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The low-temperature electrical resistivity of potassium is calculated and compared with the recent,

&~y accurate measurements in the range 2-20'K. Excellent agreement with experiment is obtained. It
is found that explicitly including phonon drag accounts precisely for the exponential temperature

dependence observed for the resistivity belo~ O'K. %e show how to determine the screened

electron-ion interaction matrix elements, crucial for obtaining quantitative agrecmnent with experiment for
a resistivity calculation in the low-temperature regime. A discussion is given showing in detail how the

present calcuhLted results for potassium are in quantitative agreemcnt with the general theory of the

low-temperature resistivity of the e&kepi metals.

I. INTRODUCTION

One of the long standing challenges of the theory
of metals has been to calculate quantitatively the
temperature-dependent part of the dc electrical
resistivity p(T) of the alkali metals Of.particular
interest is the low-temperature regime, where
p(T) exhibits an extremely strong temperature de-
pendence, increasing by orders of magnitude over
a relatively short range of temperature. A de-
tailed account of the early calculations of p(T), up
to about 1S60, is given in the excellent treatise by
Ziman. ' Bailyn has clearly demonstrated that
these early calculations of p(T) could not hope to
obtain quantitative agreement with experiment be-
cause they did not take account of the highly aniso-
tropic. phonon spectrum that is characteristic of
the alkali metals. %ithin the last two years, im-
proved calculations' ' of p(T) in the very-low-tem-
perature regime have been reported for potassium,
which took proper account of the anisotropy of the
phonon spectrum. Although these recent calcula-
tions constituted a very significant improvement
over previous work, quantitative agreement with
experiment ' was still lacking. Moreover, the
calculations failed to account for the observed7 ex-
ponential decay of p(T) below 4'K.

In this paper, we present the details of a calcu-
lation of p(T) which leads to excel1ent quantitative
agreement with the recent low-temperature mea-
surements. 6'7 The discrepancy between theory and
experiment never exceeds 10% over the tempera-
ture range 2-20'K. The quality of this agreement
can be appreciated by noting that over this temper-
ature range, p(T) increases by five orders of mag-
nitude.

The principal new features of our calculation are
the explicit inclusion of phonon drag, which ex-
plains the exponential temperature dependence of
p(T) below 4 'K, and our analysis of the screened,
electron-ion interaction matrix element. As ex-
plained in the preceding paper, the calculation we

present here is valid only for an alkali metal be-
cause of the breakdown of Matthiessen's rule for
the polyvalent and noble metals. The reason we
chose potassium as the alkali metal to study in de-
tail is that only for potassium are there detailed
low-temperature measurements ' having the high
accuracy needed for a careful quantitative compar-
ison between theory and experiment. Moreover,
unlike Na and Li, K does not undergo a low-tem-
perature martensitic phase transformation, which
would prevent a clear interpretation of the data.

In Sec. II, we present the expression for the re-
sistivity, including the phonon-drag contribution.
In Sec. III, we show how to determine the screened,
electron-ion interaction matrix elements. The re-
sults of our calculation are presented in Sec. IV
and discussed in Sec. V. The summary follows in
Sec. VI.

II. EXPRESSION FOR p(T)

The derivation of the expression for p(T) for an
alkali metal, obtained from the variational solu-
tion of the Boltzmann equation, is discussed in de-
tail in the preceding paper, and we quote here the
result. We separate p(T) as follows

p(T)=p (T)-p,(T)=p (T)[1-X(T)], (2. l)
where p„(T) is the resistivity without phonon drag
and p~(T) is the contribution due to phonon drag,
conveniently written as X(T) = p~(T)/p~(T). The
explicit expression for p~(T), valid only for the
alkali metals, is given by

ma Qt@

p„(T)= ~ p@ ~ dk}t v~(}t)S(k), (2. 2)

s(a&=&4 )'fso, sg&, (2.3)

where n is the density of electrons, m is the elec-
tron mass, k~ is the Fermi momentums(k) , is the
screened, electron-ion interaction matrix element,
and S(k) is the structure factor.

