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General theory of the electrical resistivity of the alkali metNIs at low temperatures
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A complete»~&ysis is presented for the temperature dependence of the electrical resistivity of the
~&»b metals at low temperatures. New results are found for the temperature dependence of the
u~&&~pp-scattering term. %e find one expression appropriate to the low-temperature»~it and a
di8erent expression appropriate to somewhat higher temperatures. These results are used to explain the
reported T~ behavior for the low-temperature-resistivity data. It is found that the temperature below
which T' behavior is reported is proportional to the lower transverse velocity of sound in the [110]
direction, in excellent agreement with experiment for all the a%~bs. For still lower temperatures,
phonon drag is shown to play a decisive role on the temperature dependence of the resistivity, leading
to an exponential decrease with temperature, rather than a power-law dependence. Finally, the
restriction of the above ~a~&ysis to the ~&&~» metals is explained in terms of Matthiessen's rule and the
requirement of a spherical Fermi surface.

I. INTRODUCTION

With the advent of quantum mechanics, one of
the first problems to which solid-state theoreti-
cians turned their attention was the calculation of
the temperature-dependent part of the dc electri-
cal resistivity p(T) of pure metals, particularly
at low temperatures. The principal result of this
early work was the Bloch-Gruneisen formula,
leading to the well-known Bloch T law to describe
p(T) at low temperature, T «9, where 9 is the
Debye temperature of the metal. Later, more
complete calculations confirmed the Bloch law.
In fact, until very recently, the T law was the
cornerstone of the theory of the low-temperature
resistivity. It had been almost universally be-
lieved that one can completely describe the low-
temperature data for p(T) for all the simple metals
by determining the coefficient of the T term, as
well as the temperature below which T behavior
occurs. This point of view seemed to be well sup-
ported by an examination of the data, which show
that for an impressively large number of metals,
including al1 the alkalis, T behavior is indeed re-
ported for the low-temperature regime.

This idyllic situation was very recently upset,
both experimentally and theoretically. ' ' Very
careful measurements by Ekin and co-workers '5,6

of p(T) for potassium in the range 2-20 'K re-
vealed that the low-temperature behavior of p~, (T)
is quite complicated and, in fact, does not ex-
hibit a T dependence. Furthexmore, as a result
of a very careful experimental study of p(T) for
potassium in the range 2-4 K, Gugan reported
that p,~,(T) decays exponentially with temperature
below 4 K. Concurrent with these recent experi-
ments~ calculations ' for p(T) for potassium at
low temperatures have been carried out. Although
these calculations constitute a significant improve-

ment over earlier calculations, they failed to yield
the observed exponential decay of p(T).

It is the goal of this paper to derive analytically
the complex temperature dependence of p(T) for
all the alkali metals throughout the low-tempera-
ture regime, T & 0.29. Our expression for p(T)
yields an exponential temperature dependence at
very low temperature and a dependence closely
approximating T at somewhat higher tempera-
tures, both results being in precise agreement
with experiment. We also analyze in detail the
relationship between the Bloch T law and the re-
ported T' dependence for p(T), showing why the
older data yielded alow-temperature T dependence
for all the alkalis and also showing why for Na, at
still lower temperatures, a T dependence was
found. In addition to being able to predict the
different temperature dependences observed in
various temperature ranges, we determine where
each temperature range begins for each of the al-
kalis in terms of the macroscopic properties of
the metal, in particular, the velocity of sound in
the [110]direction. The agreement with experi-
ment is excellent.

An important feature of our results is that they
are derived without any computer calculations
whatsoever. Our analysis is based on the recog-
nition that for low temperatures, a relatively
small portion of the Brillouin zone in the vicinity
of the [110]direction makes the dominant contri-
bution to all the k-space resistivity integrals. By
expanding all the integrands around the dominant
[110]direction, we are able to obtain analytical
expressions for the vitally important umklapp con-
tribution to p(T) This in turn p. ermits a complete-
ly analytic treatment of the temperature dependence
of p(T) for both the very-low-temperature, ex-
ponential, phonon-drag regime, as well as the
somewhat higher-temperature, approximate, T
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regime.
Although all the above results are obtained with-

out the need for computer calculations, it is clear
that a detailed quantitative comparison between
theory and experiment requires a separate com-
puter calculation for each metal. In the following
paper, ' we present such a comparison for potas-
sium and show that complete agreement is obtained
for the measured ' temperature range, 2-20 'K.
Such quantitative agreement with experiment com-
plements the qualitative picture presented in this
paper.

In Sec. 1I we discuss the assumptions needed to
derive the expression for p(T), including phonon

drag, and explain how these assumptions limit the
validity of the resulting expression to the alkali
metals. In Sec. III we analyze the expression for
p(T) and point out the simplifying features at low

temperatures which enable us to derive analytic
expressions for the low-temperature behavior of
the umklapp contribution to p(T). The relationship
between the Bloch T law and the T behavior wide-
ly reported for p, t(T) at low temperature is dis-
cussed in Sec. IV. In Sec. V, we analyze the con-
tribution to p(T) due to phonon drag and show how
phonon drag dominates the limiting low-tempera-
ture behavior for. p(T), leading to an exponential
temperature dependence in the lowest-temperature
regime. The role of Matthiessen's rule in the
analysis is discussed in Sec. VI. The summary
follows in Sec. VII.

II. FORMALISM

When Matthiessen's rule is valid, the tempera-
ture-dependent part of the electrical resistivity
p(T) can be obtained by a variational solution' of
the Boltz mann equation,

7I'Qp f f [dS(R,)/u(K|)] [dS(K p) /u (Rp)] [(f)„(K~)—P„(Kp) —y,h(q)] P(K„Kp)
2e I [fdpKu(K) p„(K)[sfp(K)/&E(K)])

(2 l)

where Qp is the atomic volume, E(R) and u(R) are
the electron energy and velocity, respectively, and

the surface integrals are taken over the Fermi
surface, with R~ and Kp being the wave vectors of
the initial and final states of the electron which is
scattered by a phonon of wave vector q. The func-
tion P(R~, Rp) is proportional to the transition prob-
ability for scattering an electron through k= Rp —R|
from state R, to state Rp. The trial functions
P„(R) and (t)»(q) are proportional to the deviation,
caused by the electric field, of the electron and
phonon distribution functions f(R) and n(q) from
their equilibrium values fp(R) and np(q), respec-
tively,

y.,(R) R. 7, (2. 3)

where 0 is the applied electric field.
We now turn to the phonon trial function (t)»(q).

