37)

(3.38)

It should be noted that Zk, (tu) and Z„(ur) can also be
written as the sum of two contributions —one orig-
inating in the metal and the other in the metal-ad-
sorbate interaction. For example,

8'(x t; x'0) = —i&T(j),(xt)(j)~(x'0) ) .
But Eq. (3. 24) implies that

g (Xe X e ) = Pk(X)9 k ~ (X)

(2. 13a)

Zk, ((u) =Sk,((()+Z„, (3.39) X[G»ke(~)+ 4»,G ke(~)], (3.41)

and similarly for Z„((d}. Such a separation in Eq.
(3. 37) is of no immediate advantage, however, and
we prefer to retain Z„((()) at this stage.

We complete the formal development of this sec-
tion by writing down the ground-state energy of the
metal-adsorbate system in terms of the pseudo
Green's function. The use of Eq. (10.18) of Fetter
and Walecka gives

z (ee) ,' Zf=e"f='-,"—e'"

2

x )'m .—,', V„(x).V(x))
x' x 2m

so that

E= —'Zfeexf '—" e' '(e" (x)[m ee (x)l

pk (X)[Gkk ~ ( CO )+ 6k e(G ((k e ( (())]+ XS . (3, 4 2)

Here R,(x) is the one-particle part of the Hamilto-
nian as defined in Eq. (2. 15). Carrying out the in-
tegration over x and making use of the complete-
ness of the k states, we obtain

E -—'+f e="'((e'l( 'ee)le)G;, .( )

x g'(x, x'; (())+3cz, (3.40) + &k'l(or+Re, ) la) G;k. (u&))+z„. (3.43)

where g- 0" and sum over the spin label e is indi-
cated. Q'(x, x'; (d) is the Fourier transform of

This equation simplifies somewhat when used in
conjunction with Eqs. (3. 35). The result is

e'""g((0+ ek)5» k- zk k+(k'lvlk&]G~ ~ (&)+ [(~+ e.)&k ~.+ &k'lo la)]G:k ("))+&a. (3 44&
Q

7f

With this result, we have achieved two of our ob-
jectives. We have the equations of motion of the
pseudo Green's functions which can be solved in
terms of the proper self-energy Z. We also have
an expression for the ground-state energy in terms
of the pseudo-Green's-function elements. The
problem, of course, is that the proper self-energy
is not known, and it is necessary to set up some
approximation scheme for finding Z. Once the ap-
proximation scheme is decided upon, we must de-
termine the matrix elements of 6 and Z in a self-
consistent manner. As a prototype example we
may adopt the Hartree-Fock factorization to find
Z, and this is discussed in detail in Sec. IV.

IV. FORMAL SOLUTION AND THE HARTREE-FOCK
APPROXIMATION

In Sec. III, we set up a formalism to deal with
the problem of hydrogen chemisorption in terms
of an overcomplete basis set comprising the eigen-
function of the atom and the eigenstates of the met-
al. We introduced appropriate pseudo Green's
functions, derived their equations of motion in
terms of the proper self-energy, and expressed
the total energy of the system as a function of the
pseudo- Qreen's-function elements. In this sec-
tion, we first solve the equations of motion for-
mally in terms of the proper self-energy Z. We
next derive the self- consistency condition relating
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+aakk +akck —Ca 0 . (4. 1)

(Sum over repeated k indices understood. ) This
equation, when coupled with the definition of Eq.
(3. 18a), implies that

Z to the matrix elements of G within the Hartree-
Fock approximation, and finally show how the
Newns model for hydrogen chemisorption can be
recovered from our generalized description of the
problem.