For the structure factor, we use the one-pho-
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non harmonic approximation

I.k $„(q)1
( burg(Q/0& r

(2 4)
where M is the ionic mass and &o~(q) and $~(q) are
the frequency and polarization vector, respective-
ly, of a phonon of branch X and wave vector q. The
vector q is just the scattering vector k "folded
back" into the first Brillouin zone,

q=k -6„, (2. 5)

where 6„is one of the reciprocal-lattice vectors.
For a given k, there is a unique q and 6„that
satisfy (2. 5).

The explicit expression for the phonon-drag con-
tribution to p(T) is given by X(T) =P,~/P»Pz~,
where

Pgg=C JcPkk 3(k)v (k)k,

P»; = C Jd'kk 'I(k)v2(k)k 'q,

Pii--C fd kk 3(k)v (k)q .

(2 6)

Here, C is a known constant and the integration is
taken over the sphere Ikl ~2k+. Note that P&z is
proportional to the triple integral for p„(T) given
in (2.2) and (2.3).

To obtain S(k), we use the well-known Born-Von
Karman analysis, "according to which &u„(q) and
$„(q) are the eigenvalues and eigenvectors, re-
spectively, of the dynamical matrix whose matrix
elements are given in terms of the interatomic
force constants. The interatomic force constants
out to five nearest neighbors have been measured'
for potassium at 9 'K by means of neutron scatter-
ing. " The Born-Von Karman method ensures that
the very important periodicity properties of the
phonon frequencies and polarization vectors are
automatically satisfied

vx (k) = Mx(q + G„)= R&(q ),
(2. 7)

4(k) = 4(q+G.}= 4(q).
Hence, for any given k, we can calculate exactly
the phonon frequency and polarization vector even
for umklapp processes, without having to know
which 6„is needed to reduce k into the first. Bril-
louin zone. The computational advantages of the
Born-Von Karman method can hardly be overesti-
mated.
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FIG. 1. Angular average of the structure factor for
potassium at 5'K.

p„„(T)are very sensitive" to v(k) and, on the
other hand, v(k) is not reliably known. The resolu-
tion of this problem lies in exploiting the peculiar
low-temperature behavior of 8(k). To illustrate
this idea, let us consider S(k), the angular average
of the structure factor. We plot in Fig. l, the
curve for S(k) for potassium at T=5 K. The most
important feature of this curve is that S(k) is negli-
gible ' except near k = 0 and near k = 2k~. There-
fore, for each of the integrals appearing in the ex-
pression for p„and for p~, Eqs. (2.2) and (2. 6),
the integrand contributes significantly only near
k= 0 and near @=2k~. Therefore, it is sufficient
to know v(k) only nea. r k = 0 and near k = 2k~.

Near k = 0, v(k) is known exactly. ' It is propor-
tional to the Fourier transform of a screened,
point-ion Coulomb potential. For k near 2k~ v(k)
is almost constant over the very short range of
integration for which S(k) is non-negligible. Al-
though one may certainly not ignore the k depen-
dence of v(k), even over so short a range of inte-
gration, v(k) can be adequately represented by nny
one-parameter model potential, providing one ad-
justs the parameter to give the correct magnitude
of p„„at some fixed low temperature. This is the
only adjustable parameter in our calculation of
p(T).

We shall write v(k) in a form similar to the mod-
el potential of Harrison

III. ELECTRON-ION INTERACTION MATRIX
ELEMENTS

—(4m'e /k )+P
(1 —Z)e(k)00 (3.1)

We now turn to the determination of the form
factor v(k) for the matrix elements of the screened
electron-ion interaction. This is a vital feature
of the calculation. On the one hand, the values of

where Ao is the atomic volume and 1 —Z is the nor-
malization factor which we shall discuss presently.
For the screening function &(k), we use the Hartree
dielectric function,
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1 1-x 1+@
s(k) =1+, ln