A nonzero (t)»(q) is the source of the negative con-
tribution to p(T) due to phonon drag. This takes
account of the fact that the phonon system does not
return to thermal equilibrium between electron-
phonon collisions. We make the standard' choice

I

respectively. When these three simplifications
are valid, it can be shown (details presented in
Appendix A} that the correct electron trial function
is given to a good approximation by the following
simple form

f(R) =fp(R) —y.,(R),E' R,I,sf,(Rp

«(t()=» (») —(..(t() I(()» (Q)

(2. 2)

e»(q)

Having chosen both (t)„(R) and P»(q), one
a position to evaluate p(T). The resistivity
veniently separated into

(2.4)

is in
is con-

where R(()(q) is the phonon energy.
The trial functions g, (R) and (t)»(q) are to be

chosen consistent with each other and such that
p(T) is minimized. The form of the trial functions
plays a decisive role in the subsequent analysis
because the structure of the resulting resistivity
integral is entirely different for different trial
functions. For each of the alkali metals, and only
for the alkali metals, the following three important
simplifications are valid.

(i} The Fermi surface is spherical, ' (ii) a
single plane wave suffices to represent the pseudo-
wave-function, and (iii) the function P(K|,Kp) fac-
tors into the product K(%) v (k), where s(k) and
v(k) are the structure factor' and form factor, S(k)=(4v)-' f dn; s(R) (2. f)

p(T) = p~(T) —p (T)= p (T) [l —X(T)], (2. 5)

where p~(T) is the resistivity obtained by assum-
ing that the phonons equilibrate rapidly between
electron-phonon collisions, i. e. , (f)»(q) =0, and

p (T) is the contribution due to phonon drag, i. e. ,
(t)»(q) ~ q ~ F. Reducing" ' the multiple integral
for p(T) appearing in Eq. (2. 1) yields

m2 2k~
p (T) =

p p p p dkk v (k)S(k), (2. 6)
12m e n p

where n is the density of electrons, m is the elec-
tron mass, kz is the Fermi momentum, and S(k)
is the angular average of the structure factor
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A similar procedure ' yields

x(T) = Pl zlPilPLL (2. 6)
where

P, i=Cj d kk ' $(k)v (k)k

P»=C jd kk ' Spkv (k)k ~ q (2. 9)

P&,L = Cj d kk ' S(k)v (k)q

Here, C is a known constant, q is the wave vector
k "folded back" into the first Brillouin zone, and
the integration is taken over the sphere ~

k )
~ 2k+.

Note that P» is proportional to the triple integral
for p~ given in Eqs. (2. 6) and (2. 7).

We close this section by emphasizing that Eqs.
(2. 6)-(2.9) for p(T) apply only to the alkali metals
and are totally inappropriate for the polyvalent
and noble metals. The reason for this is that for
the polyvalent and noble metals, none of the three
previously mentioned simplifications are valid and,
consequently, Eq. (2.3) is an extremely poor ap-
proximation to the trial function p„(R). The re-
sulting theory of p(T) for the polyvalent metals is
radically different from that for the alkali metals,
as will be discussed in Sec. VI. We note here that
the analysis to be presented in Secs. III-V is
based on Eqs. (2. 6)-(2.9) and therefore limited to
the alkali metals.

III. LOW-TEMPERATURE BEHAVIOR OF UMKLAPP
CONTRIBUTION TO pe q (T)

The key to our analysis lies in the low-temper-
ature behavior of the structure factor' S(k). In
the one-phonon harmonic approximation we have

a' [k. 3,(q)]'
) $fk T ( he(u &f)h/&&k T]s1) (1 e&-h&ah&c Ik e 7)

(3.1)
where M is the ionic mass and &d„(q) and )„(q) are
the frequency and polarization vector, respective-
ly, of a phonon of branch & and wave vector q. As
before, the vector q is just the scattering vector
k "folded back" into the first Brillouin zone,

q=k-5„ (3.2)

where 5„is the appropriate reciprocal-lattice
vector For a, given .k, there is a unique q and G„
that satisfy (3.2).

In order to understand the low-temperature be-
havior of $(k), we plot in Fig. 1, &Or (q) for potas-2.
sium as a function of R for the [110]direction, the
subscript T~ denoting the lower transverse-phonon
branch. We see that, for T & 10 K, ksT &ff&drh(q)
for all k exceptneark=0. Therefore, for knot too
small, the argument of the exponents in the ex-
pression (3. 1) for $(k) exceeds unity. Since the
lower transverse-phonon branch in the [110]direc-
tion has the lowest frequency of any urh(q), it is a
good approximation, when k is not too small, to

25
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0.2 0.4 0.6

k /2k~ [I I 0]

0$

FIG. 1. Lower transverse-phonon branch in the [110]
is plotted in units of temperature as a solid curve. The
dashed line is the Debye approximation with the appropri-
ate velocity of sound. In the [110]direction, the Bril-
louin-zone boundary is reached at k/2k+= 0. 57.

~.(q) = v.(q)q (3.4)

given by the dashed line in Fig. 1, is a quite ade-
quate approximation to &d„(q) for determining p(T)
at low T, where v„(q) means the velocity of sound
in the direction q for polarization ~.

