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The authors's methods for Hartree-Pock calculations of electronic structures of solids with exact
treatment of exchange are extended to systems containing inner electronic shells and are applied to
body-centered-cubic and face-centeredwubic lithium crystals. The calculated structures are found stable
relative 1;o Li, molecules; but the omission of correlation effects and hmitations of the basis set preclude
a quantitative estimate of the cohesive energy. The variation of total energy mth lattice spacing is quite
weak, and the calculated equihbrium lattice spacings are about 20% too large. The fcc crystal is

calculated to be slightly more stable than the bcc form. From the present results and those of Calais
and Sperber, it is concluded that the main deficiency of both a&ave functions are their inflexible

descriptions of lower-symmetry components such as those based on p atomic orbitals.

I. INTRODUCTION

The development of methods to calculate elec-
tronic properties of crystals has been quite differ-
ent from the corresponding development for atoms
and molecules. For the latter systems, quantum
chemists have formulated more and more sophis-
ticated computational techniques, at a rate which
increased as better computers became available
to more chemical theoreticians. As a result,
chemists have at their disposal a wide variety of
computational methods, ranging from semiempiri-
cal methods such as the still very popular Pariser-
Parr-Pople theory' to ab initio techniques such as
the Hartree-Fock (HF) theory and its extension by
configuration-interaction' and many-body theoreti-
cal methods. Gn the other hand, progress in sol-
id-state theory has been of a more qualitative na-
ture. Considerable insight has been obtained into
the workings of and the relationships between band-
theoretical methods, 5 and the advent of big com-
puters has enabled a drastic increase in the com-
plexity of crystals that can be treated. Yet all
crystal methods still suffer from an ill definition in
a quantitative sense. Crystal potentials are ob-
tained semitheoretically or semiempirically,
with a concomitant uncertainty in both crystal wave
functions and total energies. This uncertainty
makes impossible a precise and critical discussion
of exchange and correlation effects, and thereby
hinders the development of improved methods.

The (rigorous) HF model for crystals has been
traditionally considered by solid-state theorists
as both unphysical and intractable. The physical
shortcomings are mainly connected with attempts
to obtain one-electron properties from the energy
bands. Bandwidths and densities of states, par-
ticularly near the Fermi surface (FS) in metals,
are unrealistic in the HF model. On the other

hand, total HF energies should be quite useful in
discussions of cohesive properties of solids and
for comparing stabilities of crystalline phases.
Moreover, the well-defined nature of HP calcula-
tions enables them to serve as a precise and reli-
able starting point for corrections beyond the in-
dependent-particle model. ' Recently the signifi-
cance and usefulness of precise HF calculations has
been recognized for the description of the proper-
ties of alkali halides, ' noble-gas crystals, '0 and
diamond. " In the first two classes of crystals the
extremely small overlap between atomic orbitals
on different lattice sites simplifies enormously
the computational problem without much loss of
numerical rigor. The work on diamond by Euwema
et al. ~~ shows that rigorous HF calculations using
clusters of unit cells are now feasible, although
computing times are enormous.

%e have developed a formulation of rigorous HF
calculations for crystals in which the special fea-
tures of the crystalline state (infinite size of sys-
tem and periodicity) have been fully exploited. ~3

Introduction of Fourier-transform techniques and
invocation of lattice orthogonality relations reduce
the crystal integrals to reciprocal-lattice sum-
mations whose terms only involve Fourier trans-
forms of basis atomic orbitals. No approximations
are necessary, and the exchange and the long-range
cancellation features of the electrostatic energy
are treated rigorously. The use of Fourier trans-
forms in lattice summations is discussed in detail
in the first paper of the present series (Ref. 13,
hereafter referred to as I). We then applied our
methods to HF calculations for all cubic atomic
hydrogen crystals (Ref. 14, hereafter referred to
as II). The results reported in II show that it is
possible to obtain accurate HF results with a mini-
mum of computational effort. These results also
permit insight into the importance of atomiclike
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inhomogeneities in the HF Bloch functions, and

show the effect of these inhomogeneities on the
total energy and exchange potentials for hydrogen
crystals.

The present paper describes an extension of our
work to lithium crystals, for which it is necessary
to introduce additional techniques to treat the core
electrons. We have already reported some pre-
liminary HF results for lithium, but did not at
that time give a full discussion of the mathematical
and numerical methods involved. Sections II-IV
present the HF formalism and the expressions
of the quantities needed therein for systems con-
taining localized core electrons. Section V deals
with the numerical techniques and their accuracy.
Sections VI and VII contain a detailed presentation
of the results. A full specification of the optimized
HF band functions and energies is given for the
body-centered-cubic and face-centered-cubic crys-
tal forms. A subsequent paper will report the
calculation of several physical quantities from
these HF results.

II. BASIC FORMULATION

Consider a lattice of lithium nuclei at O'K, con-
sisting of N compound unit cells with sides a. The
number of nuclei per compound cell is denoted by
d and their position vectors relative to the cell
origin are as m = 1, . . . , d. In the structures to
be treated here, the s are such that all nuclei
are geometrically equivalent. The crystal also
contains a total of 3Nd electrons. The d values
and s vectors for the different cubic structures
are given in Table I of II. The nearest-neighbor
distances 6 for the bcc and fcc structures are —,'av 6
and &a&2, respectively.

