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The transmission amplitude for circularly polarized microwaves incident on a slab of interacting
electron liquid is calculated assuming the presence of a uniform steady magnetic field directed normal
to the faces of the slab. The amphtude is evaluated for field strengths in the neighborhood of cyclotron
resonance, a situation which has recently been investigated experimentally by Phillips, Baraff, and
Dunifer (PBD). In the calculations presented here, the electron liquid is assumed to be described by
Fermi-liquid theory and to interact with the slab faces as though the quasiparticles were scattered
diffusely. The results of the . calculation indicate that the correlation-produced mode studied by Cheng,
Clarke, and Mermin (CCM) should, in fairly thick slabs, produce a secondary maximum in the
transmission amplitude at approximately the magnetic field strength for which the mode suffers

Doppler-shifted cyclotron resonance. In thin slabs, the calculation indicates that this magnetic field

strength is that for which the transmission will be most intense, in contradiction to the PBD
observations that the maximum transmission occurs at a magnetic field strength much closer to
cyclotron resonance. The calculation agrees with the PBD observation that the transmission is much
greater on that side of cyclotron resonance for which the CCM mode can propagate than on the other
side, and supports the PBD assertion that this characteristic asymmetry in the transmission spectrum is
caused by the presence of electron correlations.

I. INTRODUCTION

Cyclotron phase resonance seems to be a fairly
general feature of microwave-transmission experi-
ments through metallic samples under anomalous-
skin-effect conditions when these experiments are
performed in the pxesence of a magnetic field di-
rected normal to the faces of the sample. '2 It oc-
curs when the strength of the magnetic field is such
that a large group of carriers has a cyclotron fre-
quency equal to the frequency of the incident micro-
wave fieM. When this happens the many carriers
in the group, each of which has its own individual
velocity across the sample, all arxive at the emer-
gent face of the sample in phase with each other,
producing a transmitted signal which is larger than
that produced at other values of magnetic field
strength.

Observations of cyclotron-phase -resonance
transmission through alkali metals at 116 6Hz 3

have raised some intriguing questions about the
role played by Fermi-liquid effects in determin-
ing the transmission spectrum. On the one hand,
a very simple model (namely, that the metallic
sample ean be regarded as a finite-thickness slab
whose interiox is filled uniformly with the interact-
ing electron liquid) treated in a heretofore-success-
ful heuristic manner gave a remarkably faithful
description of the rather complicated data. On the
other hand, there was no firm theoretical justifica-
tion for some of the steps in the heuristic treat-
ment. Although the impressive fit between the
data and the calculation might be regarded as sup-

,plying the missing justification, the value assigned
to one of the parameters of the model (the Landau-

theory A~ parameter) differed sufficiently in sign
and size from currently accepted theoretical esti-
mates to cast doubt as to whether the heuristic
treatment was, in fact, valid.

Examining the validity of the heuristic treatment
therefore becomes a matter of considerable in-
terest. If the heuristic treatment of the simple
physical model can be shown to be valid, then one
has, for the first time, an experimental determina-
tion of the Landau parameter A, in a metal. If the
heuristic treatment of the simple physical model is
shown to be invalid, i.e. , if a direct calculation
based on the same model fails to reproduce the re-.
sults of the heuristic calculation, then the physical
model itself is defective because it cannot account
for the data. In this latter case, one is left with
two questions. First, what physical mechanism is
needed to account for the data, and second, why
was the heuristic approach seemingly so success-
ful&

This paper, a theoretical study of the cyclotron-
phase-resonance phenomenon in a finite slab of in-
teracting Fermi liquid, presents a numerical self-
consistent variational calculation of the microwave
transmission through the metallic sample using the
same physical model which the heuristic treatment
purports to approximate. Though the results of
these calculations do confirm ideas which have
evolved from theoretical study of the bulk proper-
ties of Fermi liquids and our earlier studies of the
slab-transmission problem without correlations,
the calculations here support only one of the sev-
eral important features of the heuristic treatment.
On balance, one must conclude that the heuristic
treatment (which does describe the data) does not
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correspond to the actual predictions of the model
which it was supposed to represent, and thus the
two questions posed in the last paragraph must ul-
timately be faced.

In the last sections of this paper we shall return
to a further discussion of the heuristic treatment
and of the comparison between its predictions and

those of our numerical calculation here. First,
however, in Sec. D we shall formulate the mathe-
matical problem to be solved. In Sec. IG we recast
the problem as a variational one in which the quan-
tity we are interested in, the transmission ampli-
tude, is the quantity to be varied. The success of
any variational calculation rests on the choice
made for the trial forms representing the fields.
This step, the choice of physically meaningful

fields, is both the most important and the most dif-
ficult part of the entire calculation. The choice of
trial fields is discussed in Sec. IV. From that
point on, the calculation is relatively straightfor-
ward and we merely summarize the steps of that
calculation in Appendix A. The results of our cal-
culations appear in Sec. V. In See. VI we return
to the heuristic treatment, "deriving" it in a way
which makes clear what additional assumptions
have been made, and then comparing and contrast-
ing its predictions with those of the variational cal-
culation. Finally, in Sec. VII we summarize and

speculate about profitable directions for further
theoretical investigation.