It follows from the above discussion that there
is an unambiguous separation of the integral for
p~(T) into the normal (low-k) contribution p„(T)
and the umklapp (high-k) contribution p„(T). We
shall see in the course of the discussion that pv(T)
is of particular interest. Because of the exponen-
tial dependence of $(k) on &d„(q), given in (3.3),
only the smallest &u„(q) contribute significantly to
pv(T). Near k = 2k+, the smallest u&„(q) lie on the
lower transverse branch (Th) in the neighborhood
of the [110]direction. The &d„(q) corresponding to
all other directions or other branches are at least
3 times as large. Since $(k) depends exponentially
on &d„(q), we may restrict our attention to the Th
branch, with R lying within a small solid angle
around the [110]direction in the vicinity of 2k~.
The relevant geometry in the k,-k„plane is pre-

drop both the negative exponential and the unity to
obtain

8
$(k) = p [k ~ $k(q)] e h "h&&&~ksr (3 3)Mk ~T

Let us now turn to p (T), given by the integrals
in Eqs. (2. 6) and (2. 7). Because of the exponen-
tial dependence of $(k) on &d„(q), at low tempera-
tures there will be a significant contribution to the
integral for p~(T) only for k very near zero and k
very near 2k~. Therefore, it is not necessary to
know the entire phonon spectrum &d„(q). Indeed,
the Debye approximation
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sented in Fig. 2. In precisely the [110]direction,
k, q, and Ct&2 are all parallel to each other and

perpendicular to the polarization vector $r (q).
Thus, there is no contribution to $(k) because
k fr (q) vanishes. However, as k changes direc-'2.
tion slightly, k is no longer perpendicular to fr (q)
and $(k) no longer vanishes. These k values, in
the neighborhood of the [110]direction, give rise
to the dominant contribution to S(k) and hence to
)j)o(T).

In order to derive an analytic expression for the
temperature dependence of pv(T) in the limit T-0,
we expand o)r (q) = o)r (k) around the [110]direction.
corresponding to a value of k having components

k = 2k„, 8 = —,
'

v, and Q
= —,

' v,

o)r (q) = o)2+a) (2k~ —k)+ —,
' o)«(8 ——,

'
&)

+ l ~-(e - l &)' (3. 5)

where o)2=&or (2k+, —,
'

w, —,
' s), o), =—So)/Sq= —So)/Sk,

o)« ———8 tq/88, and o)ee = 8 o)/sg, with all partial
derivatives evaluated at k= (2k', —,

' v, —,
' 2). The

linear terms in the 8 and p expansions must van-
ish because n)~ (k) has a minimum in the [110]di-

2'

rection. Let us designate by yp 5p and kp the
small angles and small wave numbers defined so
that the expansion (3. 5) is valid for ~8 ——,

'
)/

~
& yo,

for ~ p ——,
'

m
~

& 6p, and for k & 2k~ —kp.
The structure factor S(k) also contains the factor

[k )r (q)] . It can be seen from Fig. 2 that for
small changes in 8 from the [110]direction, the
vector k rotates around the (r axis but remains
perpendicular to it. Therefore, we need only con-
sider small changes in p with 8 fixed at 2 )/, i. e. ,
small rotations of k in the k„-k, plane. Thh rele-
vant geometry is presented in Fig. 3. It is seen
from the figure that for small changes in )f), the
angle 5= &f&

——,
' 2 is proportional to the angle 52, and

therefore k ~ $r (q)o- 5 for small 5. Hence, we
2

have

[k fr (q)]2~ (y ——,
' s)2 (3. 6)

Inserting all these results into Eqs. (2. 6) and (2. 7)
yields

(T) 7 & -htup/hsr f hE
dk -ha& (2hp h)/hs-r f +"0

d8 -hra (2 r/2) /22 -2'
T2 ptTx

2k@'~ «I 2-rp

x f dy (y v)2 s-hauee(e~/4) /2hsr (3 q)t /4-ep

For sufficiently low temperature, the integrands
are negligible outside the indicated limits of inte-
gration. Note that we have evaluated the product
k v (k) at k = 2k~ and taken it outside the integral.
Letting the argument of the exponent be a new

variable in each integral and extending the limits
to infinity gives

, k)/

kx

h

FIG. 2. For R in the f110] direction and having mag-
nitude 2k+, the vector q is depicted as well as the two
polarization vectors f„(q) in the k„-k„plane.

pv(T) =&T '
& ""&/"' [(T)(T'")(T"')]

=gT~ e-~p~~a~ (3. 8)

(3.9)

where cog —0 8(t)p as shown in Appendix B. As
with the previous expansion, the ratio B/v (2k+)
is readily derived in terms of the elastic con-
stants of the metal.

It is appropriate to point out the new features
of the low-temperature expressions for pv(T)

where each of the three integrals contributes the
indicated power of T. The constant A contains
v (2k), ) and also the partial derivatives o)„&u«,
and co». Of particular interest is urp, which is
given by the velocity of sound in the [110)direc-
tion and contains the combination of elastic con-
stants c» -c&&. The values for cop for each of the
alkali metals are presented in the second column
of the Table I. Not only mp, but the partial deriv-
atives as well are readily determined functions of
the three elastic constants of the metal. There-
fore, the only parameter in A is the square of the
form factor evaluated at 2k~.

At somewhat higher temperatures the limits on
the p integral must be extended, leading to a
breakdown of the expansion of &ur (k) in P. How-
ever, as shown in Appendix B, we may then make
a different expansion for p which leads to

p (T) BT//2 s- ~)/ hrhs
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given in (3.8) and (3.9). First of all, the power
of T multiplying the exponent differs significantly
from the standard result' of T" . Second, we have

obtained explicit expressions for the arguments
of the exponentials, ~0 and ~j. %e will show in
Secs. IV and V how these results can be used to
explain the observed low-temperature behavior of

p(T).

TABLE I For each of the alkali metals, we list (dp

and u& (in units of temperature) and (Tc)~&. The fre-
quency cop lies on the lower transverse-phonon branch in
the [110j direction at q=6()p —2k~ and constitutes the
lowest frequency in the Brillouin zone participating in
umklapp scattering. As explained in the text, (d~ = 0. Mp
corresponds to the temperature (TJ~& at which the onset
of the observed T5 behavior for p(T) occurs.