We assume a crystal HF wave function in which
2Nd electrons doubly occupy Nd symmetrically
orthonormalized ls core orbitals y, (r) centered
at the lithium nuclei. The remaining Nd electrons
doubly occupy ,Nd valence Blo—chfunctions If),
where k denotes the Bloch wave vector in recipro-
cal-lattice units 2w/a. As in II, the Ik& are con-
structed from basis Bloch orbitals lk, & according
to the formula

where the c,(R) are coefficients which are deter-
mined by applying the HF variational condition.
The c,(f) depend explicitly on k so as to permit
compensation for inadequacies in the K dependence
of the lf, &. The 1k&& are formed from valence
atomic orbitals rp, (r ) and a,re orthogonalized to the
core orbitals:

xg [4&(r —a p ) —B&(k )4 (r - ay) ] . (2)

Throughout this paper, sums over vector indices
p, , v, or & run over a simple cubic lattice of unit
dimension. Thus ap, is the origin of one of the
compound unit cells of the crystal. The symbols
4'& and 4', denote sums of (I(), and y„respectively,
over the equivalent nuclear positions within a unit
cell,

d

C(r)=By(r-as ),
and the orthogonalization condition causes B,(R)
to have the value

(4)

where y„and (p„are Fourier transforms of lat-
tice sums of orbital products:

(6)

(6)

As we have pointed out before, '4 the form chosen
for the Ik,) is in the spirit of the orthogonalized-
plane-wave (OPW) method. Our form has both
certain advantages and disadvantages with respect
to OPW functions. These characteristics are dis-
cussed in Sec. VII.

The total nonrelativistic Hamiltonian 8 for the
system is given in Hartree atomic units (a. u. ) by

where

SNd 3Nd

Q( -', ~') 2+QZ Ir, ap-as I-'+ Z lr, -r,
l
'+B,

5„-1 $~1 p, mal lcd(] xSNd

(6)

In Eq. (7) the first term is the kinetic-energy operator, and the last three terms describe electron-nuclear
attraction, electron-electron repulsion, and nuclear-nuclear repulsion, respectively. With the HF wave
function specified above the total energy can be written as follows:
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E =Nd[(2T, + 2V, + G~) + (T„+V, + G ) + 2G ]+R (9)

v, =-s(y, (r)IZ Z Ir-ap-as I-'Ic,(r)&,
m=1

d

G„=2Z Z [(p,(r~)p, (ra —ap —as ) Ir,2Ip, (r, )p,(r2 —ap, —as ))
7f m=1

~2(p,(r,)p,(r, —ag —as~)
I
r,2 I c,(r, —ap —as~)p, (rz))], ( 12)

+ (kl —~v Ik)
d (klk)

V"
I

k r-a]U, -as -1 k
m=1

(14)

2N -, (kk'l~»'Ikk ) -2~(kk'Ir, ,'lR'k)
vv d (klk)(k'Ik')

4

G.„=-Z Z
~ )[( c(r, alj -as.)-, kIr»Iy, (r, -ap-as ), k)

m=1

—~(p,(r, —ap —as ), kIr»Ik, cp,(r 2ap, —as ))] . (16)

ln Eqs. (9)-(16) the subscripts c and v stand for
core and valence, respectively. The T and V

terms are kinetic and nuclear attraction energies,
respectively, while the G terms describe electron
repulsion, including exchange. Here and through-
out this paper the k integrations are over the region
enclosed by the Fermi surface with volume &d in

I

(17)

I.

units (2v/a)'.
Next we introduce the expansion of Eq. (1) for

Ik), and we invoke the normalization condition

(kIk) = Z c,"(k)(k, Ikq)c,.(k) = Nd .
i, f=l

The "valence" terms T„ to G,„then reduce to

T„=, . dk Z cf(k)(k;I -~v'Ikz)c~(k),
i, f=1

(18)

N d

V„=— —

2 dk c& R
&

r-ap, -as kf cf k
j,f=l p, m=1

(19)

G.„= 3- dkdk' cf k cf c*.k' c„k' k~k'„ri2 kfk'. -2 krak.
'

yi2 k'
f

f, f, ms n=1
(2o)

g d

G,„= 2 dk c~& k cf k p, r, -ap, -as, k; x» y rl-ap, —as, kf
kyf=l p m=1

—260 (r, -ap, —as„), k, Ir,2 Ik„y,(r, -ap —as„))] . (21)

The HF equations for the valence Bloch functions are obtained by minimizing E under variation of the c,(k)
and the shape of FS, subject to the scaling condition (17) and the requirement that the FS enclose a volume

pd Following the derivation in II, we find

Z F&z(k)cj(k) = e(k)Z S&z(k)cj(k),
f=1

(22)
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where the Fock matrix elements Eo(k) are given by

»''(k&= ~~ (&&( I

'*»' I(s& &&((sir' r' I" »u —~(
Pk Otal

+2K 2 [(k;, 9&,(r, -au-as )Ir,~lk~, ((&,(r3-au —as )&
Yt. m=],

--'«(, v.( r2 a-u a-s.& I &(3 I v.(r( a-u a-s.), k,&]

and

S;~(k) = —(k; Iky& .

For all vectors Rz on the Fermi surface, we have
the additional requirement

e'(kz) = const.

