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Lattice dynamics of zinc: Phonon structure factors*
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De~teation of the inelastic structure factors has been carried out for the [010) longitudinal-phonon

modes of zinc. From this information the phase of the dynamical matrix element relating forces

between atomic sublattices can be abstracted. Together with the measured frequencies, this gives a
complete estimate of the longitudinal part of the dynstnical matrix for the [010] propagation direction.

Comparison with various models reveals that while the phase deterrrgi~ed by a pseudopotential

calculation shows reasonably good agreement with the data, that determined from the previously

accepted Born-von Karjman pLrametrization markedly disagrees with experiment. A new parametrixation

has been found which greatly improves the Bt to eigenvector data.

I. INTRODUCTION

The forces between atoms within a crystal are
represented by the dynamical matrix, the Fourier
transformation of the interatomic force constants.
In the harmonic approximation, the eigenvalues of
this matrix are the phonon frequencies. As was
pointed out by Foreman and Lomer, ' eigenvector
information must also be obtained if the dynamical
matrix (and the underlying forces that it represents)
is to be determined unambiguously. Recent papers
by Leigh, Szigeti, and Tewary and by Cochran'
point out the inherent difficulties involved in fitting
to frequency data alone.

The eigenvectors, however, are not so readily
measurable as are the eigenvalues, and certainly
far less consideration and effort has gone into their
evaluation. The only systematic information ob-
tainable is through the inelastic-neutron-scatter-
ing structure factor. This was first pointed out by
Brockhouse 8t a/. ,4 who went on to measure phonon
eigenvectors in this manner in several simple ma-
terials. The precautions necessary for obtaining
reliable phonon intensities are sufficiently strin-
gent and the measurements themselves sufficiently
time consuming that little has been done beyond
this initial effort. Identification of eigenvectors of
unstable modes involved in structural phase trans-
formations has been attempted in several eases by
the Brookhaven group, ' and Iizumi has recently
given a quantitative discussion of phonon intensities
in CaF3. Similar measurements are now in pro-
gress on the group-VA elements at Los Alamos. '

The hexagonal-close-packed (hcp) structure has
two atoms per unit cell. Thus this structure is
just one step more complicated than those crystals
with one atom per unit cell whose structure fac-
tors in symmetry directions are completely deter-
mined by symmetry considerations alone. A par-

ticularly interesting and crucial complication is the
lack of inversion symmetry in the hcp structure.
This feature makes significant the sign of the phase
of the complex dynamical matrix. Of the common
hcp metals, Zn was chosen for several reasons.
Phonon frequencies have already been determined
at many points in the Brillouin zone. ' Attempts
to calculate the resulting phonon dispersion xela-
tions using pseudopotentials '4 are less success-
ful for Zn than for Be or Mg, and in this sense it
seems that Zn is less well understood.

The most systematic discussions '5 of the lat-
tice dynamics of Zn have been carried out using
an entirely phenomenological Born-von Karman-
type parametrization of the dynamical matrix of
the type suggested by DeWames, Wolfram, and

Lehman. ' Their modified axially symmetric
model includes both bond-bending and bond-stretch-
ing forces between up to sixth-nearest neighbors,
a total of 38 atoms. Forces within the basal plane
are independent of direction in that plane. Two
parametrizations of this model have been published.
The original fit" included elastic-constant data as
well as the measured frequencies at special points
in the Brillouin zone. The second parametrization,
due to McDonald, Elcombe and Pryor is a least-
squares fit to their measured dispersion curves
along three symmetry directions. Since their pub-
lished parameters give imaginary frequencies in
the vicinity of the symmetry point H, we have used
the original parametrization of this model in all
comparisons. A much simpler version of this mod-
el is the parametrization of Begbie and Born
which includes forces only between the twelve near-
est atoms. The structure factors as ealeulated
from this simpler model have been generally used
to identify modes in phonon measurements. Con-
trary to accepted belief, the structure factors cal-
culated from the more complex model differ mark-
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dynamical matrix can often be simplified. For
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FIG. 1. Inelastic structure factor for the longitudinal

optic mode along [010j is shown for two Born-von Kar-
man-type models. The curve due to the simple model
of Begbie and Born has generally been used for experi-
mental identification of modes. Contrary to accepted
belief, the structure factor predicted by the more com-
plex fit of DeWames et al. differs markedly from the
earlier values.

edly from the earlier calculation. The most strik-
ing difference between models occurs for the longi-
tudinal mode along [010] as is shown in Fig. 1. We

have chosen to concentrate on this propagation di-
rection as being possibly the most sensitive to
variations between various models.