IV. BLOCH T5 LA.W Metal
(T'c)~t
(K)

The widely quoted result for the low-tempera-
ture behavior of p(T) is the Bloch T law

Pstoch(T) ~T ~ T ~ Te (4. 1)

Indeed, the low-temperature experimental data
for p(T) for many metals have been presented by
simply reporting two parameters, the coefficient
C and the temperature T, below which (4. 1) ap-
plies. In particular, except for the recent highly
accurate measurements for' potassium, the data
for p(T) for all the alkalis" appear to exhibit T
behavior below some temperature T .

Equation (4. 1) is of course based on a calcula-
tion of p(T) that igiiores pc(T). Although it has
long been known that pU(T) is larger than p„(T)
for high temperatures, it had generally been as-
sumed that the reason the data exhibit T behavior
below T, is that at such low temperatures, p„(T)
has already become negligible because of its ex-
ponential decrease with temperature. Moreover,
at such low temperatures, the Bloch approxima-
tion to p„(T) becomes very good and thus one may
confidently expect that (4. 1) will accurately de-
scribe the data for p(T).

Lia
Nab
Kc

Rb
e

35
20
10.0
6.0
4. 3

28
16
8. 0
4.8
3.5

&20
15

8
5
3.1

The above explanation for the observed T be-
havior of p(T) is not correct. s In fact, even at
temperatures considerable below T„ps(T) still
exceeds p„(T) and can by no means be ignored.
To understand the reported T behavior for p(T)
for the alkalis, let us write

aA. L. Jain, Phys. Bev. 123, 1234 (1961).
A. D. B. Woods, B. N. Brockhouse, R. H. March,

A. T. Stewert, and R. W. Bowers, Phys. Rev. 128, 1112
(1962).

R. A. Cowley, A. D. B. Woods, and G, Dolling, Phys.
Rev. 150, 487 (1966).

dE. J. Gutman and J. Trivisonno, J. Phys. Chem.
Solids 28, 805 (1967).

F. J. Kollarits and J. Trivisonno, J. Phys. Chem.
Solids 29, 2133 (1968).

~Although the value quoted in Ref. 16 is 15 K, it is
clear from Fig. 3 of Ref. 16 that (Tc)e t definitely ex-
ceeds 20 K.

, k„
p(T) = p.,(T) = ps{T)+pv(T) (4. 3)

&TZ -,

FIG. 3. For K in the k„-k„plane, the directions are
given for q and fr2. The direction of k deviates from the
[110j direction by a small angle 6. The corresponding
deviations in the directions of q and frt are designated
by the small angles 5~ and 52, respectively, both of which
are of course proportional to 5.

T ~= if&et/1. 5ks (4. 4)

Therefore, very near T ~ to a good approxima-
tion p(T) o-T . The important question is over
what temperature range do the observed values of

Note that we have ignored the phonon-drag contri-
butioll pr{T). Tllls ls all appz'opx'1ate approxfma-
tion for a qualitative discussion since we are con-
sidering temperatures not too far below T . For
the term p„(T), (4. 1) is certainly adequate at low
temperatures. Finally, we use Eq. (3.9) for pn(T).
The lower-temperature form for pc(T), given in
Eq. (3.8), is valid only for temperatures consid-
erably below Tv [where p2(T) must also be taken
into account] and we discuss such low temperatures
only in Sec. V.

Inserting {4.1) and (3.9) into (4. 3) yields

p(T) QT5 [I + (fl/Q)TN/2 s-2+1/ksT] (4 3)

The expression in the brackets has a broad maxi-
mum centered at
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FIG. 4. Plot of p(T)/CT5 as a function of the reduced
temperature T/T~, where T~ is the temperature at
which. the curve has its maximum. The points are sim-
ulated experimental points which are related to the true
dashed curve as described in the text. The solid line is
a smooth fit through the points, showing the apparent T
behavior (horizontal line) for p(T) over the range 0.7
& T/T~ & 1.5. The Bloch-Gruneisen theory predicts
a horizontal line passing through unity, which is below
the range of the figure.

p,~,(T) continue to closely approximate a T' de-
pendence. The answer depends of course on the
quality of the experimental data. One may illus-
trate this point by examining p(T)/CT as a func-
tion of the reduced temperatures T/T ~ F. or
concreteness, we shall choose the ratio B/C so
that at T=T~ p~=2p„, a value typical of the
alkalis. Our conclusions are insensitive to the
value chosen for B/C In. Fig. 4, the dashed line
represents Eq. (4.3). The "experimental" values
of p(T}/CT have been simulated by adding to the
values calculated from (4. 3) a random scatter
corresponding to a standard mean deviation of
+3%. This is a rather modest estimate of the ex-
perimental error for a typical measurement of
p(T) at low temperatures. " Note that the points
fit quite nicely to the horizontal line over the range
0. 7~T/T ~~1.5. This implies that experimental
data will appear to have reached the T' limit at
about 1.5 T ~=II&u, /ks, i. e. , at T,= 1.5 T,~ and
will appear to maintain T behavior down to about
—,
' T,. We may compare these ideas with experi-
ment by listing in the fourth column of Table I the
experimental' values of T . The agreement be-
tween the third column (theoretical) and the fourth
column (experimental) is seen to be very good.
Furthermor e, the low-temperature deviations
from T behavior shown in Fig. 4 will be noticed
only if the measurements are continued down to
temperatures below —,

' T,. Of the measurements
for the alkalis reported by Meaden, only for Na
was this done and, indeed, for Na it was found that
below 8 K, the data of p(T) resemble T rather
than T . Thus, we have a rather complete experi-

mental confirmation of our analysis.
The true behavior for p(T), given qualitatively

by (4. 3), will be revealed only with very accurate
data having a scatter corresponding to a standard
mean deviation of considerably less than a 3%.
Such accurate da,ta have been obtained ' only very
recently and only for K. Examination of these
datafor K makes it clear that, in fact, a true T
dependence for p(T) never occurs. Instead, one
sees a maximum for p,~t(T)/T at T= 5'K, in
excellent agreement with the value of T ~ pre-
dicted by (4. 4).