The scaling condition may be expressed

Z cf(k)c~(k)S(q ——1 .
ksf =1

(25)

(25)

Preparatory to the evaluation of the matrix ele-
ments we derive an alternative expression for the
total energy. When Eq. (22} is satisfied and we
use the definition

&c = ~c+ ~c+ ~~+ Cc.

we can rewrite Eq. (9) in the form

Z=&&d», ~ — dk»((& ~ »,+,», » (V, + ,V, + —„)-
(23)

The quantity e, can be interpreted as the HF eigen-
value of the ls-core wave function. . In Ref. 16 it
is used to approximate core levels and to construct
a pseudopotential.

III. MATRIX ELEMENTS

As in previous work, we are able to apply Fou-
rier-transform methods and lattice orthogonality
relations to reduce most of the crystal integrals
to reciprocal-lattice sums. The resulting formu-
las are most conveniently expressed with the aid
of a few further definitions. Analogous to Eqs.
(5) and (6), we introduce the Fourier transform of
the lattice sum of a product of valence orbitals:

g„(k, q) =((&„(%+q)-B;(k)&(&„(k+q), (31)

0„"(kk', q) =V;~(q) -B((k)e.~(q)

—V.*;(-q)B&(k')+B,*. (k)B&(k')m..(q) .
(32)

The quantities k and k ' enter Eqs. (31) and (32)
through the k dependence of the orthogonalization
coefficients B,.(k}. introducing the structure fac-
tor S(q) defined as

S(q ) —Q e2«'('sm (33)

Rent' (q-f+& )mPt~8

The lattice summation in Eq. (35) is equivalent to
a sum of & functions, and will permit the evalua-
tion of integrals involving the variable q. Analo-
gous expressions e.rise in the reduction of the ki.-
netic-energy matrix elements:

t =~&w.(r) I-~&'lc'.(r -au)&,

t„=Z( ((((r)
I

—2v'I@;(r -au)&,

the representation of Fourier transforms involving
the basis Bloch orbitals becomes

&v.(r)le"" "lk(&=4.((kq),
(k( Ie '(' ~'Ik(&=s(q -k+}t')

xg;~(k, k', q -k+k')

s;~(q) =~ &((&((r ) Ie'"' "' l@,(r -au)& . (29)
T(((k ) = t(( -Bf(k )t~ —t,*(Bq(k )

+Bm((k)Bq(k)t~~ . (39)

ln addition to &(&, as defined in Eq. (6), we require
the transform of an (unsummed) product of core
orbitals:

c.'.(q) =&e.(r) Ie"" "I9.(r)& . (»)
We also need the analogs of y„(q) and ((&(~(q) after
orthogonalization of the valence orbitals:

S;~(k) = g(((k, k, 0) . (40}

Turning to the one-electron energy integrals, T,
needs no further reduction, while V, can be re-

%e are now ready to present the matrix-element
formulas. The overlap matrix element S„.(k),
from Eq. (24), assumes the form
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duced to

y, = ——Z v 'S(v)y'. ,(v) .

Within T„, we require

&fg i
—g V' i') =Nd[rff(f ) +(2s'k'/a')8 '(f )],

while the integral needed for V„becomes

(42)

&k, iZ 2 ir-al -as. i-'if)= —"Zv-'S(v)y„(f, f, v) .
p ml ma p

(43)

(44)

For the two-electron integrates, we have G„, which cannot be reduced by the present method, and the
following Coulomb integrals:

Z + &f„y,(r~ —ap, —as )ir, z ik~, p,(r, —ap —as )) = —Zv 'S(v)g, &(f, k, v)cp (- v),
7f, 111=1 P

(f f' (r»'ikzf„') = —Zv '8(v)g, ~(f, f, v)P (f', f', —v) .

The v summations in Eqs. (41) and (43)-(45) each
have a singular term for v = 0. However, as dis-
cussed in I and II, these divergences cancel against
each other, against that in 6„, and against that
arising in the Fourier representation of the nucle-
ar-nuclear repulsion energy 8:

I

a divergent sum and a divergent integral. The
foregoing observations lead to the conclusion that
the v= 0 term is to be omitted from the summations
in Eqs. (41) and (43)-(45), and that for the cubic
crystals under consideration here 8 should be rep-
resented as

9Nd 3 ~ dq
R = 9NdD/2'

where

(4V)

Here and in subsequent equations integrations over
q range over a full three-dimensional space. As
shown previously, the nondivergent part of R is a
constant whose value depends upon the lattice con-
stant and the crystal structure, and which can be
represented as the convergent difference between

D= —8 913633 +Z v'[&(v) —1] (49)

and the prime indicates that the v=0 term is to be
omitted from the sum.

Finally, we have the two-electron exchange inte-
grals

tf ~0&

2 2 &f„p,(rz-ap, -as )I~imlp (r& ap as ) fx&= ~P &(f B4.~(f -a»
haft ~l ma q

(50)

We are unable to reduce Eq. (49) completely to a
reciprocal-lattice sum because of the lack of lat-
tice periodicity of cp, .

Apart from the more complicated f and k' de-
pendence, the valence-valence Coulomb and ex-
change integrals [Egs. (45) and (50)] are similar
to those we found in our earlier work. From a
numerical point of view the major differences are
associ, ated with the intrinsically poorer conver-
gence of the reciprocal-lattice sums. These re-
quire some special numerical techniques which
are discussed in See. V. The remaining integrals
are not represented in our previous work, and are
evaluated by methods described in Sees. IV and V.