1
+-, , (3.2)

m'k'~cow 4x 1 —x
where x= k/2k+ and ao is the Bohr radius. The
first term in the numerator of Eq. (3. 1) is the
Fourier transform of a (monovalent) point-ion
Coulomb potential and the second term P repre-
sents deviations from this simple potential. These
deviations arise from the effective repulsive poten-
tial that is central to the pseudopotential formula-
tion, from corrections to the point-ion Coulomb
potential in the interior of the ion core, from the
approximate and local nature of the Hartree dielec-
tric function, and from other smaller effects. Al-
though the expression for the form factor v(k) is
written as a function of a single variable k, it in-
cludes in full the nonlocality of the pseudopotential.
This point is explained in detail in the recent re-
view article by Wiser and Greenfield. '

The form factor v(k) differs from the Harrison'
model potential in two respects. First of all, Har-
rison calculated p from first principles. It is now
known that this procedure is not sufficiently ac-
curate for a resistivity calculation. We determine
P by making a fit to the low-temperature resistiv-
ity data. Second, our choice for v(k) contains the
normabzation factor 1 -Z. The scattering ampli-
tude theorem of Austin, Heine, and Sham' shows
that it is the true wave function and not the pseudo-
wave-function which must be normalized to unity.
This requires inserting the normalization factor'8
1 —Z, l (k~1 c)I, where l k z) is a normalized plane
wave of wave number kz and (c) is an ionic core
wave function. We designate by Z the sum over all
core wave functions. The core wave functions have
been calculated by Herman and Skillman. ' Per-
forming the indicated integrals, we obtain for
potassium the value Z = 0. 154.

There had previously been some question about
the need to include an orthogonalization correction
to e(k), which would lead to a correction factor in
v(k) for small k. However, Shaw and Harrison '
subsequently proved that the corrections due to the
orthogonalization hole and the depletion hole exact-
ly cancel, leading to the result that the pseudopo-
tential form factor equals precisely —3E~ at k = 0.
Since the pseudopotential form factor is defined as
the matrix element between plane waves normal-
ized to unity, rather than the correct normaliza ~

tion, we must multiply by the appropriate normali-
zation factor to obtain

v{0)= --:& l(I -&). {3.3)

We emphasize that although (3.2) is an approximate
expression for e(k), this expression gives the cor-
rect limiting form for small k. Therefore, Eq.
(3. 1) for v(k) is exact in the small-k region. In the
high-k region, any small error introduced by using
the approximate expression (3.2) for c(k) is auto-

IV. CALCULATIONS AND COMPARISON WITH
EXPERIMENT

In making a comparison with experiment, we are
fortunate in having available the recent, highly ac-
curate data of Gugan and of Ekin and Maxfield for
p(T) for potassium. The data of Ekin and MaxfieM
cover the range below 20'K, whereas the data of
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I IG. 2. Form factor e@) for potassium, inchxding
the normalization factor 1-Z.

matical]. y compensated for since p is determined by
fitting to experiment.

It remains to determine the parameter P. The
best over-all fit to the low-temperature resistivity
data is obtained with P=45. 85, in units of Ryuo,
where ao is the Bohr radius. A change in P of 0. 1,
corresponding to a change in v(2k~) of only 0.0002

Ry, would alter p,~,(T) by about 4%. This is the
maximum change in p,„,(T) that is compatible with

the data, as we shall see in Sec. IV. We plot in

Fig. 2 the curve for v(k). Note that v(k) is very
nearly zero near 2k~, which explains the observed
sensitivity of p„„(T)to quite small changes in
v(2k~).