Let us now consider the coefficient of the appar-
ent T' term for p(T). For all the alkalis, the ob-
served'~ coefficient C, , is considerably larger
than the value C predicted by the Bloch theory.
One can readily understand this if one rewrites
(4. 3):

p(T)/T'= C.~=-C(1+(pv/pN} ~j (4 5)

where the subscript "max" denotes the value of

p~/p„at T ~. Taking the typical value of about
3 for (pv/p„) „gives

C, ~=3C (4. 6)

One may wonder why more attention was not paid
to this large discrepancy between C~, and C by
those who attributed the observed T behavior for
p(T) to the Bloch T law. The reason may lie in
the fact that the expression for C consists of
known constants and 9, the Debye temperature,
which is, of course, not a uniquely defined param-
eter. In fact, one often defines a temperature-
dependent function Bs(T) as the value of the pa-
rameter needed at each temperature to make the
Bloch-Gruneisen' expression peo(T) be equal to

p„„(T}. A weak temperature dependence for
Bs(T) is then taken as evidence that the Bloch-
Griineisen theory is a good approximation to p(T).
The danger of employing this procedure at low
temperatures is that C~ 9„. The high power of
9„which appears implies that one can obtain large
changes in C by relatively small changes in 9„.
For example, if one needed to triple C to obtain
agreement with C,~t, as indicated in (4.6), one
would have to reduce B„by only 20%. The re-
quired change in Bs looks quite modest on a plot of

Bs(T) vs T, as shown in Fig. 3 of Ref. 18, ef-
fectively concealing the large discrepancy between
C,~ and C by means of temperature-dependent
B„(T).

To summarize, it is the temperature dependence
of both p~(T) and p„(T), and not of p„(T) alone,
which explains the T behavior reported for the
low-temperature resistivity data for the alkali
metals. Similarly, the magnitude of the coeffi-
cient of the T term is primarily determined by
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p(T)~ T2 -hvo/a&r (5.3)

showing that the resistivity drops exponentially
to zero with decreasing temperature.

Equation (5.3) is based on the expression for
p»(T}, or equivalently for X(T}, given in Eqs. (2.8)
and (2.9). The expression for P~~ assumes that
the only important mechanism for phonon equili-
bration is phonon-electron scattering, thus ne-
glecting the contribution to Pl J. arising from pho-
non-impurity scattering and from phonon-phonon
scattering. For the ultra pure samples currently
available, having residual resistivity ratios of
nearly 10000, it is certainly justified to neglect
phonon-impurity scattering relative to phonon-
electron scattering as a mechanism for equilibrat-
ing the phonons. The role of phonon-phonon scat-
tering in achieving phonon equilibrium is also
clear. At sufficiently low temperatures, phonon-
phonon scattering may be ignored. This follows
from the general theory of the phonon-phonon in-
teraction, which predicts an exponential tempera-
ture decay of the effectiveness of phonon-phonon
scattering as a mechanism for achieving phonon
equilibration. By contrast, the effectiveness of
phonon-electron scattering decreases much more
slowly with temperature, having a power-law tem-

p~(T), which is about twice as large as p„(T) at
these temperatures.

V. PHONON DRAG

We shall now derive the expression for p(T) for
the alkali metals for temperatures much lower
than Tm~, i. e. , considerably below the apparent
T region shown in Fig. 4. For such low temper-
atures, the phonon-drag contribution p,(T) to the
resistivity is very important. The existence of
p,(T) has long been recognized. ' However, with
the exception of the incorrect calculation by Sond-
heimer, p»(T) has invariably been neglected in
actual calculations of p(T) at low temperatures.

Ignoring p»(T) leads to the widely quoted (incor-
rect) result that the umklapp scattering contribu-
tion to the resistivity pU(T) disappears exponen-
tially at very low temperatures, leaving only the
normal scattering term p„(T),

p(T)= p»(T)+p&(T) ' '= p»(T)" T' (5 1)

In fact, as we shall show, for the alkali metals
precisely the opposite is true. At very low tem-
peratures, p, (T) cancels p»(T) almost completely
leaving only p»(T):

P(T) = p»(T)+Pv(T) p,(T) ' -'= &su(T), (5. 2)

where Y is a constant of order unity. The limiting
low-temperature expression for pu(T} is given by
Eq. (3.8). Therefore, we obtain the low-temper-
ature result

perature dependence. In summary, for the low
temperatures and high-purity samples considered
here, both phonon-phonon scattering and phonon-
impurity scattering make negligible contributions
to PII.

We now turn to the derivation of (5.2). For each
of the three P, integrals (i = 11, 1L, LL) appearing
in Eq. (2.9), there is an unambiguous separation
at low temperature between the normal contribu-
tion P&" and the umklapp contribution P, . It is
convenient to define n~z, (T) and nzz(T) by

Pgg= —o'gg(T) Pg'i

(5.4)
P~~ +a~-~(T)Pu

As was the case with pU~ p&„ the dominant con-
tribution to both P&~ and PI~ comes from the Tz
phonon branch in the vicinity of the [110]direction.
Therefore, Figs. 2 and 3 are relevant to the anal-
ysis of each of the P, integrals. It is easy to see
that both o'.,~(T) and a~~(T) must be positive. For
P~, and PJ.l, the integrand is positive for all k,
whereas for P,~, the integrand is negative because
k ~ q& 0 for values of k that contribute significantly
(see Figs. 2 and 3). Also, it is readily seen that
both n, ~(T) and nl, z(T) are small compared to
unity. This follows from the fact that P,~ and PI,L,

contain k ~ q and q, respectively, in place of the
k that appears inP„. A glance at Figs. 2 and 3
shows that q «k. As T decreases, the dominant
contributions to the 8 and p integrals come from
angles increasingly closer to the [110]direction.
In the limit T- 0, the values for e» and n» are
given by taking k parallel to Cg fo with k = 2k» (see
Fig 2). Th.is corresponds tothegeometryof Fig. 3
with 5=0. Then, k q=-kq=-0. 14k~ and q'
=(0.14k) =0.02k, leading to