We mentioned earlier that the physical interpre-
tation of the pseudo-Green's-function elements de-
pends critically on the choice of the arbitrary co-
efficients &a ~

4 ) k & of Eqs. (3. 30) and (3. 38).
These can, in turn, be related to the choice of b,
in Eq. (3. 11). We shall have occasion to use, in

much of the rest of the payer, the particular,
physically meaningful choice b, = e,. In that case,
Eqs. (3. 14b) and (3. 16) show that

&a Ie Ik) = —&g I76glk) —z k. (4J)

=- ca~a —&s l&lk&-s.k„(~), (4. 4)

where

~akya(+) +ak ~~ [~k'~k [a(+) ~k~' k a(~')]

= F.a;.(~) —F."',.(~) . (4. 6)

We shall follow closely the work of Kanamori
et al." in presenting the formal solution to the
equations of motion for the pseudo-Green's-func-
tion elements. We first derive the results and
then discuss their structure. Multiplying Eq.
(3.38) by bk, and subtracting it from Eq. (3.37),
we obtain

~ka ~~ Gk'~k (+)™ka Gak ~ (+) 60k ~ +ka +ak~

This definition should be compared with Eq. (3.36).

A. Formal solution

a,kGak (~)=0 (4. 2} Pkks y (4. 6)

where the spin label s is now displayed explicitly.
This particular choice for b, is physically sensible
because it leads to the identification of G (~) with

the projection, on the adatom level, of the true
Green's function itself, i.e. ,

where

L»"=(~ ek}6kk" [&k lp lk &+3'kk ~ ~ .(~)]
—~,.&s IC Ik"

& (4. 7a)

and

&ak~kk'(~)+k'a= 'KkGak ~ (~)~k ~a+ Gaa~(~)&k~a

=G*..(~) . (4. 3)

Ma, = —[&k I &» ls)+ &ka;a(&)]

~..[& I~. l &.~..:.( &]. (4. 7b)

Furthermore, Eq. (4. 2) gives rise to a consistency
condition between Eqs. (3. 29) and (3.30), viz. ,

Assuming the existence of the inverse of the ma-
trix I which is not Hermitian, in general, we find

&sl4 lk &Gk k +&sl4 lk &(I')'-"~ Mk oG'.k ~ =&sic lk" &(f'}k'"- I k- k .
Combining this with Eq. (3. 38), we obtain

4~-e. —&slv„ls&-z...,.(~)-&sle lk&(f )„'„M;...yG.„(~)=~.k. —&sl4 lk&(f )»p .. k. .k
Also since the projection operator P». of Eq. (4. 6) projects out states orthogonal to )a ),

Pkk sAk sa

and the diagonal element of the pseudo Green's function on the adatom is

G'..(~)=G:k ~ (~)&k .=(~- e.- &s li'sly&- E..;.(~)- &e I4'Ik)g')» ~ Ma ") '

(4. 8)

(4. 9}

(4. 10)

(4. 11)

Equations (4. 9) and (4. 11) are the formal solu.
tions for G,ak((u) and G;,(&o). They are not immedi-
ately useful because the results involve the self-
energy Z which is not known. It is nevertheless
possible to understand some of the general fea-
tures of the solutions. For a physically sensible
choice of &a [4 (k& [e.g. , that given by (4.4)], Eq.
(4. 11}can be interpreted as the Green's function
of an electron on the adatom, renormalized to take
electron-electron interaction into account. The
term

&s l@lk &(I')» ~ Ma ~ .

mixes the electron state on the atom with those in
the metal, and produces both a level shift and a
broadening in energy. Its inf lucence will be small
if the energy difference between the adatom level
and an electronic state in the metal is large. In
terms of Ga~(to}, we rewrite Eq. (4. 9) as

G."(~)= G:.(~)~.k ~

G'o(~) && I@lk &(I')ka-&k ~ a ~ (4. 12&

The first factor on the right is related to the re-
normalized Green's function of an electron on the
adsorbed atom. The second term depends explicit-
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ly on the tunneling of an electron from the atom to
the metal or vice versa, through the matrix ele-
ments &a ~4& [k&. The contribution of the second
term to the energy formula of Eq. (3.43) is small
when the energy difference between the atomic and
metallic electron levels is large. It is also possi-
ble to write down formal solutions for Gd». (v) in
terms of G;,.(~) of Eq. (4. 12), but it is not very

useful and we turn instead to the question of de-
termining the proper self-energy.