%'e close the section by emphasizing that the ex-
pression (3. 1) for v(k) is appropriate to calculate
p(T) only at low temperatures. Equation (3.1) pro-
vides extremely accurate values of v(k) for k =2k+,
which is the range of k that enters the umklapp
resistivity integrals for the low temperatures con-
sidered here (T& 20'K). However, for T &20'K,
S(k) rises less steeply near 2k+, with the result
that a larger range of k enters the umklappintegrals
and (3.1)is no longer sufficiently accurate. We have
previously shown" what form factor to use for the cal-
culation of p(T) for potassium above 20 'K, where the
range k~~ k & 1.8k+ is most important. To calculate
p(T) from absolute zero to the melting point, one
needs a form factor which reduces to (3.1)for k = 2k~
and which is also very accurate in the range k~& k
~ 1.8k~. In a subsequent paper, we shall show how

to construct such a form factor and shall demon-
strate that it leads to values of p,~,(T) which are in
excellent agreement with p,„,(T) over the entire
temperature range in the solid.
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TABLE I. Comparison between the calculated and experimental values of p(T) for potas-
sium. Also given are PN and pv, the normal scattering and umklapp scattering contribu-
tions to p(T), respectively, as well as their ratio (pv/p~) and the correction due to phonon
drag (X). Finally, in the last column is presented the ratio of the calculated resistivity
to p,.

pecyt
(nQ cm)

pcalc pmpt
Ar

(na cm)
pv

(nn cm)
Pv
PN X

P eve

Pv

2. 0 0. 00111 (0.0016)
2. 2 0.00253 (0.003 5)
2.4 0.00541 (0.0065)
2. 6 0. 0105 (0.0113)
2. 8 0. 0190 (0.019 8)
3.0 0.0319 (0.032 5)
3.2 0.0506 (0. 051 0)
3.4 0. 0767 (0.0764)
3.6 0.111 (0.111)
3.8 0. 156 (0.155)
4. 0 0.211 (0.208)
4. 5 0.403
5. 0 0.695
5.5 1.10
6. 0 1.65
7. 0 3.18
8. 0 5.42
9.0 8.43

10.0 12.3
12.0 22. 7
14.0 37.0
16.0, 55. 7

18.0 78.6
20. 0 106.

-3% (-33%)
+7% (-23%)
+ 8% (-10%)
+9% (+1/p)
+6% (+2%)
+4% (+2%)
+2% (+1%)

0% (0%)
—2% (-2%)
-4% (-4%)
—5% (-4/0)
—6%
—7%
—8/o

-10%
—10%
-9%
—8%
—4%

0/0

+3%
+5%
+7%

0. 001 62
0. 002 67
0. 004 23
0.00648
0. 009 62
0.013 9
0.019 7
0.0273
0.037 0
0.0492
0.0643
0.118
0.198
0.312
0.466
0.911
l. 57
2.48
3.68
7.14

12.3
19.3
28.3
39.0

0. 000 82
0. 002 07
0. 004 53
0. 008 82
0. 0157
0. 0260
0. 0405
0. 0602
0. 0859
0. 118
0.159
0.298
0.501
0. 779
1.14
2. 16
3.63
5. 65
8.29

15.8
26. 6
40. 8
58.3
78. 8

0.50 0.56 1.31
0.78 0.43 1.31
1.07 0.33 1.30
1.36 0.26 1.29
163 021 128
1.86 0.17 1.28
2. 06 0.14 1.27
2.21 0.12 1.27
2.33 0.11 1.27
2.41 0.10 1.27
2.47 0.10 1.27
2.53 0.09 1.28
2. 53 0.08 1.29
2.50 0.08 1.30
2.45 0.07 1.31
2.37 0.07 1.32
2.31 0.06 1.34
2.28 0.06 1.35
2. 25 0.05 1.36
2.21 0.05 1.38
2. 17 0.05 1.39
2. 12 0.04 1.41
2. 06 0.04 1.42
2, 02 0, 04 1,43

Gugan cover the range below 4. 2 'K. Potassium is
in fact the only alkali metal for which highly accu-
rate data exist in the low-temperature regime.