II. LATTICE DYNAMICS OF AN hcp CRYSTAL

Following the derivation of Maradudin, Montroll,
and Weiss, "in the harmonic approximation the

equation of motion for the displacements u(lk) of
the kth atom in the lth unit cell of a crystal is given

by

M, ,()k)= —Zo,~(, ,) ~(('A'),
g 1'k'

where

lk 84
l'k' su, (lk) su (l'k')

F,() (kk' I l») is, to within a normalizing constant,
just the force constant acting between atomic planes
perpendicular to q, separated by Q unit cells and
on sublattices k and k', respectively. The intro-
duction of interplanar force constants has been
used to great advantage in discussing materials
with monatomic unit cells. " However, the meth-
od is rather general and we shall see that it is
of use in clarifying certain aspects of hcp lattice
dynamics as well.

The hcp lattice is composed of two interpene-
trating hexagonal sublattices separated by the
translation vector R&2 = (2X& —

» Xm+ & X)). The vec-
tors X& and X2 are Cartesian basis vectors as
shown in a projection on the hexagonal basal plane

A

in Fig. 2. X, is the usual basis vector perpendic-
ular to the basal plane. For the [010] propaga-
tion direction, it can be shown' that the dynamical

where n is the direction of displacement, Mk is
the mass of the kth atom, while C is the potential
energy of the crystal. A solution for the displace-
ment associated with the jth mode is of the form

u (lk) =M»'~ e (kqj) exp[-i(dz(q)t+iQ ~ R,],
where Q =G+q is the momentum transferred to the
crystal, G being a reciprocal-lattice vector. The
equations of motion then reduce to

(d&(q) e (kq j) =Z D ()(kk'
l q) e()(k' q j},

Sk'

where D,()(kk'I q) is the dynamical matrix. For
propagation along a high-symmetry direction, the

C=O t=2 4=3

FIG. 2. Basal plane of an hcp crystal showing the
planes of atoms which are perpendicular to x2, the [010j
axis. The shaded area indicates the primitive unit cell.
Planes are numbered with respect to the plane containing
the solid circle within the primitive unit cell. Dashed
lines indicate planes belonging to one Bravias sublattice,
while solid lines are planes belonging to the other sub-
lattice.
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matrix is block diagonalizable. That is, D q(kk' I q)
vanishes unless o.'= p .For the [010] longitudinal
modes we may then write

~l(q) =D»+ lD»l, (5)

where

D-(11 I q) = &»

where + and —refer to optic and acoustic phonons,
respectively. Thus determination of the optic-
and acoustic-phonon frequencies yields D» and the
magnitude of D» but the phase of D» is unknown.
The eigenvector associated with this mode is given

by a monitor placed just before the sample. The
initial neutron energy was fixed at 50 meV as de-
termined by a beryllium [110]monochromator.
The collimation was 20 min in each position ex-
cept the analyzer-to-detector position which was
40 min. The detector efficiency was measured to
be constant across that range of final neutron
energies considered. If the phonon cross section
has an energy width negligible compared with the
instrumental width and is furthermore essentially
constantover that volume in reciprocal space inter-
cepted by the resolution ellipsoid, it can be shown2'

that the peak has a Gaussian energy profile and
that the integrated intensity for such a scan is
given by

cos(X-Q'R») = (8)

where 8=g,/g, showing that X(q) is a function only
of the xutio of the reduced optic and acoustic struc-
ture factors. Equation (8) is convenient for de-
ducing X(q) from experiment, with the single com-
plication that knowing Q R», there are still two
possible values of X(q) which satisfy Eq. (8). How-

ever, since the dynamical matrix must be real at
the zone center and the zone boundary by symme-
try, a simple criterion that X(q) be smooth is
adequate to choose a single value of X over most
of the Brillouin zone.

HI. EXPERIMENT

The experiments consisted of a series of con-
stant-Q scans of phonon-creation peaks carried
out on a triple-axis spectrometer at the Brook-
haven High Flux Beam Reactor. Each scan was
made versus a fixed monitor count as determined

&e(lqa) .1 / —1.(q) =l -(2- )

where e is a unit vector along [010]. Thu»(q)
occurring in the dynamical matrix is a very physi-
cal quantity. It is just the phase between the mo-
tion of the bvo atomic sublattices.