IV. APPROXIMATIONS AND WORKING FORMULAS

The exposition of See. D contained no specifica-
tion of the conditions detexmining the core orbitals
in anticipation of the approximation that these orbit-
als be fixed in a functional form determined from
studies of the Li atom and Lia molecule. Such
studies indicate that the chemical environment has
very little effect on the form of the core orbitals,
and that their scales are such that the overlap of
nearest-neighbor core orbitals is quite small. We
therefore assumed zero differential overlap (KDO)
between cores on different nuclei. For the core
wave functions we used, the actual nearest-neigh-
boring eoxe overlap integral is approximately 10
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for the HF equilibrium lattice parameter, and leads
to an error small in comparison with the over-all
accuracy of our computations. Removal of this
approximation is possible, and might be necessary
for systems whos inner electron shells are more
diffuse.

The core ZDO approximation leads to a number

of computational simplifications, of which the first
is the avoidance of a need to carry out the sym-
metrical orthonormalization procedure. Each yc
is therefore strictly localized at a single nucleus.
As a consequence, all lattice sums involving the
overlap of core orbitals reduce to single terms,
and, in particular,

09cc Sec~

tcc=Tc ~

d

G„=2K Z (dp, (r,)(p,(r, —ap, —as ) Ir,2 I(p,(r, )dp, (rz —ap, —as ))
m=l

((p (rl)tp (r2)

Iris'

I
dp. (rt)dp. (r2)& ~

(51)

(52)

(53)

Moreover, if the core orbitals are assumed spheri-
cal, the Coulombic repulsion of two core orbitals
or the attraction between a core orbital and a dis-
tant nucleus can be Sell approximated by interac-
tions of point charges at the orbital centers. ' This
observation has as consequences that for p. +s &0

((p,(r, )(p, (rz —alt —as ) Ir,2I(p, (r, )tp, (ra —ap, —as ))

l

of v, (so t = 1 corresponds to v = 0). We use g, to
denote the number of vectors in star t.

With the above approximations and notations, we
obtain the working formula

22
F,,(k) = Ttt(k)+ ~ S,.t(k)+2Ctj(k) -Xtt(k)

=(~.(r)
I I

r av —as.
I
-'I ~.(r }&

=
I
alt —as

and that, as shown in Appendix A,

(54)

t((1 t I, n=1

Zg S(tv )tZ K"„(k,v,),2"' (58)

where the quantities not previously defined are
I

Z v tS(v)(p (v) =-
ma „- wa

+(9t,(r) Ir 'Iv, (r)&-. (55)

The simplifications embodied in Eqs. (51)-(55)
lead to considerable cancellation among the con-
tributions to V, and G„, and yield the nondivergent
contributions

V.+ G, = 3&~. Ir 'I~.&+—&v.w. Ir t2 I~.~.& ——„,

t((1 t

1 ~ S(vt) QCtt(k) = —Z g, + Ptt(k, k, vt}(p«(- v,),ra hl t

Xu(&) = —
8 4.';(k, q)4.J(k, -q),

J '~ (k, t ) = —dk(k k, i )fdk ' c (k ')c(k ')

(59)

(60)

(61}

R, 3D
(56)

(57)

&&/ (k', k', —v,), (62)

K" (k, i)= —fdt'(lk, +k-k'. I'),
In the present work we also assumed the valence

Bloch orbitals to be built from spherically sym-
metric orbitals y;. This assumption leads to the
conclusion that the Fourier transforms tp„(R) and

(ptj(k), and the coefficients c,(k), are totally sym-
metric under transformation of k by operations of
the cubic point group. The same symmetry also
applies to dp (k) and S(q}. It is therefore useful
to introduce the notion of a star of vectors, con-
sisting of the set of vectors related by the point-
group operations. In the equations to follow, we

let vt be a representative vector from star t, t=1,
2, . . . , with the stars ordered in ascending value

)kc~~(k')c„(k')$t„(k, k', vt)(c)~(k ', k, —v, ) .
(63}

In Eq. (63) the notation ( &, indicates the average
over all v, in star t. Equation (58) shows Ftt(k) as
containing inhomogeneity and plane-wave kinetic-
energy contributions T;t(k) and 2tt a 2Ad St&(k), re-
spectively, a nuclear attraction term 3Vtt(k),
core-valence Coulomb and exchange terms 2Ctt(k)
and Xt~(k), and valence-valence Coulomb and ex-
change terms involving, respectively, J'~ and

tj

When the Hartree-Fock equations are satisfied,
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the total energy can be written

E=Nd g + — & +Tt +~t t
1

(64)

ag5+3 1/2 3g8 3

&k (q) = 3y (6z s)3 ~ (v4)

with

+ —Z f dkc, (f)c,(k)~ ~,y=a

&& [2C»»(k ) -X»»(k )] ——,

dk c,*(k )c,(k )

x T]~k + ~ S]~k (66)

v„,= —3&q, lr-'lq, &

V.(r ) =(f'./v)"'e '~ . (68)

A double-f y, (a linear combination of two STD's)
could have been used without great additional labor,
but we did not do so in the present work. For the
valence orbitals y& we chose 2s STO's:

rp;(r) =(f'»/3w)'~'re ~»" . (69)

With these choices of orbitals and the foregoing
approximations, we find by direct integration

Tc tcc ~~c &

V.'.(q ) = IR'. [(»/»»)Y + 4|,",] ' .