CP, +k~ (z)= —i(up()j(z), 0&z&D
dz

(2. I)

where @0=&@/c. The current j(z) can be calculated
from the quasiparticle distribution function n(z, P,
f). The relationships between j and n and the equa-
tion governing the time development of n are as-
sumed to be those postulated in Landau's theory of
the Fermi liquid. In particular, the equation gov-
erning the time development of n is the spin-inde-
pendent part of the transport equation

~n n 8& 8g en Bn &8n—+ —~ ———~ —+q(e+VxB).—=~—er ep er ~p p k coll
(2. 2)

where e(r, p, f) is the energy of a quasiparticle

II. FORMULATION OF PROBLEM

The basic transmission problem to be studied is
this: A transverse circularly polarized electro-
magnetic wave at frequency ~ is incident on the
z = 0 face of a metallic slab which extends from
z=Oto z=a. There is a reflected wave at z&0, a
transmitted wave at z &D, and we are to calculate
the amplitude of the transmitted wave.

Within the slab, Maxwell's wave equation relates
the electric field e(z) to the transverse circularly
polarized current j(z),

g (x) + Z i K „(x—x') h„g„(x')dx'
n=l 0

+ Z, x-x' e x' dx'=0.

[In (2. 3) the electron mean free path l is used as

(2. 3)

with momentum p at position r at time t, e and B
are the total electric and magnetic fields, and V
=V~& is the velocity of the quasiparticle.

The transport equation above must be supple-
mented by boundary conditions which describe how

the quasiparticles behave at the incident and emer-
gent faces of the slab. Although there has been
considerable recent progress in understanding the
interaction between charge carriers and the metal-
lic surface, ~ the over-all difficulty of the trans-
mission problem we pose is so great that we are
forced to fall back on the oldest but mathematically
simplest characterizations of the quasiparticle be-
havior at the bounding faces of the slab.

The very simplest boundary condition is to as-
sume that each quasiparticle suffers specular re-
flection at the surface. In this case, the method
of images used by Platzman and Buehsbaum may
be applied to the problem and an explicit solution
for the fields, the transmission, and the surface
impedance may be obtained in a rather straightfor-
ward manner. The specular boundary condition.
does not produce a cyclotron-phase-resonance peak
in the calculated transmission when there are no
Fermi-liquid effects. Since the peak is the most
prominent feature of both the heuristic calculation
and the data, there is no reason to consider the
specular boundary condition further here.

The next-simplest boundary condition is to as-
sume that each quasiparticle suffers diffuse reflec-
tion at the faces of the slab. This boundary condi-
tion does produce a peak in the calculated trans-
mission (in the uncorrelated situation) when the
magnetic field strength is such that the cyclotron
frequency of the carriers is equal to the frequency
of the incident electromagnetic field. This bound-
ary condition provides a reasonable approach to
the problem of how Fermi-liquid effects alter the
cyclotron-phase-resonance phenomenon.

%e have shown in an earlier paper dealing with
Fermi-liquid effects in a semi-infinite medium
that the diffuse-scattering boundary condition can
easily be incorporated into the transport equation
(2. 2) when the uniform ambient magnetic field is
directed normal to the surface. The situation here
(where a finite slab replaces the semi-infinite me-
dium) is virtually identical to that considered ear-
lier as far as this step is concerned„and by analogy
with the earlier derivation, we can replace the
transport equation and diffuse-scattering boundary
condition with the following set of integral equa-
tions:



G. A. BARAFF

the unit of length so that L =D/f is the dimensionless
thickness of the slab and x= e/f is the dimensionless
depth coordinate. ]

The quantities g (x) are proportional to angular
moments of the (modified) quasiparticle distribu-
tion function g and the E are transport kernels,
similar in structure to the norQocal conductivity
kernel of the free-electron gas. The exact defini-
tion of these kernels is

l' 1 d 'I

I
1+ —le(«) =2A «=0

ihof dx) (2. 6a)

set of equations subject to transmission-experiment
boundary conditions; namely, that an electric field
of amplitude A is incident on the slab at a=0 and
only a transmitted wave is present beyond z =D.
Expressed as conditions on (2. 6), this means that

3r
K' „(x-y)= dy —F*&(&&, rp)y'„&(&&, y)e '

l
1 —. —le(x) = 0, x=L.

fhg dx] (2. 6b)

(2. 4a)

=(-1) "If..(X-«) (y'x), (2. 4b)

a=-1 —f(&d —(d,)7 . (2. 4c)

h„-=(de„/(1 +A„), (2. 5)

The F, are normalized spherical haxmonies, and
from the definition (2. 4a) it follows that K „=Z„.
&u, is the cyclotron-resonance frequency eB/m~c,
where m* is the mass which would be measured in
an Azbel-Kaner cyclotron-resonance experiment.
7=l/Vz is the mean free time for particles having
a mean free path E and a Fermi speed V~.