The need for accurate experiments for the very-
low-temperature regime is readily made apparent
by comparing the residual resistivity p,~ with p(T).
Even for the highest purity samples of potassium
available, having residual resistivity ratios of over
8000, p(T) is less than ~ of p, at 4 'K and de-
creases rapidly (in fact, exponentially) at lower
temperatures, until at 2 K, p(T) =0. 00lp, ~.
Therefore, very small errors in the measurement
of p„t(T)=p, +p(T) can lead to gross errors in
the data for p(T) This fact ha.s been well appre-
ciated both by Gugan and by Ekin and Maxfield, and
the over-all excellent agreement between these two
measurements of p(T) for potassium in the temper-
ature range where they overlap makes one confi-
dent of the reliability of their data. This is an im-
portant point in view of the significantly different
experimental results previously reported for p(T)
for potassium.

For p„~(T), we quote the data of Guganv in the
range 2-4 'K and the data of Ekin and Maxfield~
in the range 4-20 'K. The data of Ekin and Max-
field in the range 2- 4 'K are also presented in

Table I in parentheses. In the range 2-4 'K,
where the two sets of data overlap, the agreement
between the two measurements is excellent (within

4%%), except for the very lowest range where the
values of Ekin and Maxfield are larger than those
of Gugan. However, Gugan claims a significantly
smaller estimated error in this range (+8% at
2 'K for Gugan, as compared with +12% at 2 'K
for Ekin and Maxfield).

Our results for p(T) of potassium for the temper-
ature range 2-20'K, are presented in Table I.
The second column lists the experimental data,
with the values of Ekin and Maxfield in the range
2-4'K given in parentheses. The third column
gives the percentage discrepancy between the cal-
culated value and experiment. We see that the
agreement is excellent, with the discrepancy never
exceeding 10% for any temperature (except for the
two lowest-temperature values of Ekin and Max-
field). Note that p(T) increases by five orders of
magnitude over this temperature range.

In the fourth to sixth columns of Table I, we pre-
sent the normal and umklapp contributions to p(T)
as well as their ratio ~/p». Although p„de-.
creases exponentially below 6 K, we see that even
at 2 'K, pv is by no means negligible compared to P~.
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In the seventh column of Table I, we present the
the phonon-drag contribution to p(T}, represented
by X= p~/(p„+ p~). It should be emphasized how

important a contribution phonon drag makes to p(T)
at very low temperatures. At 2'K, X=O. 56,
showing that ignoring phonon drag would lead to
an error in p,~,(T) of over a factor of 2. At

1.5'K, the error would be a factor of 10. It is
clear from these results that no calculation of p(T)
for the alkali metals at very low temperatures can
hope to achieve quantitative agreement with experi-
ment without including explicitly the effect of pho-
non dr-ag.

The values for X(T) were calculated using the
expression for P/, I, given in Eq. (2. 6). This ex-
pression. assumes that the only important mecha-
nism for achieving phonon equilibration is phonon-
.electron scattering. The justification for ignoring
phonon-impurity scattering and phonon-phonon
scattering as mechanisms for achieving phonon

equilibration has been given in the preceding arti-
cle. For T &5'K, we find that phonon-electron
scattering alone is quite effective in achieving pho-
non equilibration. At T = 5 'K, we see from Table
I that taking into account only phonon-electron scat-
tering leads to an X(T) that alters p«(T) by only 8%%up,

and at higher temperatures the effect is even
smaller. Including phonon-phonon scattering will
further reduce X(T), and thus change p„(T}by even
less. Therefore, taking into account only phonon-
electron scattering in the expression for X(T), as
we have done, is perfectly adequate for the calcu-
lation of p(T).