(5. 5)

(P,".)'[I.(P,./P,".)1'
Pg"gPgl, [I+ (Pf g/P fg)] [I + (PI@/P 1,1.)], ,

(5. 8)

For Pql. and PI,~, q = k and therefore P j,I.=PI.I, =P,~.
Furthermore, since p~(T) O-P„, we have P„/P&",
= p»/p». Using these results together with Eq.
(5. 8) yields

o'. i ~(0) = 0.14, n ii(0) = 0.02

We recall that the contribution to s(k) from the Tz
phonon branch vanishes for k exactly in the [110]
direction. Therefore, for T &0, the correct geom-
etry is that of Fig. 3 with a nonzero angle 5, im-
plying that Ik ~ q! is somewhat smaller than Aq and
that. q is larger than 0.02k . Nevertheless, the
T=O values of a~I and nL~ listed in (5. 5) are suf-
ficiently accurate for the purposes of our discus-
sion.

Inserting P,"+P, into Eq. (2. 8) for X(T)=p»(T)/
p, (T} gives
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[1—nl~ (Pv/P~)l'
[I + (P v/PN)l [I + nkvd(PV/P~)l

(5. 7)
the sum of three terms:

P...(T}=Pl,+P.. (T)+&(T, PI ), (6 1)
The PI'odllc'ts nip(pp/Py) Rlld nzz(P6/Py) Rl'6 qlllte
small at low temperatures, even though the ratio
Plz/P„exceeds unity. Therefore, for low temper-
atures, we may expand the numerator and the sec-
ond term 1n the denominator to obtain

1-(2 + )(p /p )
1+(p p/p~)

(5. 8)

Finally, inserting (5.8) into (2. 5) gives the de-
sired result,

p(T) = [I+2n,z(T)+ n~~(T)] p„(T)=y(T)pn(T)
(5.9)

Since nlz, (T) «1 and nzz(T)«1, y(T) is indePen-
dent of temperature to within a few percent. If
we now insert the low-temperatuxe exponential
temperature dependence of pU(T), we obtain (5. 3)
for low temperatures. An exponential temperature
dependence for p„„(T)below 4 'K has, in fact,
been recently reported by Gugan fox' potassium,
in complete agreement with (5. &).

It is possible without detailed calculations to ob-
tain a, reliable value for the magnitude of the pho-
non-drag contribution to p(T) at various tempera-
tures. According to Eq. (2. 5), the reduction of

p~(T) due to pz(T) is given by 1 X(T) -From.
(5. 8), we have

X(T) y(pzz/p E)

1+(Pzz/PN)
(5.10)

For y(T), we may take the T = 0 value of 1.3.
Since n»(T) & n»(0) Rnd nz, z(T) & n»(0), it follows
that y(T) is only weakly dependent on temperature.
In fact, y(T) = v(0) to within 10%%u, up to T ~ At.
T = T ~, taking the typical value of 2 for Plz/P „
yields

(5.11)

Thus, phonon drag decreases p„(T) by only about

l(P~ at T ~. This justifies our neglect of pz(T)
in our discussion of the apparent T region for
p,~,(T}presented in Sec. IV. We. may also de-
termine when phonon drag cuts p (T) in half.
Equating 1 —X(T) to —,

' leads to p~/p„= 0.6, which
occurs at about T = —', T (see Fig. 4). Ignoring
phonon drag for such low temperatures is clearly
unjustified.

VI. MATTHIESSEN'S RULE

We have already emphasized that the analysis
presented in this paper applies only to the alkali
metals. One reason for this limitation lies in the
applicability of Matthiessen's rule. In general, the
electrical resistivity of R metal results from the
scattering of electrons both by impurities and by
phonons. Therefoxe, the total resistivity p,~~ is

where p, , is the tempex ature-independent resid-
ual resistivity due to impurity scattering, p, ,(T)
is the temperature-dependent resistivity of the
pure metal due to phonon scattering [our previous
P(T)], and zz, (T, P, ,) is a coupling term arising
from the fact that the two scattering mechanisms
influence each other. If 6«p~~, the metal is
said to obey Matthiessen'8 role, and one may cal-
culate the temperature dependence of the resis-
tivity by 'tl'6Rtillg the colltl'lbutloll due to illlpul'1'ty

scattering as a tempex atux'e-independent constant.
If Matthiessen'8 rule is not valid, one may not even
speak of the temperature-dependent contribution
of the resistivity without also specifying the resid-
ual resistivity of the particular specimen.

Our analysis is appropriate only when Matthies-
sen's rule is valid. This is the case for high-pu-
rity samples of the alkali metals. For example,
for high-purity samples of K, no measureable de-
viation froDl MRtthlessens rule was observedy
even for the lowest measured temperatures (=2 'K).
Thus, even though p „(T)is decreasing exponen-
tially with tempex" Rture lt was found tERt 6 18
negligible compared mth p~ at RQ tempexatures.
Since we may ignore 6,, the entire temperature
dependence of the resistivity for high-purity sam-
ples of the alkalis is contained in p~ (T), which
we may designate as p(T) without the subscript
"pure. " Whenever Matthiessen's rule is valid,
it follows~ directly from the variational analysis
that Eqs. (2.6)-(2.9) apply to p~ (T), including
the phonon-drag contribution, regardless of the
presence of p, ~. This is true even at very low
temperatures, where p, ~» p~ (T). Indeed, this
is the meaning of the validity of Matthiessen's rule.