All of the Fermi-liquid correlation effects enter
via the second term in (2. 3), where the parameters
h„are defined by

III. VARIATIONAL PRINCIPLE FOR TRANSMISSION

The form of variational principle and its deriva-
tion are quite similar to the principle and deriva-
tion used in calculating the transmission through a
slab in the absence of correlation effects. ' For
this reason, we refer the reader to See. II of Ref.
16 (the second paper in this series of three) for
the details of the arguments we shall merely sum-
marize here.

The derivation of the variational principle pro-
ceeds in two parts. First, we combine Maxwell's
equation (2. 6) and the boundary conditions (2. 6)
into a single integral relation in which the trans-
mission amplitude f [equal to the ratio between the
field e(L) at the emergent face of the slab and the
field Ae' 0' which would have been found at @=I.
had the slab been removed] appears in the eigen-
value. The electric field e(x) is denoted as go(x).
The integral relation is

A„being the parameters which appear when the or-
bital part of the Landau-theory interaction function
is expanded in spherical harmonics.

Fermi-liquid theory also gives the prescription
for calculating the current j from the quasiparticle
distribution function. Using that prescription, the
circularly polarized transverse current j is pro-
portional to tt)» the coefficient of proportionality
being such that (2. 1}becomes

(2 6)

e"0'""4&(X) dX = 4O(x) +—

8 y-x sink x-y
& y dy,

e(y-x)-=1 (~»)
=0 (X«)

(3.1)

(3.2b)

5 =—((d&V~/(dC) ((JT) (2 7) (2(,I )((-fI( (3.3)

where u~ is the plasma frequency.
Equation set (2. 3) and (2.6) can be considered to

be a finite set of equations for the finite number of
unknown functions e(x), P&{x), . .. , P„(x) if we ignore,
(set equal to zero) all correlation parameters A„
for n &X. These parameters are supposed to de-
crease rapidly with increasing n. For this paper
we shall (as was done in the heuristic treatment)
take X=2, ignoring A3 and all higher parameters.

Vfe shall be concerned with the solution of this

pÃg —Ztt) = 0,
where only

e&00&&x-w)

differs from zero and where

{3.4)

(3.5}

Equations (3.1) and (2. 3) are a set of coupled
homogeneous simultaneous eigenvalue equations
for the three fields $0(= e), P„and g~. They can
be written symbolically as
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( o

2 „(x—y) = 5 „5(x—y) + Kii(x —y)

Koi(x —y)

ibG(x —y)

ih,K„(x—y) ih,K,o(x —y)

ihiKoi(x —y) ihoKoo(x —y)

(3.6)

u = (@&4)l(4'3}IP). (3.8)

The argument that first-order errors in @' and P
lead only to second-order errors in p, follows im-
mediately from the equations determining $ and @,
namely,

and

bii«C (x) = 0

bu«4. (y) = 0.

(3.9a)

(3.9b}

One proposes trial fields for the functions 4 (x}
and g„(y), letting these trial fields depend on cer-
tain parameters. The parameters are varied to
give stationary values of p. and then, with the trial-
field parameters set in this way, p. is calculated
from (3. 8). Having obtained ii, the transmission
amplitude f follows from (3.3).

IV. FORM OF TRIAL FIELDS

We are going to approach the problems of cal-
culating p. in four stages. In the first stage, we
shall set A, and Ao =—0 and determine go and P, vari-
ationally. (This part of the problem has already
been solved in Ref. 16 and we omit all details
here. ) In the second stage, we allow Ao to be in-
finitesimally small but not zero. This cannot
change the fields $0 and g, which were determined
in the first stage, but it does allow us to determine

go variationally. In the third stage, we allow A, to
take its finite value and calculate the changes in-
duced in the $ fields. Finally, in the fourth step,
we also allow A, to be finite. In carrying out this
last step, we recall the results of Ref. 17 (the
first paper in this series of three), in which we
showed that the effect of A, on the electromagnetic
fields in a semi-infinite medium was so small that
it could be computed by first-order perturbation
theory. We are aware of no mechanism that could
cause the introduction of an emergent surface
(changing the semi-infinite medium to a finite slab)
to alter this situation, and we shall assume that the
effects of A, on the fields in a finite slab can also
be calculated by first-order perturbation theory.
But first-order perturbation theory, in a variation-
al context, means the use of zeroth-order trial

G(x y}=8(y -x)(kj) ' sinkol(x-y) . (3.7)

In the second step, Eq. (3.4) is turned into a, varia-
tional problem for the eigenvalue p, in the usual way

by introducing adjoint fields @' and writing

G(x —y) =-(kg) '8(y —x) sink/(x-y),

H(x y) eiool(x y)

(4. 2a)

(4. 2b)

We may also write out in detail the equation set
(3. 9b) which governs the @ fields. When we do so
and then make the substitutions y = L —x' and x=L
-y', we discover that

@o(x)= q, (L —x),

@i(x)= Po(L —x),

4'o(x} = ihoitio(L —x) .