V. DISCUSSION OF RESULTS

There are several aspecfs of these results that
merit discussion. Moreover, we wish in this sec-

l.4—
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0.2—

FIG. 3. Curves labeled 1 and 2 are, respectively, the
ratios pz(T)/[pz(T)]~ and pz(T)/[pU(T)]2 plotted as a
function of temperature. The quantities [pU(T)]~ an6
[p+T)]2 are defined in Eq. (5.1) and pz(T) is the cal-
culated umklapp scattering contribution to the resistivity
given in Table I.

tion to explore quantitatively for potassium some
of the predictions of the preceding paper which

apply to all the alkali metals. We first consider
the two analytical expressions derived in the pre-
ceding paper for the umklapp scattering contribu-
tion pv(T), each valid over a specific temperature
range. Let us designate by [pv(T)], and [pv(T)]2
the expression valid in the lower-temperature and

higher -temperature ranges, respectively. Then,
Eqs. (3.8) and (3.9) of the preceding paper become

[p (T)] =AT'e" 0 's

[p (T}] IIT7P&-hug/0& r
(5 I)

where the quantities h&o0/ks and Ru, /ks equal 10 and
8'K, respectively, for potassium, as obtained
from the velocity of sound, and are given in Table
I of Ref. 9. In Fig. 3, we plot as a function of
temperature the ratios [pv(T)],~,/[pv(T)], and

[pv(T)],~,/[pz(T)]z. A horizontal line in Fig. 3 cor-
responds to a ratio independent of T, implying that
the analytical expression is a good description of
pv(T) in the relevant temperature range. We see
from the figure that for the range 3-6 'K, [pgT}]2
does not deviate from pv(T) by more than 6%,
whereas [pv(T}], is an appropriate expression for
p„(T) only below 1'K.

From the discussion in Appendix B of the pre-
ceding paper, it follows that the criterion for the
validity of [p„(T)],for p JT) is that 5ksT/5+0«1.
Inserting the value for potassium, k&o0/ks=10'K,
gives T«2'K as the temperature range for which
AT e o & ' should be a valid expression for
pv(T). This result is in agreement with the calcu-
lated range of validity, T& 1'K. Another result
derived in the preceding paper was an expression
for the temperature T «at which p(T)/T~ exhibits
a maximum. We used [pv(T)]2 for p„(T) to obtain
T = kur, /1. 5ks. Inserting the value for potassi-
um, Fur~/ks=8'K, leads to T =5'K, in agree-
mggt. with experiment.

Both Ekin and Maxfield and Gugan analyzed
their results for pJT) in terms of the expression
e' ~ '. Since this expression does not include the
factor T ~ in front of the exponential, there is a
temperature dependence ~ to their parameter @'.

Including the factor T~ leads to a temperature-
independent v& in the argument of the exponential,
as one would anticipate from the theory.

We now turn to the normal scattering contribu-
tion p„(T). Of course, in the limit T-O, one ob-
tains the standard Bloch-Gruneisen result p„(T)
~x: T . However, one does not reach the T~ limit
for p„(T) until extremely low temperatures. At
higher temperatures, the Bloch-Gruneisen approx-
imations are not valid, and the true p„(T) exhibits
deviations from T' behavior. On the one hand, the
approximation of setting v(k) equal to v(0) increases
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FIG. 4. Ratios ~expo(+/T, pN(T)/T, and ~i~h(T)/T
are plotted as a function of temperature. For p~t (T),
the solid and dashed lines represent the data of Gugan
and of Ekin and Maxfield, respectively. The ratio
~go:h(P/T is virtually indistinguishable from a hori-
zontal line up to T/0=0. 1, corresponding to T=11'K
for potassium.

p„(T) above its true value because v (k) & va(0). On
the other hand, the approximation of a linear pho-
non spectrum in Eq. (2.4) decreases p„(T) below
its true value because [v„(q)], & [v~(q)] „„„.
Therefore, the two approximations tend to cancel.
Nevertheless, the second approximation is more
serious since &o„(q) enters the integrand for p~(T)
exponentially, whereas v (k} enters linearly.
Therefore, removing both approximations leads to
the result that, for T& 5 'K, p~(T)/T5 increases
with temperature, rather than remaining virtually
constant, as predicted by the Bloch-Gruneisen the-
ory. To illustrate these points, we plot in Fig. 4
as a function of temperature the ratios p„(T)/T'
and p,~(T)/Ts. The increasing values of p„(T)/
T' with increasing temperature up to 5 'K are quite
apparent.