B. Har tree-Fock approximation

In the previous subsection, we obtained formal
expressions for the pseudo-Green's-function ele-
ments as functions of the proper self-energy Z.
The self-energy, in its turn, is defined through the
relation

—iZ d'*, U(x-x, )(Td. (x,tt")d, .(xt)d, ,(x't)d(0t&x), f'x(=xt;x ,t')S'("x"t";x'0)d'» dt'
s' (4. 13)

and it depends on the one- and two-particle Green's
functions. Equation (4. 13}must be solved along
with the equations of motion (3. 3V) and (3.38) for
a self-consistent determination of G and Z. The
set of equations is not closed, however, because
the two-particle Green's function appearing in

(4. 13) is not known. It is possible to derive the
equation of motion of the two-particle Green's
function in terms of the three-particle Green's
function and so on, thus setting up a hierarchy of
Green's-function equations. The series must then
be truncated at some stage in order to obtain a

I

closed system of equations. The simplest approxi-
mation is to employ Hartree- Fock factorization in

Eq. (4. 13), decomposing the two-particle Green's
function into an antisymmetrized product of two
single-particle Green's functions. Such a decou-
pling procedure leads to the self-consistent Har-
tree-Fock theory for the chemisorption problem,
and we shall study it in some detail. Since the
ground state under study is nondegenerate, the
self.-energy, in this approximation, assumes the
form [cf. Eq. (10.4) of Ref. 22]

(4. 14)z"'&xt;x t') ,d(t —t')'ZI=-itt(x x )fd'», U(x—x')U'(», t;x, —t") td, .ir(x x )d (xt;x't—')I''
Here s and o label spin and the superscript HF stands for Hartree-Fock. If we use Eq. (3.24) to express
the'propagator in terms of the pseudo-Green's-function elements, and if Eq. (3. 2V) defining Z;i is used,
we find, in a straightforward manner, that

~ i;,(~)= —I ~ [&fk'IUjIk) [G)'(, .(0 )+ d„,G'), .(0 )] —5-&fk'I vlkj& [G», (0 )+ 6& G z, (0 )]) . (4. 15)

The self-energy is seen to be independent of co in this approximation. We separate out the contributions
coming from G». and G,~, , respectively. The former has to do mainly with the interaction among metal
electrons; the latter involves the metal-adsorbate interaction. Noting that

(4. 16}

and making use of the completeness of the [k)
states, we obtain

I

x,"'( )=-(ZtI& d'IUil» t) &td IUI»i&lf x-.
".. 'U( ( ) &"(( 'x IU(i '&-'

a tX

~I
&fk l&laj&] e "G a (&u ) (4. 1V)

Here q- 0' and i and j stand for any of the k states
and/or a. Within the same approximation, the
metal part of the self-energy is given by

z"„, ,, =ZZ[&k,k
I elk, k&

k ty

—5-&krak l&lkk2&]n... (4. 18)

where n~, is the Fermi function, i.e. , the electron
occupation number. When this is subtracted from

I

Z~, d,...(&o), we obtain an expression for S),,~,,(~)
valid for the present approximation scheme.

Equation (4. 17) may be used to find Z for a given
approximation for G. With the definition (3.36) of
S».(&d&) in mind, we have expressed the self-energy
as the sum of a part coming from the metal elec-
trons and a part arising from the atom-metal inter-
action. These contributions must be evaluated
self-consistently with the solutions of Eqs. (3. 37)
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and (3.38). The diagonal self-energy of an electron on the atom is given within our approximation scheme
by

dN d co'E,"...((o)= —i+ [(ak'IUlak& —6 (ak'IUlka&~ e'"'"G; »((u') —i(ak'IUlaa) e' '"G,'», (+') .
ff 7r 'tr

(4. 19)
We note that the diagonal self-energy of an electron of spin s depends only on the off-diagonal pseudo Green's.
function G,», (&u) of spin —s. This result arises from the Pauli principle restriction whereby two electrons
can occupy the adatom level y, only if they have antiparallel spin. With the help of (4. 12), we may rewrite
the above equation as

dco d(dE"';.(~)=-i ~ [(ak'IUla»- 6..&ak'IUlka &)," e'""G (~')+i(ak'IUI«&, " ""'"G.'.(~')

(dlx(a 14 lk&(L')»&».P"»», —i U e' "G '(&u'), (4 20)

where we have introduced the definition

U= &afar IUla&t)
as the intra-atomic Coulomb repulsion.