(4. 3a)

(4. 3b)

(4. 3c)

Because of (4. 3), we can regard the functional p,

as depending on the three fields P& rather than on
the six fields 4', and $~.

Let us use a superscript zero to denote the fields
in the semi-infinite medium in the absence of cor-
relations. These fields satisfy the L =, h2=0
limit of (4. 1), namely,

Po(x)+ib f G(x —y)g, (y) dy = 0, (4. 4a)

f Kll(x-y)4o(y)dy+4i(x) =o,

J Ko, (x —y}po(y) dy+go(x) =0. (4. 4c)

In obtaining (4. 4} we have recognized that the
transmission amplitude f (and therefore the eigen-
value ii) must decrease exponentially with increas-
ing slab thickness when the thickness becomes
large.

For the first stage of the calculation we shall
take

(4. 4b)

Po(x) = g(x}+As -=go(x), (4. 5a)

functions in the variational functional which con-
tains the perturbation. Therefore, in stage four,
we evaluate p. using the fields determined in stage
three but retaining the A~ terms in the operator Z.

Suppose temporarily that only A, were equal to
zero. Consider the equation set (3.9a) which gov-
erns the g fields. Using (3.5)-(3.8), we have

L
Po(x)+ib J G(x —y)g&(y)dy —p

x J &(x —y)g (y)dy=O, (4. 1a)
Lf K»(x y)&o(-y)dy+g&(y)+who

0 L"f, Kio(x-y)iI~8(y)dy=O, (4 lb)

f, K»(x y)4o-(y) dy+6(y)+who

&& f'K (x y)p (y—)dy =0, (4. 1c)

where
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4g(x) = 4'a(x) =t-t'a(x), (4. 51}

4a(x) =Ca(x)+LLe =la(x) (4. 6)

and shall determine B and q variationally. Again,
the piece Be '" is a simple exponential representa-
tion of the change in the field pa (proportional to the
l=2, m=1 moment of the modified distribution
function) caused by the introduction of the emergent
face of the slab. %e can expect that this term, like
the change in Po, should be largest at the emergent
face of the slab, and therefore that q, like P, should
have a negative real part. Indeed, the variational
determination of q (numerically) will turn out to
give q =p.

In the third stage, where A., is allowed to be
finite, the fields will change from the values (4. 5)
to (4. 6) and we shall have

&o(x) = |to(x) + 5&o(x)

4a(x) = 4i(x)+54a(x),

4a(x) =f ( a)+x54a(x)

(4. Va)

(4. Vb)

(4. Vc)

In order to make a good choice of functions for the
variational representation of the &g~, it is useful
to consider the formal solution which would arise
if the forms (4. V) were used in Eq. (4. 1).

Let us insert (4. V) into (4. 1) and, in doing so,

and shall determine A and p variationally. The
piece A.e ~ is a simple exponential representation
of the change in the electric field caused by the in-
troduction of the emergent face of the slab. In
Ref. 16 we found that the variational determination
of P gave it a negative real part (so that this change
in the electric field was greatest at the emergent
face of the slab) and an imaginary part which was

very nearly equal to +(&o —&u,)r (so that this change
in the electric field is similar in structure to the
field carried by electrons traveling from the emer-
gent face of the slab back towards the incident
face). This added piece thus corresponds in form
to what a multiple-reflection analysis of the prob-
lem would suggest if only the first reflection at, the
emergent face were important.

Also note that in (4. 51) we are saying that the
current g, in the finite slab is not changed from the
value it would have had in the infinite medium.
This assumption is actually one of the conclusions
of the study carried out in Ref. 16, where we found

that the variational principle rejected any substan-
tial change in the current. It means, of course,
that terminating the infinite medium by an emergent
surface so as to produce a finite slab must change
the eLectric fieLd in just such a way as to leave the
cm'rent nearly unal tered.

In the second stage of the calculation, we shall
maintain go and g, at their values (4. 5) but shall
take

let us pretend that the functions gz(x) would provide
an exact solution to (4. 1) if Aa were sero instead
of being (as they are) our variational approximation
to the exact solution. That is, we shall proceed
as though the following set of equations were rigor-
ously (instead of approximately) satisfied by the g&..

go+(ibG —p, oH)g& =0,
A A

K»P, +$, =0,
A

Ka,go+pa =0.