The one-phonon inelastic neutron scattering is
proportional to the inelastic structure factor

~~= IQ e(lq+)+Q e(2q+)e o'"»l

(7)

where
~Ilail ISIS

g, =lvcos(X-Q R»).
(Structure factors with a different choice of phase
factors have appeared in the literature. It is im-
portant to make the choice consistent with the
choice of phase for the eigenvectors. ~) Note that

g, +g =2, as required by symmetry. Rearrang-
ing the above equations we find

(tane& &u&(q)

where P~ is the ref lectivity of the analyzer crys-
tal, 8& is the Bragg angle for that crystal, and k~

is the final neutron momentum. n;(q) is the Bose-
Einstein occupation number [exp[ho&&(q)/ks T] —I] '
for the jth-phonon mode in a sample at tempera-
ture T. 8'is the Debye-%aller factor and g; is
the reduced inelastic structure factor defined
earlier. All remaining factors can be collected
into the constant factor Io.

Data scans were taken at room temperature
using a cylindrical sample of &-in. diameter with

mosaic spread of -0.2'. The base of the cylinder
contained the [OM] scattering plane in which all
our measurements were made. Data were cor-
rected point by point for the ref lectivity of the
beryllium [002] analyzer, which was measured in
a separate experiment. Typical scans are shown
in Fig. 3. Except for very small values of q,
where the low-energy acoustic phonons were
masked by strong Bragg scattering, the energy
scans at fixed Q contained both acoustic- and optie-
mode peaks. The resulting data were fitted by a
nonlinear least-squares procedure to a Gaussian
profile with a linearly sloping background. The
area of the fitted Gaussian was taken to be the
integrated intensity of the peak and corrected for
all factors except g~ in Eq. (9). A check against
the sum rule which requires optic plus acoustic
structure factors to be constant was used to elimi-
nate inconsistent points. A total of three points
were discarded in this way.

At the temperature and range of momentum
transfer studied here, there is a substantial multi-
phonon cross section (on the order of 25% of the
one-phonon cross section). Within the harmonic
approximation, this contributes only to the broad
inelastic background which ean be dealt with. The
potentially more troublesome ar]Lbarmonic inter-
ference between one- and two-phonon terms should
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FIG. 3. Typical fits to phonon data for zinc. The
solid line is a nonlinear least-squares fit to Gaussian
peaks with variable height, width, and center, plus back-
ground. Arrows indicate the centers of peaks. The area
under each Gaussian is taken to be the integrated inten-
sity of the peak from which structure factors are to be
extracted.
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manifest itself as a systematic deviation from the
sum rule described above. Since we discern no
such systematic deviation and since the estimated
magnitude of this cross section is less than 10%
that of the one-phonon cross section, we have
assumed that the intensities measured are due to
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FIG. 5. Measured phase of the motion between atomic
sublattices is shown together with two theoretical curves.
Points are values extracted from structure-factor mea-
surements. The pseudopotential calculation of Gilat
et ai. is clearly a better description of the data than is
the parametrization of De%ames et al.
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FIG. 4. [Okl) plane in reciprocal space showing the
zone of the structure factor (shaded area). Arrow indi-
cates the equivalent position in the first-structure-fac-
tor zone of the lines covered by the measurements.

one-phonon scattering.
Just as the phonon frequencies and eigenvectors

are periodic functions of Q, so too are the reduced
structure factors g,(Q) defined in Eq. (7). How-
ever the oceurrenee of the factor e ' '"» causes
the repeat distance to be larger than the first
Brillouin zone. This larger zone, defined by
g (Q+ P) =g (Q) is known as the zone of the struc-
ture factor, and is shown in Fig. 4 for the (Okf)
plane. There is an additional symmetry relation
between the optic and acoustic structure factors
which requires that g,(0, k, l) =gm (0, k, f+ i/for the
hcp structure. These redundancies in g,(Q) were
exploited by measuring g, (Q+ r') for more than one
value of f' The re.sulting spread in g (q) reduced
to the first-structure-factor zone gives a reliable
indication of the overall precision of our measure-
ments.