C. Newns theory

(4. 21)

(3. 31) we obtain

&a I
c I»= —&a 17~.+ V. Ik) —E":.(~)

= —e,h~ —(a I V„ lk ) —z„,,(~)

6»» ~ (~)= o ~ (4. 22)

The electron-electron correlation on the adsorbed
atom is treated within the Hartree- Fock approxi-
mation of the preceding subsection. Furthermore,
one-body scattering mechanisms which can connect
various electronic states of the metal are ignored.
Accordingly

&klvlk &=0. (4. 23)

This approach uses the Anderson Hamiltonian"—
originally proposed to explain the formation of lo-
cal moments —to describe the chemisorption of hy-
drogen. The atomic wave function is introduced
as an extra orbital necessary for the full descrip-
tion of the problem. No direct overlap between
atomic and metallic wave functions is considered,
so that A,~ must be set equal to zero in the equa-
tions of motion. The model also involves the fol-
lowing assumptions. Two electrons are believed
to interact appreciably only if they are both in the
metal or on the atom. This implies that

(4. 25)

((d —e») G»» ~ (Qp) —V»» G»» ~ (~)= 5»»e (4. 26a)

—V»» ~ 'G» ee» ~ (R)+ [N e» Za»;»(R)1Ga»'(+) +»if

(4. 26b)

The remaining two equations are obtained by using
Eqs. (3. 20) in conjunction with the above equations.
The point to note is that once we ignore the over-
lap of wave functions, all elements of 0 are inde-
pendent and Eqs. (3.20) are no longer meaningful.
The latter equations may be used formally, how-

ever, to derive the equations of motion of all com-
ponents of G before letting 4,~ 0. We find, as a
result,

after setting 6,» = 0 and using the definition of (4.24).
With the assumptions and definitions noted above,
we are led to the following equations of motion for
the elements of the (pseudo) Green's function:

(4. 24)

The term (a ~ V„[a) may be used to renormalize
Finally, a hopping matrix element V~ is de-

fined, allowing for an electron to jump from the
atom to the metal, such that

&klv„l & z„..,( )=v„. ,

and

(~ —e») G'», (&e) —V„G'„(&u)= h~ = 0

—V,» ..G» ",(a) + [&—e, —Z„.,((u)] G' (&)

(4. 27a)

(4. 27b)
and it is assumed to be independent of ~. (The
assumption is trivially correct if the Hartree-Fock
form for Z», is used. )

In order that our pseudo-Green's-function theory
may go over directly to the Green's function of the
Newns model, it is necessary to make the choice
given in Eq. (4. 4) for (a IC Ik). Making use of

Equations (4. 26) and (4. 27) are the well-known
equations of motion for the Anderson Hamiltonian. '
Newns solved these equations self-consistently,
after making the Hartree-Fock assumption for
Z«, »(~). The model, by definition, ignores matrix
elements like (ak'( U )ak & and (ak' ( U [aa &. The
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self-consistency criterion, therefore, is [cf. Eq.
(4. 20)]

(4. 28)

= p d&o'[- (1/v) ImG, ',(&o'+ i0')), (4. 28a)

where we have used the analytic property of G,', (~)
to write the line integral as the integral over a cut.
Equations (4.26) and (4. 2V) should be solved sub-
ject to Eq. (4. 28a). The Green's 'function G,', (&o)

can be obtained from Eq. (4. 11), where the condi-
tion rh, ~= 0 along with the other assumptions of the
model implies

f aa" = ((() &))8))))» (4. 28a)

Accordingly,

(4. 28b)

The system energy can be obtained from the matrix
elements of G by using either (3.43) or (3.44).
Newns treated the V,„as parameters in his theory
to fit the binding-energy data after assuming a
simple model for the density of states of the sub-
strate metal. %e therefore see that the Newns

model for hydrogen chemisorption can be derived
as a limiting case of our formalism when the Har-
tree-Fock theory is used to describe electronic
correlation, and certain simplifying assumptions
are made about the various matrix elements. The
assumption of a small U, on which our present
study is based, implies that the Hartree- Fock ap-
proximation should be an adequate description of
electron-electron interaction in this case. How-

ever, the requirement that 4~-0 implies a tightly
bound adsorbate wave function, which is inconsis-
tent with the requirement of a small U.