(4. 8a)

(4. 81)

(4. 8c)

Here p, o is the value of the eigenvalue p. when A3 is
zero. When A2 is not zero, we shall have p, = p, o

+ 5p, . If we now insert (4. 7) into (4. 1) and use
(4. 8), the equations for the 5g~ are

5go+ [SG —(go+ 5p) H]5$& --5pH)&, (4. Qa)
A

Kaa5$o+ 5tLla +iha Kaa5$a = —iLhdfaaga,

Ka, 5$o+ (1+ihaKaa)5/a = —ihaKaaga . (4. Qc)

(4. Qb)

As

5|Lto = —ahaKiaKaaS

54= -(S -1)S '4a,

where

S =- 1+ iha(Kaa —KaaKiaaK&a) ~

(4. 10a)

(4. 101)

(4. 11)

The difficulty with this formal solution of the form

5&a= Qa&a

5&a = saba

(4. 12a)

(4. 121)

is that we cannot evaluate the operators 8~ and 82.
If 8~ and 83 were multiples of the unit operator, we
then would have

50a = Pea,

(4. 13a)

(4. 13b}

where o, and P are numbers. The error made in
approximating (4. 12) by (4. 13) should be a function
smoother than $a and so we shall approximate this
residual as a series of (relatively slowly varying)
exponentials. %e therefore take

The huge size of the constant 5 (which, in the ex-
periments reported in Ref. 3, was of order 10ao)

appearing in (4. Qa) means that 5g„ the change in
the current, is going to be an exceedingly small
quantity. Thus, for the puxposes of satisfying
(4. Qb) and (4. Qc), we can set 5/a equal to zero.
This result is the exact analog of what we found in
Ref. 16 and mentioned above, namely, the tendency
of the current to remain unaltered. In Ref. 16 we
found that addition of an emergent surface leaves
the current nearly unaltered; here we find that
addition of the A.2 correlation parameter leaves the
current nearly unaltered.

Setting 5g, = 0 in (4. Qb) and (4. Qc) we obtain the
solution
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Np

5$z ——o.pz+Z a&e z&,
i=i

5g) ——0,
+Np

5gz = Pgz+ a,e
j&p+1

(4. 14a)

(4. 14b)

(4. 14c)

An outline of the way the entire calculation pro-
ceeds, stages one through four, may be found in
Appendix A.

V. RESULTS AND INTERPRETATION OF CALCULATIONS

A. Uncorrelated slab

There are Xp exponential terms in &gp, N2 exponen-
tial terms'in 5g„and we have 2(Nz+Nz+ 1) varia-
tional parameters to determine. However, the
labor involved in setting the P& parameters is so
great that, as a working expedient, we shall set
them beforehand and only determine the linear pa-
rameters (n, P, and the a, ) variationally. The test
of the validity of this procedure is that the calcu-
lated value of p, is insensitive to the number of
terms chosen (Nz and Nz) and to the exact values
chosen for the P; parameters. (See Appendix B for
further discussion of this matter. )

When the parameters in (4. 14) have been set, the
resulting functions 5g~ will be approximations to
those appearing in (4. 10). In this connection it is
especially interesting to consider the operator S
appearing in (4. 10). Suppose that we wanted to
evaluate the change in transmission caused by
having a finite value of A~. Equivalently, we evalu-
ate the 5p appearing in (4. 9a). In principle, this
could be done by using the variational expression
(3.8), using for C' and P the fields given by (4. 3),
(4. 7), and (4. 10). The result is

5p, = —ih, f J gz(L -x)S 'gz(y)dxdy

L, -xe o' "
1 y dxdy

This shows that a particularly large value of the
operator S ' will be associated with a particularly
large value of the transmission amplitude.

The significance of this remark lies in the inti-
mate connection between the operator S ' and the
correlation-produced modes which propagate along
the magnetic field. These modes, whose existence
was predicted by Silin, ' have been discussed by
Cheng, Clarke, and Mermin (CCM), who gave the
explicit dispersion relation for that infinite-medium
mode which should exist when A, and all higher pa-
rameters are equal to zero. It turns out that if the
operator S, defined in (4. 11), is allowed to oper-
ate on an infinite-medium plane wave e'~" ", the
result diverges if k and ~ satisfy the CCM disper-
sion relation. We can infer then that an anoma
lously large value of S 1 in the finite slab will cor-
respond to the finite-slab realization of the infinite-
medium CCM mode. Because 6 p. is proportional
to S, this should result in an enhanced transmis-
sion amplitude when the CCM mode can exist.

Having determined the fields by setting the pa-
rameters in (4. 14), one uses those fields in (3.8)
(including the finite values of A, and Az in the op-
erator 2) to calculate the transmission amplitude.

1.0

09—
~~ =300

((dpVf /cue) ~ = 350

08—
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1.2

FIG. l. Absolute value of the transmission amplitude,
normalized to a maximum transmission of unity, as a
function of magnetic field strength for various values of
slab thickness, calculated for the free-electron gas.

When both Fermi-liquid-theory parameters A,
and A2 are set equal to zero, the physical problem
reduces to that of calculating the transmission of
electromagnetic radiation parallel to the magnetic
field in a free-electron gas with diffuse boundary
conditions. The main features of the transmission
spectrum have already been described in Ref. 10.
[See especially Eqs. (4. 1) and (4. 3) of that work
for an explicit formula for the transmission ampli-
tude. ] Although the derivation given in Ref. 10 ap-
plied to thick slabs, subsequent work' and results
to be presented here verify the accuracy of that
earlier solution even for slabs of fractional mean-
free -path thickness.