(vo)

(vl)

(v2)

(v3)

V. NUMERICAL TECHNIQUES

Use of the working formulas given in Sec. IV de-
pends upon the evaluation of the basic quantities

f«, (»k»z(q), and»»»«(q), the use of suitable nu-
merical integration procedures to evaluate X»I(f ),
J~~(R, v), and Ã»I (k, v), and the introduction of
appropriate iterative techniques for determining

the coefficients c„(k) and the shape of the Fermi
surface.

For f;z, f,», cp»z(q ), and»»»„(q ) we were able,
with monor modifications, to use the techniques
described in II. These techniques involve the use
of convolution formulas, and require knowledge of
the Fourier transform (»»» (q) of rp»(r):

+ —r f dkc', (kk, (k)kg, (k)+ —.((('()
k, j=1

It remains to specify the orbitals y, and q;. For
y, we chose a single-f ls Slater-type orbital (STD)
with optimized orbital exponent:

where |»; =»»f»/2»» .The main differences from the
situation described in II arise from the strong lo-
calization of yc. This localization and the fact
that y, is spherical cause y„(k) to be nearly totally
independent of the orientation of k and to depend only

weakly upon the magnitude of k. In fact, (»»„.(k) varies
only by about ICE among k values within the Fermi
surface. Similar remarks apply also to cp (k),
and therefore as well to B»(k)." The result is
that y«(k), B,.(k), and (I(»»(k, k ', q) can be well
represented by expansions in even powers of k and

and that 8'» (k, » ) and K»»„(k, v ) can be evaluated
in the same manner as we handled»k»' „(k) in II.

When the Slater exponents f; are large the quan-
tities y»»(q) and ((((«(q) decrease so slowly with in-
creasing q that the reciprocal-lattice summations
in the expressions for V,»(k) and T»»(k) should be
extended up to stars with v = 500. We found it
satisfactory to calculate exactly only the rp;»(»()

and y„(v) for»( ~ 100, while estimating those for
v &100 from a least-squares fit to a sample of
star points in that range. The fit is expedited by
the fact that the rp;»(v) and y„(v) for large v are
nearly independent of the direction of v.

The evaluation of X;»(k) has no close analog in
our earlier work. Noting that in the q integration
shown in Eq. (61) the integrand of X»»(R) depends
only upon q through its magnitude and upon the
angle between k and q, we introduced spherical
coordinates with polar axis along k. Integration
over the azimuthal angle p is then trivial, and we
integrated over the two remaining coordinates using
ten-point Lobatto quadratures. Five to six signif-
icant figures are obtained using for the q integra-
tion the two intervals (0, 26,) and (26„~) and the
respective integration variables q/6, —1 and
1 —4t», /q.

In contrast to our experience in II, we were un-
able to obtain a satisfactory least-squares fit for
the valence-band energy e(k) in even powers of I»

and cubic harmonies. The difference is due to the
large HF equilibrium lattice spacing (causing the
logarithmiclike exchange term to be more impor-
tant relative to the kinetic energy than it is in the
hydrogen crystals) and to the extremely shallow
HF energy minimum. We were able to improve
the accuracy considerably by adding a simple log-
arithmic term in the least-squares fit. For de-
tails we refer to Appendix B.

An analysis of the accuracy of all calculated
quantities and of the least-squares fitting proce-
dures leads us to the conclusion that the HF ener-
gies and Fermi energies are obtained to an accu-
racy of at least five significant figures. Without
removing the zero-differential-overlap approxima-
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tion for the core orbitals it is unrealistic to seek
a higher accuracy.

VI. RESULTS

TABLE I. Total HF energies per atom E/Nd (in har-
tree) for bcc and fcc lithium crystals with compound
cubic-lattice spacing a (in bohr), based on /~=2. 69 and
one valence 2s Slater-type orbital with screening param-
eter g.

7. 6
8.0
8. 0
8. 0
8.2
8.2
8.2
8.2
8.4
8.4
8.4
8. 6
8. 6
8.6
8. 8

bcc

0. 50
0. 50
0. 55
0. 60
0. 45
0. 50
0. 55
0. 60
0. 50
0. 55
0.60
0. 50
0. 55
0. 60
0. 50

E/Nd

—7.417 95
—7.419 66
—7.419 72
—7.419 61
—7.41994
—7.420 02
—7.419 96
—7.419 93
—7.419 92
—7.419 96
—7.419 82
—7.419 60
—7.419 68
—7.419 59
—7.419 10

fcc

9.0 0. 50
10.0 0.45
10.0 0. 50
10.0 0. 55
10.3 0.40
10.3 0.45
10.3 0. 50
10.3 0. 55
10.6 0.45
10.6 0. 50
10.6 0. 55
11.0 0. 50

E/Nd

—7.413 43
—7.419 80
—7.419 82
—7.419 77
—7.420 13
—7. 420 19
—7.42024
—7.42020
—7.420 15
—7.420 19
—7. 420 15
—7.419 54

We constructed programs to perform calcula-
tions for bcc and fcc structures, with up to four
basis valence orbitals y;, and an organization very
similar to that reported in II. Typical computing
times on a Univac 1108 computer are 7. 5 and 4. 5
min for the bcc and fcc structures, respectively,
for calculations using two basis valence orbitals
and reaching convergence after two iterations.
The calculations were carried to an accuracy in
energies of at least one part in 10'.