Using Eq. (8) and the measured values of
R = (g,/g ), we obtain the values of X(q), the phase
angles between sublattice oscillations for [010]
acoustic modes. These values are indicated by
the points in Fig. 5. Although the scatter of points
is not small, this arises in part from tbe gg)gQinear
nature of Eq. (8) which exaggerates the err=. in X
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FIG. 6. Magnitude of the interplanar force constants
found in the best fit to the combined data for phonon fre-
quencies and X(q). As is expected the nearer planes
dominate. Also shown are the force constants obtained
from the two theories considered. It should be noted
that the constant Go is just the sum of all other force
constants so that the frequency of the acoustic branch
goes to zero at q=0. Since G, is equal to G&, we have
shown values for positive l only. The primary conclusion
to be drawn from this set of fits is that discrepancy be-
tween models is essentially an interchange of F& and F i.

TABLE I. Interatomic and interplanar force constants
for several fits to the model of DeWames et al. (Ref. 15)
(in units of 103 dyn/cm).

Constant

Fit with
negative

Fit with
positive

Original
fit by

DeWames
et al.

= —2[&v,(q) —v (q)] (cosX —f sink) . (10)

The coefficients G, =- —M 'F»(ll I l) are the longi-
tudinal force constants between planes separated
by Q=l unit cells and F, —= —M 'F„(12(l) are the
corresponding force constants between planes of
unlike atoms. Go is just the sum of all other force
constants to assure & =0 at q =0. Note that the
intrasublattice force constants G, can be derived
from frequency measurements alone. The intex-
sublattice forces cannot be determined without ad-
ditional information which we can take most sim-
ply to be the phase information, X(q). Least-
squares fits to Eqs. (10) can be used to determine
the interplanar force constants G, and F,. The re-
sults of such fits are shown in Fig. 6. The values
obtained are relatively stable, in the sense that the
addition of the (l+ 1)th force-constant parameter has

for a given error in R in some regions of Q. Shown
for comparison in Fig. 5 are the phase angles
X(q) obtained from the eigenvectors of two differ-
ent model calculations. The first (dotted line)
is from the pseudopotential calculation of Gilat,
Rizzi, and Cubiotti, ' which is seen to be in rea-
sonable agreement with the experimentally ob-
served values. The second (solid line) results
from the empirical Born-von Karman treatment
of DeWames et al. " The experimental and model
phases are seen to disagree as to sign. It should
be noted that the sign of X(q) depends upon the
choice of basis vectors. This choice has, how-
ever, been made consistently for those quantities
compared in Fig. 5. There is thus a real physical
difference between the phases represented by the
solid and dotted curves in this figure. To see what
this difference is and how such a discrepancy might
arise, it is useful to discuss now interplanar force
constants.

In terms of the interplanar force constants act-
ing between the planes shown in Fig. 2, the longi-
tudinal elements of the dynamical matrix given in
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FIG. 7. Comparison of
experimental phonon dis-
persion (Ref. 12) with two
fits to the model of De-
Wames et al. The dashed
curve is the result of a
straight fit to the experi-
mental points marked with
a dot. The solid curve is
the result of adding a re-
striction that the phase of
X be positive for the [010)
direction. Points marked
x were not fit but are shown
for completeness„As can
be seen, the dispersion
curves from the two fits
are remarkably similar
while X changes markedly.
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little effect on the l parameters previously fit. The
fit shown contains 11 intersublattice force constants
and 1S intrasublattice force constants. Those not
shown in Fig. 6 are zero to within experimental
error. The error bars shown reflect the scatter
in both frequency and X(q). Not included however,
is an estimate of error due to the finite step size
in q and the subsequent limit on the number of
Fourier coefficients which can be determined.
Since it is difficult to estimate the magnitude of
this source of error, we feel that these fits should
be used primarily in qualitative rather than in
quantitative compar isons.

Also shown in Fig. 6 are the interplanar force
constants derived from the pseudopotential calcula-
tion of Gilat et ai. and the Born-von Karman model
of DeWames et a/. Note that the intrasublattice
coupling is dominated by the near-neighbor term,
which is also much greater than any of the inter-
sublattice forces. This feature is correctly re-
produced by both models. It is in the intersublat-
tice force constants that the interesting diffexences
arise. Notice, in particular, that both our results
and the pseudopotential model suggest that E„
&E„& whereas the parameters selected by De%ames
et a/. result in E &

& E &. It is this. interchange of
the relative importance of E,& and E I which is
responsible for the very different behaviors of
X(q) shown in Fig. 5. This will be further dis-
cussed in the next section.