There are two main features in the transmission
amplitude as a function of ambient magnetic field
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FIG. 2. Transmission amplitude, such as would be seen in a transmission experiment if the receiver were sensitive
to the electric field component along a single spatial direction, as a function of magnetic field strength. For each cal-
culation the direction of receiver sensitivity has been chosen to give a symmetric line shape by taking a phase shift 0,

=+(; m. and the maximum amplitude has been normalized to unity.

strength. The first is that the direction of the
emergent electric field is rotated in the plane of
the sample relative to the direction of the incident
electric field. The amount of that rotation in-
creases linearly with magnetic field. Therefore,
a transmission experiment which measures the
strength of the electric field parallel to some fixed
direction will exhibit a signal which varies sinusoi-
dally with magnetic field. [The rotation of the

emergent field and the sinusoidal signal are called
Gantmakher -Kaner oscillations (GKO). ' ] The
amount of rotation also increases linearly with the
sample thickness. Therefore 68, the change in
magnetic field required to produce a rotation of 2w

(or one complete sinusoidal period), is inversely
proportional to the slab thickness.

The second main feature of the transmission
spectrum is the cyclotron-phase-resonance (CPR)
phenomenon itself: When the magnetic field strength
is such that the cyclotron frequency of the carriers
is equal to the frequency of the microwave field,
the amplitude of the GKQ is predicted to be largest.
The envelope of the GKO was calculated o (in the
limit of a thick slab) to have the shape of a square
root of a Lorentzian. The phase of the GKO (again,
in the thick-slab limit) was calculated to slip by w

(relative to the linear increase) as the magnetic
field is swept through the resonance value. For
thinner slabs the shape of the peak in the envelope
was predicted to be less pronounced.

In Fig. 1 we have evaluated the envelope of the
GKO (i.e. , the absolute magnitude of the transmis-
sion amplitude calculated variationally) for the pa-
xameters indicated and a series of slab thickness-
es, ranging from 1.= 2 mean free paths down to

I.=0. 1 mean fxee path. In this figure the curves
have been scaled to the same peak height so that

the decrease of transmission with slab thickness
is suppressed, while the broadening of the cyclo-
tron phase resonance in very thin slabs is made

apparent. The thickest slabs have such a rapid
variation of phase with magnetic field that it would

be impractical to calculate the sinusoidal signals
variationally. %e have calculated the sinusoidal
signals variationally for the thinner slabs and, in

Fig. 2, we compare these calculated results to
those evaluated using the explicit formula of Ref. 10.

B. Case of A~ correlations only

Let us now consider the situation in which A.
&

= 0
but Az is given. a finite value. The new feature to
be expected in this situation is related to the infi-
nite-medium CCM mode, a mode whose dispersion
relationship k= k(&o, &u,) is independent of A, . ln the
limit of infinitely long mean free path, CCM found
that the mode could propagate at values of magnetic
field lying between mode turn-on at (&o,/&o)

= (1+Am) ', for which value k= 0, and mode cutoff
at (~,/&o) = —', (1+22) ', for which value k becomes
large enough for Doppler-shifted cyclotron reso-
nance o to damp the mode. Our calculation of the
mode dispersion relation assuming a finite mean
free path" indicated that the attenuation length for
the mode was alsoays less than a mean free path,
and that the propagation became better (attenuation
length became longer) as the magnetic field ad-
vanced from mode turn-on to mode cutoff. In
neither calculation was the coupling to the mode
calculated, but CCM expressed the opinion that
coupling to the field should be best at turn-on.
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As observed in transmission, the strength of the
mode will depend on how strongly it is coupled to
the field and on how well it propagates. It is there-
fore not evident a priori where, in the field range
for which propagation can occur, to look for fea-
tures associated with the mode. The remarks
made at the end of Sec. IV suggest, however, that
existence of the mode is signaled by an increase
in transmission.

In Fig. 3 we have evaluated the envelope of the
tr~nsm)ssion (i.e. , the absolute magnitude of the
transmission amplitude calculated variationally)
for the same parameters and slab thicknesses as
in Fig. 1, but assuming that Az has the reasonable
value —0.03. The infinite-medium mode should
propagate in the range l. 03& co,/&u & l. 05 and in-
deed, in Fig. 3(a), transmission through the thick-
est slab, we see that, although the cyclotron-phase-
resonance peak at &u, /u& is the point of greatest
transmission, the falloff in transmission is inter-
rupted at mode turn-on. The transmission contin-

FIG. 4. Transmission amplitude, such as would be
seen in a transmission experiment if the receiver were
sensitive to the electric field along a single spatial direc-
tion, as a function of magnetic field strength for several
values of the phase shift o, or equivalently for various
choices of spatial direction. The calculation is for a
correlated electron liquid in which A2=-0. 03.

ues to increase until mode cutoff, the point of sec-
ondary maximum in this computed curve. In Fig.
3(b), transmission through a thinner slab, we see
that the mode does indeed have an attenuation length
shorter than that of the GKO near the CPR peak,
because the secondary maximum in the thick sam-
ple has become the primary maximum in the thinner
one. In Figs. 3(c) and 3(d), still-thinner samples,
the broadening and weakening of the CPR peak pro-
gresses further. There is another feature present
in Fig. 3 which was not expected on the basis of
knowledge of the CCM mode. The new feature is a
marked asymmetry in the transmission envelope,
extending far beyond the regions of mode propaga-
tion. The asymmetry is especially marked in the
thinner samples and is exaggerated still more if
one compares the height of the envelope at equal
distances either side of CPR at &u,/&u = 1. This
means that the GKO in these thin samples will have
far larger amplitude on one side of CPR (the side
for which mode propagation occurs) than on the
other.