In a preliminary series of calculations we in-
vestigated the appropriacy of the choice of the
screening parameter f, as the best value for the
Li atom. ' We varied f, in calculations with a
variety of valence orbital bases, invariably finding
an optimal value close to the best atom value.
This result is in agreement with observations as
to the optimum g value for the Li ls orbital in
molecules, and caused us to adopt the best atom
value g, = 2. 69 in all the calculations reported here.

In Tables I and II are listed the total HF energies
of bcc and fcc structures as a function of lattice
spacing and the valence orbital f values. Table I
contains results based on a single valence orbital,
and indicates that at all lattice spacings its opti-
mum f value lies near 0. 50. In calculations based
on two valence orbitals, we found the results to be
quite insensitive to the f value of the more diffuse
valence orbital, with optimum values near g = 0. 5Q.
We therefore fixed .", at this value and obtained the
results presented in Table II. We also performed

TABLE II. Total HF energies per atom E/Nd (in har-
tree) for bcc and fcc lithium crystals with compound-
cubic lattice spacings a (in bohr), based on )~=2.69 and
two 2s Slater-type orbitals. One valence orbital screen-
ing constant has been assigned the value g~ = 0. 50 for
both structures; the other valence orbital has screening
constant g2.

bcc
a f 2 E/Nd

fcc
a g2 E/Nd

7.8 2. 0
7.8 2. 5
7. 8 3.0
7.8 3.5
8. 0 2. 5

8.0 3.0
8. 0 3. 5
8.2 2. 5
8.2 3.0
8.2 3. 5
8.4 3.0
8.4 3.25
8.4 3.5

—7.41944
—7.421 72
—7.421 52
—7.421 41
—7.421 01
—7.421 92
—7.421 82
—7.421 97
—7.421 99
—7.421 95
—7.421 77
—7. 421 80
—7.421 78

9.7 2. 5 —7.421 39
9.7 3.0 —7.421 95
9.7 3.5 —7.421 84

10.0 2. 5
10.0 3.0
10.0 3.5
10.3 2. 5
10.3 3.0
10.3 3.5
10.6 2. 5
10.6 3.0
10.6 3.5

—7.422 11
—7. 422 63
—7.422 40
—7.422 27
—7.422 66
—7.422 19
—7.421 99
—7.422 58
—7.422 20

calculations based on three valence orbitals, but
found that addition of the third orbital yielded no

significant improvement in the calculated total
energy. From the data in Table II, we therefore
conclude that for the bcc and fcc structures the
near-HF energies are, respectively, —7.422Q

and —7.4227 hartree, with respective optimum
nearest-neighbor distances of 7. 1 and 7. 3 bohr.
In all calculations for both bcc and fcc structures
we obtained Fermi surfaces whose distortions
from perfect spheres were of the order of one
part in 10 . At the optimum lattice spacings we
found the virial theorem to be satisfied to an accu-
racy completely consistent with that of our numer-
ical methods.

Further details of the near-HF wave functions
at the optimal lattice spacings are presented in

Table III. The coefficients B,(k) and c,.(%) are
sufficiently independent of the orientation of k that
they have been expressed as radial expansions,

4

B;(k)=Z b,„k ", (76)

4

c;(k) = (4v) 'i'Z c;„k " .
n=Q

(76)

We also give the core-orbital energies E„ the en-
ergies of the bottom of the valence band e(0), and

the Fermi energies E~.

VII. DISCUSSION

In accordance with experiment, ' our calcula-
tions show for both crystal structures very shal-
low energy minima with respect to variations in
lattice spacing. However, our calculated optimum
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TABLE III. Data from near-HF calculations for bcc and fcc lithium crystal
at optimum lattice spacings. Energies are in hartree, distances in bohr. E/Nd
= total HF energy per atom; a is the compound cubic unit cell dimension; f~, g2
are 2s Slater-type orbital screening parameters; &~ is the core orbital energy;
&(0) is the energy of bottom of valence band; && is the Fermi energy; b«, c«
are coefficients in expansions of B&(k) and c&(k), Eqs. (75) and (76).

E!Nd

bcc —7.4220
fcc —7.4227

a

8.2 0. 5 3.0
10.3 0. 5 3.0

-2.3437
—2. 3427

—0.
—0.