Fol' the polyvRlellt Rlld noble 1116'tRls, typlf led by
Al, the experimental results are radically different
from the results for K. It is found ' that Mat-
thiessen's rule totally fails for Al in the low-tem-
perature regime, even for ultrapure samples hav-
1ng residual x'eslst1vity x'Rtlos of neRx'ly 10000.
Instead of A«p „, as is the case for K, low-
temperature experiments ' for AI. show that 4
» p~ to the extent that one may ignore p~„en-
tirely and obtain the temperature dependence of
p„t solely from the temperature dependence of 6,.
Thus, the entire analysis presented hex'e is, of
course, not relevant to Al.

Ne should point out that there is another im-
portant difference between the alkali metals Rnd
the polyvalent and noble metals. None of the three
simplifying features listed in Sec. II applies to the
polyvalent or noble metals. Therefore, not only
does Matthiessen's rule break down for polyvalent
and noble metals, .but also the reduction of the re-
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suiting resistivity integrals must follow a different
path. This leads to integrals having a much dif-
ferent structure from those of Eqs. (2. 6)-(2.9).
Since the analysis me have presented is based on
the structure of integrals (2. 6)-(2.9), our con-
clusions mould not apply to the polyvalent metals
even if Matthiessen's rule were valid. The con-
sfiderably more complex analysis appropriate to
the polyvalent metals mill be presented in a sub-
sequent paper.

VII. SUMMARY

We have presented a detailed discussion of the
temperature dependence of the electrica1 resistiv-
ity of the alkali metals at low temperatures. We
find that it is possible, without any computer cal-
culations, to obtain complete understanding of the
relatively complicated low-temperature behavior
of the resistivity. Our principal results are the

following.
(i) Explicit expressions are derived for pv(T},

one valid in the limit T 0 and the other valid in
the temperature regime mhere T behavior has
been reported for p~(T).

(ii) It is demonstrated that although p„(T) de-
creases exponentially with decreasing tempera-
ture, there exists no range of temperature in
which it is justified to ignore pc(T) and to retain
only p JT}, as is done in the Bloch theory.

(iii) The reported T behavior for p,~(T) at
lom temperatures has been explained and shown to
be unrelated to the Bloch T law. The temperature
belom which T behavior occurs has been explicitly
derived in terms of the lower transverse velocity
of sound in the [110]direction.

(iv) Phonon drag is shown to play a decisive
role, both quantitatively and qualitatively, in de-
termining the low-temperature behavior of p(T),
leading to an exponential rather than a power-lam
temperature dependence for p(T).

(v) It is pomted out that the failure of Matthies-
sen's rule for the polyvalent metals and the cru-
cial requirement of sphericity of the Fermi sur-
face limit all the above results to the alkali metals.
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APPENDIX A

Even for the simple ease of the alkali metals,
the choice of the trial function given in Eq. (2. 3)
is not exact. Equation (2.3) would be exact only
if two conditions mere met, namely, that the scat-
tering be elastic and that the structure factor $(%)

y„(R)= q, y„(R) + q2y~(R) (A2)

mhere the parameters g, and g~ are chosen to min-
imize p(T). Ziman has lucidly described the pro-
cedure and me follom his notation. It is convenient
to east the final result in the following form:

p(T) = p&(T) Z(T) (A3)

where p, (T) is the result obtained with only P,(R)
for P„(R) and

( )
1 P12/P»P22

1+ (~2/~i)'(P11/PSR) —2(~2/~i}»F23)
(A4)

The ratio Zz/Z~ is independent of S(k) and is readily
evaluated for any given $2(K). The important fea-
ture of the P, integrals (i = 11, 12, 22), which are
explicitly defined in Ref. 1, is that each contains
$(k) in the integrand. The point is that the anisot-
ropy of $(k) affects each of the three P, integrals
in a similar may, so that the ratios that appear in
(A4) are not much affected. If $(k) were strictly
isotropic, we would have P,a/P„= Zz/Jz, leading
immediately to Z(T)=1 and hence to p(T)=pq(T).
In other words, for an isotropic $(k), P, (K) is the
exact solution to the Boltzmann equation. The an-
isotropy of $(k) may be expressed by writing

Pim/P»= (1 -&) ~g/&j (A6)

mhere me anticipate that E mill be small. Inserting
(A5) into (A4) and defining o. by Z(T) = (1+a) '
leads to

be isotropic. It is easy to shorn there is no diffi-
culty even though the first condition is not fulfilled.
Corrections to p„(R) to account for the inelasticity
of electron-phonon scattering lead to negligible
corrections in p(T) of order (ksT/Ez) . However,
the second condition requires discussion in view of
the fact that $(%) is a highly anisotropic function
for all the alkalis.

Before presenting our analysis, me point out
that Greene and Kohn checked this question nu-
merically for Na at high temperatures by consider-
ing trial functions having a more complicated an-
gular dependence than (2. 3). They found that the
use of an improved p„(R) decreased p(T) by only

2-4$„ the result depending slightly on the temper-
ature, thus confirming the choice (2.3) for p,&(R).

We shall now show why improving p„(R) de-
creases p(T) by so little even at low temperatures.
Consider the two functions

pq(R) =E+, $2(R}= Kgf(R)F (Al)

where p, (R) is the trial function given in (2. 3},
with the electric field T' in the z direction, and

f(R) is any function consistent with the cubic sym-
metry of the metal. The improved trial function
mill be
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APPENDIX 8

We here consider the range of validity of the P
integral of Eq. (3. 7). We first perform the k in-
tegration and the 8 integration as described in the
text, and change variables in the p integral from

p to 5 = P ——,
'

w to obtain

(T) T1/8 x (oo/x& jro d5 588 14u+x5 /&ter
~p

(al)
where 5p denotes the range of validity of the qua-
dratic expansion, Eq. (3.5), of (AT (k) in 5. The
integral over p differs from the integral over 8 in
(3. 7) in that the 8 integrand takes its maximum
value at the midpoint 8= —,

'
m and rapidly decreases

thereafter. By contrast, the p integrand vanishes
at the midpoint p = —,

' v and exhibits a maximum at

5max= 4max 4 v = (2 ~sT/++ed) (a2)

Therefore, the range of the integration is much
larger than for the 8 integration. For T sufficient-
ly small so that 5~~«6p, the @ integrand is neg-
ligible beyond 5~. Then, the expansion of Eq. (3. 5)
is valid throughout the range of integration and me

obtain Eq. (3.8). However, as T increases, even-
tually 5 ~= 5p, and me may no longer restrict the
limits of integration to + 50. Thus, the P part of
the expansion (3. 5) breaks down.

e'(pi/p~)
1 —(p,/pa) (1 —&)

where p, P&,/Z~ and p2 P23/dz are the resistivi-
ties one would obtain using only p, (R) and only
Pz(R), respectively, for P„(R).