In Fig. 4 we have plotted the transmission spec-
trum at various phase shifts; i.e. , we have plotted
the real part of (transmission amplitude times e' )
for various phase angles n, choosing that sample
thickness which corresponds to the observed GKO
period. Figure 4 reveals three features —a rapid
phase change near CPR, the transmission peak
near mode cutoff, and the marked enhancement of
the GKO on the high-field side of CPR. Figure 5
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Finally, we consider the effect of giving A~ a
finite value. Figure 8 displays the transmission
computed for parameters identical, aside from the
value of A„ to those used in Fig. 4(c). In Fig.
8(a) A, has been given the value 0. 2, and in Fig.
8(b) A, has been given the value —0.2. The con-

displays the same calculation as does Fig. 4 but for
a smaller (but still reasonable) value of A2, name-

ly, —0. 02. In Figs. 6 and 7 we exhibit the enve-
lope and sinusoidal signal for smaller values of
mean free path than is used in Fig. 4, but for pa-
rameters which are otherwise identical. The
amount of asymmetry, the height, and sharpness
of the peak in the transmission envelope are all
adversely affected by the deterioration in mean
free path. This is to be expected on the basis of
Eqs. (2. 3) and (2. 5), which show that the param-
eter by which correlations enter the problem is
curAz/(1+A&). In Figs. 4, 6, and V, this param-
eter is approximately 9, 3, and 0. 9, respectively.

C. Effect Of A

trast between the effectiveness of A, and Az in al-
tering the transmission is striking. Whereas a
relatively small value of Aa (- 0. 03) produced a
large change in the transmission spectrum, a large
value of A, (+0.2}has only a small effect on the
transmission. That small effect is apparent only
near &o,/~ = 1, and can be regarded as a line-shape
distortion rather than a shifting of the transmission
spectrum or any of the features in it.

The reason that A& is so relatively ineffective
compared to Az (and to the higher A„ if we had in-
cluded them) is related to the reason that A, does
not influence the dispersion relation of the infinite-
medium modes, namely, the tendency of Maxwell's
equation (2. 6) to exclude current from the bulk of
a good conductor. [When the conductivity is good
and b is a huge number, Eq. (2. 6} causes $0 to
oscillate rapidly unless $, is exceedingly small.
The result, as is well known, is that the current
P~ is strongly confined to the incident skin-depth
region, the only place where the field tJ)0 is both
large and rapidly oscillating. j One sees from (2.3)
that the parameter A„enters the physics only in
the combination h„g„(x). In the bulk, g~(x) is vir-
tually zero, so A, does not enter the infinite-medi-
um dispersion relation. In our transmission prob-
lem here, A& enters only because there is current
in the incident skin depth so that P,(x) is not negli-
gible at very small x. Each higher A„parameter,
on the other hand, enters the problem multiplied
by a g„(x}which is not constrained to be small in
the bulk.

The possibility that A, might be measured in an
experiment which is independent of surface condi-
tions requires that one work in a regime where
$,(x) is not virtually zero in the bulk. One ap-
proach to such a regime is to raise the experimen-
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tal frequency and to observe the high-frequency
cyclotron waves, as Dunifer, Schmidt, and Walsh ~

have suggested. Their calculations of the disper-
sion relation for these waves suggest that A, might
measurably affect the wave propagation at frequen-
cies approximately double those used by Phillips,
Baraff, and Dunifer, ' but such an experiment has
yet to be performed.

T= J f e(D —z)o(z, z')e(z')dzdz'. (6.2)

If one proposes that the electric field within the
slab is large only in the incident skin depth, then
it would seem reasonable to replace (6.2) by

eD-z dz OD, 0 ez' dz' . 6. 3

This form, simple as it is, still contains much of
the essential physics. As an example, suppose we

consider transmission through a fairly thick slab
of free-electron gas. The large-D behavior of the
conductivity is proportional to

o(D, 0}=e 'o/(aD}'. (6.4)

This contains the GKO (in the exponential term) and

a strong cyclotron phase resonance (Lorentzian en-
velope and 2w phase slip} in the term a 2. The
electric field e(z) is almost everywhere equal to
the infinite-medium field eo(z) and we can make the
replacement

f'e(z) dz= f eo(z)dz= f e2(z)dz.