2343
2353

0. 0292
0. 0294

C2n

bcc 0
1
2
3
4

fcc

0. 7618
—0. 9763x 10

0. 1119x 10-'
—0. 1352 x 10-2

0.1559x 10+

bin

0. 7694
—0.6247x10 i

0.4681 x 10 2

—0. 5643 x10+
0. 1019x10+

0. 9126
—0. 1796x10 '

0. 5072x10+
—0.3056x 10 3

0.8437 x 10+

0.9156
—0.1130x 10 i

0.3769 x 10+
—0.3310x 10+

0, 9913x 10~

0. 8665
—0. 2291 x 10+
—0.2137 x 10 2

0. 7348 x 10-2
—0. 1061x10

0. 8630
—0.2991 x 10-3
—0. 1083x 10

0. 1709x 10+
—0.4221 x 10~

—0. 1925
0. 1367x 10-'
0. 3499x 10 i

—0. 1369
0.2373

C2n

—0.2049
0.1062 x10-'
0. 1309x 10-'

—0.3587x10 i

0.3999x 10 i

nearest-neighbor distances & for the bcc and fcc
0

structures, respectively, 3.7 and 3.8 A, are con-
siderably larger than the corresponding experi-
mental values of 3.04 and 3. 11 A. This discrep-
ancy may in part be due to the neglect of correla-
tion, but is also related to the fact that p orbitals
were not included in the atomic valence basis. Be-
cause of the shallowness of the energy minima, the
effect upon the nearest-neighbor distance can be
quite large. We note that our & value for the fcc
structure is slightly larger than that for the bcc
form, in agreement with experiment. Our calcu-
lations are also consistent with experimental ob-
servations that the fcc structure is stable rela-
tive to the bcc form at low temperatures. ' How-

ever, the accuracy of the calculations is such that
no importance can be attached to the calculated
energy difference of about 7&&10 4 hartree, though
its magnitude agrees with pseudopotential calcu-
lations. "

Both the limitations of the atomic valence basis
and the neglect of correlation make it impossible
to infer realistic cohesive energies from our cal-
culations. It is difficult to assess quantitatively
the effect of the omission of valence p orbitals.
However, we do note that the experimental cohe-
sive energy for lithium (36. 5 kcal/mole or l. 6

eV/atom) is of the same order as the correlation
energy per electron pair in the same molecular
or atomic orbital (about I eV). 2' It is therefore
obvious that without accounting for correlation cor-
rections no reliable cohesive energies can be ob-
tained from HF energies.

Another calculated property of the Li crystals

susceptible of comparison with experiment is their
compressibility. A compressibility calculation
requires the evaluation of the second derivative
of E/Nd with respect to the lattice spacing a at
the HF equilibrium spacing. It is impractical to
do this analytically as the a dependence of E/Nd is
very complicated. Unfortunately we cannot evalu-
ate the compressibility numerically either, be-
cause the shallowness of the energy minimum

causes E/Nd to vary too weakly. Our accuracy
of five decimal spaces in E/Nd leaves no signifi-
cant figures after two numerical differentiations.

The only comparably rigorous HF calculation
for lithium so far published is the work by Calais
and Sperber. Their valence Bloch orbitals differ
from ours, being of the conventional tight-binding
form we considered in our initial crystal electronic-
structure studies. They used a double-f Slater-
type orbital basis of 1s and 2s orbitals, thereby
also differing from our work in the treatment of
the core orbitals. They obtained for the bcc
structure an energy of about —7. 432 hartree/atom
with a HF equilibrium nearest-neighbor distance
close to 3.2 A. This lattice spacing may be
smaller than that we found because of the differ-
ence in k dependence of the valence Bloch orbitals.

In order to obtain further insight into the rela-
tionships between our calculations, those of Calais
and Sperber, and experiment, we examined a
series of HF calculations on the Li atom and the

Li2 molecule. For the atom, the ground-state
single and double-f HF energies of, respectively,
—7.41848' and —7.43272 hartree 7 place an up-
per limit estimate of 0. 014 hartree on the energy
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TABLE Dt. HF energies per lithium atom E (in har-
tree) for the Li2 mo1, ecule, with different valence orbital
basis sets and internuclear distances R (in bohr). Ex-
cept for the last fhree lines of the table, the 1s core or-
bltals are single Slater-type orbitals with g~= 2. 69. The

last three lines describe a calculation with a double-g 1s
basis with t;« ——2.4331, g,2 =4.5177. Screening param-
eters g~ and $2 refer to 2s Slater-type orbitals and $3

refers to a 2pe orbital.

5. 5
6.0
6.0
6. 0
6.25
6.25
6.25
6. 5
5.5
6.25
6. 0
6.25
6.5

0. 50
0.40
0.50
0.65
0.50
0.50
0. 50
0. 50
0. 50
0, 50
0. 50
0. 50
0. 50

3.0
3.0
3.0
3.0
2. 0
3.0
4. 0
3.0
4. 0
4. 0
3.0
3.0
3.0

0. 5.

0. 5

—7. 3992
—7.3830
—7.4003
—7.3988
—7.4003
—7.4004
—7.4003
—7.4001
—V. 4203
—7.4175
—7.4142
—7.4143
—7.4141

improvement obtainable by change from a single-
) to a double L- core (most of the improvement
comes from an improved description of the 1s
electrons). For the Li~ molecule, we carried out
a set of ground-state calculations with various
bases as reported in Table IV. From the sixth
and next-to-last lines of Table IV, we estimate an

energy improvement per atom from use of a dou-
ble-g core as 0. 014 hartree. The close agreement
of these figures is consistent with the expectation
that the core energy should be insensitive to the
atomic environment and suggests that the use of
double-f cores would improve our crystal energies
by approximately 0. 014 hartree/atom. This im-
provement adjusts our bcc near-HF energy to
—7.436 hartree/atom, in quite close correspon-
dence with the value of Calais and Sperber.