V. DISCUSSION

We have discussed in this paper the problem of
hydrogen chemisorption on a metal surface by
dealing systematically with the questions of over-
completeness of wave functions and electron corre-
lation. The intra-atomic Coulomb repulsion is

. assumed to be small so that the ground state of the
system is nondegenerate in spin. Some literature
exists on the role of overcompleteness in the
chemisorption problem, when the electron-electron
interaction is considered only on the adatom and
treated within the simplest. Hartree- Foek theory.
Such studies constitute various special cases of

the formalism presented above. Anderson and
McMillan" studied the overcompleteness issue
within the context of the Anderson Hamiltonian. "
A slightly modified version of their work has been
used by Penn ' and by Bagchi, Gomer, and Penn~I

to analyze the asymptotic behavior of the adsorbate
wave function far from the metal surface. These
authors establish the validity of certain assumptions
made in previous work on the theory of field
emission from adsorbate-covered surfaces. The
model used by these authors can be obtained
from the formalism of this paper if we choose

(a i@ ik) = (a i(~- X,) ik)

and ignore the two-particle part of the Hamiltonian
altogether. The Green's function employed by
Penna' and by Bagchi et al. ~ is the function 9~.(&u)

of Eq. (3. 21) and it is related to the pseudo Green's
function through Eq. (3. 22). The effect of over-
completeness on the calculation of chemisorption
binding energies should be a fruitful area of study.

The formal results that we have derived in this
paper in terms of the pseudo Green's function are
exact. They are independent of the choice of
(a ~4 ~k) if the equations of motion can be solved
exactly. If, however, a perturbative solution of
the equations of motion is attempted, the choice
of the coefficients (a

~
4~&) becomes important in

order to justify the perturbation procedure. Also
the choice of the coefficients is crucial if G (~) is
to have a simple interpretation as the Qreen's func-
tion on the adatom.

A major new consideration of this paper is the
problem of electron correlation within the frame-
work of an overcomplete basis set of states. As
an example of the method for determining the proper
self-energy Z, we have worked out the Hartree-
Fock approximation in detail in Sec. IV. This is
by no means essential, and higher-order many-
body perturbation techniques can be applied to the
problem in a straightforward manner. All that is
necessary is to set up the perturbation theory in
the coordinate representation and then introduce
the pseudo Green's functions through the definition
of Eq. (3.41). The proper self-energy, for ex-
ample, can be evaluated within the random-phase
approximation (RPA) in terms of the matrix ele-
ments of G. Since the equations of motion for 6
involve matrix elements of Z, it will be necessary
at each stage to evaluate these quantities self-con-
sistently. Improved treatment of electron correla-
tion beyond the RPA is also possible. For example,
the Coulomb line appearing in the diagrammatic
representation of the electron self-energy may be
screened by a more accurate dielectric function 6'

than that given by the RPA. A dielectric formula-
tion runs into difficulties, though, because the
problem lacks translational symmetry. Some of
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these questions are currently under study to see
how a better treatment of correlation may affect
the theory of chemisorption.

The Hartree- Pock theory worked out here leads
directly to the Newns theory when the overlap of
adsorbate wave function with the metallic wave
functions vanishes. This requires tightly bound
adsorbate wave functions for which U would be
large. Thus the simultaneous requirement of the
Newns theory for small U and small A~, makes it
doubtful whether that theory has any well defined
domain of validity.

In conclusion we note that from a physical stand-
point, the most important assumption that we have

made in this work involves the nondegeneracy of the
chemisorption ground state. This is valid for
small intra-atomic Coulomb repulsion 0', and the
Hartree- Pock theory presumably works best in
that case. But U in practice is not small, and the
use of the Hartree-Pock approximation has been
criticized by Schrieffer and Mattis in the mag-
netic impurity problem, and by Schrieffer and co-
workers'" for the problem of hydrogen chemi-
sorption. For very large P, however, the chemi-
sorbed atom may behave like a local magnetic mo-
ment, the ground state is degenerate, and further
formal developments are required. This situation
will be studied in a later paper.
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