The variational principle tells us that p~/pz& 1,
since p, (R) is clearly a better trial function than

$3(R). If $2(R} leads to a resistivity similar to
that obtained with p, (R), i. e. , if p~/px=1, then c
will be quite small, say $0.1. Then, (A6) leads
to o. & —', &. Gn the other hand, if & is not small,
then we will find that $3(R) is a very poor trial
function, i. e. , p, /P2«1. In that case, (A6) gives
a«1. Therefore, in all cases, n is very small,
implying that Z(T) = 1 and p(T) = p, (T). This justi-
fies the choice (2. 3) for p„(R) even though S(k) is
a highly anisotropic function.

It is instructive to illustrate the preceding dis-
cussion by a numerical example. We take pz(R)
=K,(Z,), for which Z2/J, =-', . Performing the P,
integrals for potassium at T = 5 'K yields P,3/P„
= 0. 537, rather close to the value for Jx/J, . This
yields, from (A5), the value e = 0. 105. For the
ratio P»/P2z, we obtain 2. 57, leading to p, /p2
=0. 925. Thus, for p, /ps —1, we find & =0.1. In-
serting these values into (A6) yields Z = 0. 96,
shouting that the resistivity would be reduced by
only 4f~ by using the improved trial function (A2),
instead of (2. 3).

&i = ~(5max) 5max&o(5mas) (a5)

We now turn to the evaluation of co1. We use the

fact, shove schematically in Fig. 5, that the ex-
pansion of ~(p) around —,

' v is quadratic up to 50

and linear thereafter. This gives immediately

(o(5 ) = (so+-,' &u„50+(o~(5 ) (5~- 5o)

(~max)
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FIG. 5. Schematic plot of ~T2(k) as a function of angle
5 from the [110]direction. The frequency is quadratic
in 5 until 50 and linear in 5 thereafter. At the angle 5~,
the integrand in Eq. (B4) attains its maximum value,

For this higher temperature range, where 5 ~
& 50, we expand a&T (k) around 5,~ which is now

large enough to mme the expansion in 5 linear:

&oT $)= ur(5 ~)+to~(5 ~) (5 —5 ~)+or,(2k' -k)
+ x Q)yy(8 —

x s) (a3)

where &o(5~,) denotes ~T (k) evaluated at k= 2k»,
8=-,' n, and y=-,' v+5 ~, and where &o~(5~) means
that the partial derivative is to be evaluated at

The k integration and the 8 integration are
performed exactly as before. Moreover, it is not
hard to show from Fig. 3 that Eq. (3.6) for [ft ~

)Tz(q)] remains valid for a large range of 5, a
range extending considerably beyond 6 ~. There-
fore, we may insert (a3} and (3.6) into the inte-
gral for 6 and extend the limits to infinity to ob-
tain Eq. (3.9},

(7) T1/2 -h fu1/Pgg d y y2~ fled@(d~~)d/kg/
Pgw mal

~ 7V/2 8~h 401/ kg T (a4)

where
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&o~(6 ~) = (u~(6p) =(@~~60

Inserting (B6) into (B6) yields

1 a2&i = 0 a +ee "0

(B6)

(BV)

&u z$)=u&, [1+f06 ——,
'

I
fo"

I
6 ]+u&,(2k —k)

+ —,
'

(o~~(8 ——,
'

w) (BS)

This gives immediately that ~~~ = 8 co/86 = 2foNQ.
Since the third term in the expansion in 5 is nega-
tive, it tends to cancel the effect of the second
(quadratic) term. Therefore, the expansion of

which shows that ~q& ~0.
We evaluate &@~~50 as follows. For small 5,

only even powers of 5 can appear in the expansion
of &oTz$} around its minimum value in the [110]
direction. Therefore, we may write

(uT (k) =(oaf(6 )+(u, (2k~ —k)+-,' (o,~(8 ——,
' w)~

(B8)

where the function f(63) has the properties f(0) = 1
and [df(62)/d(62))0—=fo& 0. We shall see later that
f"(0)= [d~f(6~)/d~(b )]o -=f0" & 0. Expanding f(6') in
powers of 5 gives

(uT (k) will be essentially quadratic in 6 only as
long as the magnitude of the third term is very
small compared to the second term, their ratio
being about 0. 1. This condition determines &0

and leads to 60—0. 2f 0/(fo ~. Thus, we have

4&qy6o= 0»0(fo) /Ifo'I (B10)

(811)

where C is a combination of elastic constants which
we need not write down and o is a geometrical
factor relating the angles 5, 6&, and 6~ shown in
Fig. 3. The derivatives are easily obtained, fo
= a C/2 and fo = —o! C /4 (negative, as promised).
Inserting these results into (B10}and (BV) yields

0 8+0 (B12)

independent of C and n, thus proving the result
quoted immediately after Eq. (3.S).

Since k= 2k+ in the [110]direction corresponds to
small q, we may use macroscopic elasticity theo-
ry. We obtain the function f(6~) explicitly by solv-
ing the equations of motion for the lower trans-
verse velocity of sound in the direction correspond-
ing to 5. This yields

f(6 )= [1+Csin (n6)]
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