The Lia calculations provide several additional
pieces of information. Looking at the studies with
a single core orbital and a double-g 2s valence ba-
sis (those comparable to our crystal calculations),

,we find that the optimum valence-orbital f values
are essentially the same for Lia as in the crystal,
and that the energy minimum occurs at an inter-
nuclear separation of 3. 3 A, about 25% larger than

0
the experimental separation of 2. 67 A, in close
correspondence with the situation for the crystal
(where the calculated lattice spacing is about 23%%

larger than experiment). We note that the Li~ en-
ergy minimum lies above our crystal energy, in-
dicating stability of the crystal relative to dissoci-
ation into Li~ molecules. The calculations with

double-f cores also indicate that the optimum lat-

tice spacings are not affected by the core descrip-
tion. We also carried out some Liz calculations
with a basis which included 2Po' orbitals. Addition
of these orbitals lowers dramatically both the HF
energy and the equilibrium internuclear separation,
and suggests that the lack of P orbitals may be a
common fault of both our crystal wave function and

that of Calais and Sperber.
The agreement in energy between our work and

that of Calais and Sperber, coupled with the dis-
agreement in calculated lattice spacing, is an in-
dication that the two wave functions are overly re-
stricted to similar extents, but in different ways.
From the tight-binding viewpoint, the Calais-
Sperber wave function contains no P orbitals, while
our wave function can be thought of as a mixture
of all angular symmetries with predetermined co-
efficients whose values are not optimum. Alterna-
tively, from a modulated-plane-wave approach,
our wave function is purely of s local character
while the Calais-Sperber function is a fixed ad-
mixture of all symmetries. The essence of the
matter is that neither function contains the full
flexibility needed for an optimum representation
of the electronic structure. However, the tight-
binding function does have one useful property not
shared by the modulated plane waves, namely,
that its periodicity in k leads to better behavior
near the boundaries of the Brillouin zone.

There are several possibilities for removing
the deficiencies in our wave functions. One con-
sists of the inclusion of P orbitals in the valence
basis. Another alternative is to introduce plane-
wave expansions in place of our present wave func-
tions. This alternative would be equivalent to an
OPW method, but with exact treatment of exchange
and long-range electrostatic cancellations. If
wave functions such as those found here are used
as starting points, it can become practical to ob-
tain HF convergence with a plane -wave formula-
tion. Work along these lines is in progress. "
Both the approaches outlined in this paragraph
have the advantage that they improve the behavior
as k approaches the Brillouin-zone boundary. A
possible disadvantage of the plane-wave expan-
sions is the inefficiency in their representation of
sharp spatial inhomogeneities such as the Coulomb
cusps at the atomic nuclei.

APPENDIX A: PROOF OF EQ. (55)

An understanding of the content of Eq. (55) may
be obtained by introducing a Fourier-representa-
tion formula for (p,(r)lr ~ly, (r)):

(A 1)

which means that Eq. (55) is equivalent to



KU MAR, MONKHORS 7, AND HARRIS

This equality holds exactly for a point-charge ar-
ray, for which p,,(q ) = l.

The methods presented in I indicate that the left-
hand side of Eq. (A2) describes the potential at a
lattice point due to charge distributions l y, l at
all other lattice points plus that of a compensating
uniform background of opposite charge. Since we
are presently approximating the interactions of
ly, l' on different centers by those of point charges,
we have justified Eq. (A2), and hence Eq. (55).

APPENDIX 8: NUMERICAL FIT To e(k )

As indicated in Sec. V, we found it desirable to
fit e(k) to a formula containing a logarithmic term
as well as a series of terms involving powers of
k and cubic harmonics. The form we used was
chosen for its applicability when the Fermi sur-
face is nearly spherical, and may be written

k —k~ ln, (8I)ak k~- k

where k~=(3d/8v)'~3 is the radius the Fermi sur-
face would have if spherical, a is the compound
lattice constant, &„(u 1) is the uth completely
symmetrical cubic harmonic (in ascending order of
I„, its angular-momentum quantum number), A re
fere to the angular coordinates of f, and the a~ are
coefficients to be adjusted for best fit. The E~„
were determined by the methods described in Sec.
V of 11, and yielded an over-all fit to e(k) accurate
to at least five significant figures.

To use Eq. (81), we require the integral of e(k)
over the volume within the Fermi surface. Letting
k(A) refer to the radial coordinate of the Fermi
surface in the direction 0, and introducing the ex-
pansion

k(A) =Z f„T„(A), (82)

we find for slightly nonspherical Fermi surfaces

r 4v '~'
e(k)dR=Z Z e~„(E'~")~

8 p&Eg

&&~3
(~kEEll 6kE(E )11~ t (83)

where E is a matrix of elements

(84)

and D„ is the Clebsch-Gordan coefficient con-
necting three completely symmetric cubic har-

monicss.

In obtaining Eq. (83) we have integrated Eq. (Bl)
first over the radial coordinate k, and have then
substituted the expansion for k(A) and performed
the angular integration. The last term of Eq. (81)
was handled using

k
k(kr —k ) ln dk

0 E-

2 k~ —k

In the present calculations, the logarithmic term
on the right-hand side of Eq. (85) is negligible to
one part in 10 and has therefore been omitted
from the analysis leading to Eq. (83).
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