IV. MSCUSSION

For simplicity let us specialize Eqs. (10) by
considering only interplanar force constants up to
f = 1. Writing 8 = 2v), Eqs. (10) reduce to

(F, —F,) sin8
tank =

Eo+ (Fg+ E i) cos8 '

—(g = 2[F0+Eq+ E q+ 2EO(Fq+E q) cos8

+2F,E,cos28]' ' .

Notice that in this approximation an interchange of
Ej and E j leaves the frequencies unchanged while
reversing the sign of X. More generally, the fre-
quencies in Eqs. (10) are invariant to the complete
exchange E&- E &, while this exchange causes
X(q) - —X(q). Thus we see that phonon-frequency
data can be fitted equally well by two solutions
which differ by the interchange of E, and E, .

The above discussion certainly suggests that a
similar ambiguity could be responsible for the
apparent reversal of phase of A. which occurs in the
model of De%ames et al. as shown in Fig. 6. The
question now arises as to whether it is possible to
adjust the interatomic force constants in such a
way as to interchange the interplanar force con-
stants E, and E, without adversely affecting the fit
to other bx"anches in the dispersion curve. This ad-
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It should be noted that the calculated standard

deviations associated with the interatomic force
constants range from 0. 1 to 0.4 in both fits. Fluc-
tuations within this range were obtained with vari-
ations in fitting procedure. The values shown in
Table I represent the best fits as determined by
the weighted variance.

Also shown in Table I are the values obtained in
the original fit to this model by DeWames et al.
No, apparent pattern in the interatomic force con-
stants occurs upon changing the sign of X. The
interplanar force constants given at the bottom of
the table, however, show the expected interchange
between F& and F &.

V. CONCLUSION

FIG. 8. Frequency distribution functions for the two
fits illustrated in the previous figure. As can be seen
there is essentially no difference in the frequencies given
by the two different sets of interatomic force constants.

justment cannot be made analytically and it was de-
cided to attempt to find a new fit to the model of
DeWames et al. which would correspond to a posi-
tive phase X(q). We selected the data of Almquist
and Stedman' as the most complete set of data
and performed a least-squares fit to almost all
of the available data. (The experimental points
shown as && in Fig. 7 correspond to branches in
the dispersion curve which could not simply be in-
cluded in the fitting program )The. resulting in- '

teratomic force constants are given in the first
column of Table I. The dispersion curves calcu-
lated from these parameters are shown as dashed
lines in Fig. 7. Also shown is the curve predicted
for X(q). As can be seen, the best fit to the data
gives a negative phase as did the original para-
metrization to this model.

A second fit was then made with the additional
constraint that X(q) be positive at q =0. 5q ~. The
interatomic force constants obtained under this
constraint are given in the second column of Table
I. The dispersion curves and phase calculated
from these parameters are shown as solid lines
in Fig. 7. The dispersion curves obtained are
remarkably similar to those obtained from the
first fit but the phase is obviously much closer to
that obtained in our experiment. The frequency
distributions for both fits are shown in Fig. 8. The
similarity between these two distributions would
seem to indicate that the frequencies away from
symmetry directions are essentially the same for
both fits. Thus we have generated two sets of
interatomic force constants which give nearly iden-
tical frequencies throughout the Brillouin zone but
which differ markedly in the phase between atomic

We have attempted to determine the dynamical
matrix elements for longitudinal [010] phonons in
zinc by making use of phonon intensities. A best
fit to the data gives measured interplanar force con-
stants for planes perpendicular to [010]. A com-
parison with current models for zinc reveals that
the pseudopotential calculation of Gilat, Rizzi, and
Cubiotti' most closely approximates the data. The
original parametrization of the modified axially
symmetric model of DeWames, Wolfram, and
Lehman' predicts a phase between sublattices
which is exactly the opposite of that measured in
the experiment. Since this model was fitted to only
frequency (eigenvalue) data, it is not too surpris-
ing that there could be such a large discrepancy
since frequency data reveal nothing about this
phase. A revised fit to this model was carried
out using the most complete frequency data avail-
able and restricting the sign of the phase between
sublattices. It was found that without this restric-
tion, an equally good fit could be found which dif-
fered primarily in the sign of the phase. This
alternate fit is a particularly vivid example of the
hazards of fitting to eigenvalue data alone which
were described by Leigh et al. and by Cochran.
We believe that this work further demonstrates
the desirability of carrying out quantitative phonon-
intensity measurements whenever it is practical to
do so, particularly in noncentrosymmetric ma-
terials.
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