We also plot in Fig. 4 the ratio p, ,(T)/T' in
order to compare the magnitudes of p, ,(T) and

p~(T) We see tha. t p „ t(T) & p„(T) below 2. 2 'K for
the data of Gugan, and below 2. 0 'K for the data of
Ekin and Maxfield. This is a very interesting re-
sult for the following reason Since .PU(T) is posi-
tive, it follows that without calculating either p JT)
or p~(T}, we may be certain that phonon drag is
very important at 2'K. The significance of this
result lies in the fact that it depends only on a calcu-
lation of p„(T), which contains no free parameters.
The single parameter P appearing in v(k) given by
Eq. (3. 1) is completely screened at small k by e(k)
and hence does not contribute to p~(T). The above
argument demonstrates unequivocally the necessity
of including phonon drag in the calculation of p(T)
at these low temperatures.

It should be mentioned that all previously report-
ed values for pN(T) failed to include the normaliza-
tion factor 1 —Z in v(k). Since v(k) appears

squared in p(T) and Z =0. 154 for potassium, ignor-
ing Z leads to values which must be increased by
4(g to obtain the correct PENT} T. his is an impor-
tant point regarding the comparison between p„(T)
and p,~,(T) mentioned above.

Our analysis of phonon drag leads to several
predictions which we shall now check quantitatively
for potassium. For the temperature at which
pn/p„= 2, we derived that 1 -X=0.9. Table I
shows that p~/p„= 2 occurs at 3. 2 'K, for which
1 -X=0. 86, in agreement with the prediction. We
also derived that when X= 0. 5, one should obtain
p~/p N™0.6. Again turning to Table I, X=O. 5
occurs at 2. 1'K, for which the ratio p~/p„=0. 6,
in agreement with the prediction.

A third result, which follows from Eq. (5. 10) of
the preceding paper, is that

p(T) ™r(T)p&(T) =r(0)Pd T), (5. 2}

since r(T) is independent of temperature to within
1070 for T& 5'K. Because p~(T) decreases expo-
nentially at these low temperatures, Eq. (5.2) ex-
plains the exponential temperature dependence of
p,~,(T) reported by Gugan. Moreover, if we in-
sert into (5. 2) the value r(0) = 1.3, we obtain

(s. 3)p(T) =1.3p„(T)

for T& 5 'K. The values of p„„(T)/p„(T) given in
the last column of Table I are seen to conform to
(5. 3). This result is quite remarkable in that it
enables one to include phonon drag into the calcu-
lation of p(T) at low temperatures without having
to calculate X(T) at all. One ignores p„(T), calcu-
lates pn(T}, and multiplies by l. 3.

The last column of Table I shows that the ratio
p,~,(T)/p„(T) remains close to 1.3 up to T=20'K,
far beyond the range of validity of (5.2). To under-
stand why this is so, we write the exact relation-
ship

p(T}= pv(1+ pN/pv}(I -X}. (s.4)

In this paper, we have calculated the low-tem-
perature electrical resistivity of potassium and
compared our results with the recent, highly ac-
curate experimental data covering the temperature
range 2-20'K. Excellent agreement was obtained
with experiment. This was achieved by explicitly
including phonon drag, a crucial effect at very low

Above 5 'K, X(T)« I and the ratio PQT)/PJT) is
fairly constant and significantly smaller than unity,
as can be seen from Table I. As a result, above
5 'K the product (1+p~/PU)(1 -X) = 1+p~/p~ -X
does not exceed 1.3 by more than 10%. Therefore,
we see that (5. 3) is a good approximation for potas-
sium from 0 up to 20 'K, although for quite differ-
ent reasons in the different temperature ranges.

VI. SUMMARY
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temperatures, and by a proper treatment of the
form factor of the screened, electron-ion interac-
tion matrix elements. We also showed how these
quantitative results for potassium are in complete
agreement with the general analysis of the low-
temperature resistivity of the alkali metals that
was presented in the preceding paper.
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