But this last integral is the k = 0 component of the
Fourier transform of e2(z). It is equal, to within

a constant which depends on the normalization of
the field, to

J, eo(z) dz= (2a/5)'+. (e. 5)

Combining (6.4} and (6. 5) gives a transmission

VI. COMPARISON BETW'EEN HEURISTIC TREATMENT AND

VARIATIONAL CALCULATION
e- aD/gD 2 (e.e)

The heuristic treatment is based on three simple
ideas which were described and criticized in Ref.
17. A more formal (but in many respect much

more satisfactory) approach to the same treatment
is provided by the expression for the transmission
derived by Falk, Henningsen, Skriver, and Chris-
tensen. The essential result of their analysis is
that the transmission is proportional to

T= f f f(D —z)o(z, z')f(z')dzdz', (6. 1)
0

where o(z, z') is the nonlocal conductivity, relating
the current j and the field e by

j(z) = f o(z, z')e(z') dz',

and where f(z) is a function closely related to the
electric field, namely,

f(z) = [e(z) pe(D —z)]/(1 —p')—,

p =- e(D)/e(0) .
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a form which exhibits the GKO (in the exponential
term) and a 2veak cyclotron phase resonance (square
root of Lorentzian envelope and v phase shift) in
the term a '. This latter form, the weak cyclotron
phase resonance, corresponds exactly to what is
found by a detailed calculation using the two-sided
Wiener-Hopf technique, ' the multiple-reflection

Since p is such a small quantity, f(z) is essen-
tially equal to e(z) everywhere except within a skin
depth of the emergent face, where the functions
differ in that f(D) = 0. The integral over the region
near the emergent skin depth provides such a small
contribution that we can, with excellent accuracy,
replace (6. 1) by

-0.6

-0.8
-10

0.8 0.9 1.0

cU7 = 30

I i I

1.1 1.2 1.3
QJ /(d

FIG. 7. Same as Fig. 4(c) except (dr=30.
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T=o(D, 0) (6. 7)

and the transmission T is taken proportional to the
conductivity.

The nonlocal conductivity is a complicated object
which describes how the electrons interact with
themselves, with the ambient magnetic field, and,
in the slab problem, with the boundary faces of the
slab. This latter feature makes it impractical to
calculate o. If the medium were infinite, then
there would be no problem of interaction with the
boundaries and the nonlocal conductivity would be

technique, 4 or the variational technique. '6

In the heuristic treatment, the magnetic field de-
pendence of the integral (6. 5) is ignored, so that
(6. 3) is replaced simply by

translation invariant:

o (z, z') = o „(z —z') . (6. 6)

The quantity o„, the infinite-medium conductivity,
can be calculated as was explained in Ref. 3. The
formula used to interpret the data in Ref. 3 was
(6. 7), as approximated by (6.6), namely,

T=a„(D). (6.9}

The primary motive for embarking on the study
reported in this series of three papers (Refs. 16,

Let us summarize the steps leading from (6.2),
which is firmly based on simple general considera-
tions, to (6.9), which does seem to describe the data.

(a) The assumption that the field e(z) is well
enough confined to the skin-depth region that one
can write

f e(z)f(z)dz=f(0) f e(z)dz-=f(0)I

for slowly varying functions f(z).
(b} The assumption that the magnetic field depen-

dence of the integral I is weak enough to ignore.
(c}The assumption that the nonlocal conductivity

o(z, z') calculated for the slab differs negligibly
from the infinite-medium conductivity o'„(z —z ).

When (6. 9) is evaluated numerically as discussed
in Ref. 3, the features of interest are these. (i)
CPR occurs at (v,/&o) = (1+A,) '. (ii) The GKO have
a much larger amplitude on that side of CPR for
which the CCM mode can propagate. (iii} The value
of T at (u&,/&u) = (1+Am) ', the turn-on field strength
for the CCM mode, is reduced, giving rise to what
we called the "A, notch. "

The second and third features here are certainly
prominent features in the data. ' The first features
may or may not be a feature of the data, since there
is no other measurement of A, which could corrob-
orate this. En any event, the experimental CPR
peak occurs very close to (&u,/&u) = 1.0, which im-
plies an exceedingly small value for A~ if one re-
gards this first feature as valid.

The variational calculation, which proceeds
from start to finish without utilizing the added as-
sumptions (a)-(c), does exhibit feature (ii), the
asymmetry of the GKO envelope. It is in contra-
diction with the heuristic treatment as far as con-
cerns feature (iii). In the variational calculation,
the region at mode propagation is one of enhanced,
rather than diminished, transmission. Finally, the
variational treatment fails, for finite Az, to exhibit
a strong CPR in the very thin samples. In the
thicker samples where CPR is present, it occurs
at (m /m) = 1.0, rather than at (u~/&u) = (1+A&) . In
addition, the A~ mode appears as a distinct feature
of the calculated transmission in the thicker sam-
ples.

VIL SUMMARY AND SFECULATIONS
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IV, and the present work) was the hope that such a
study would support the heuristic treatment. If it
had done so, the experiments reported in Ref. 3
would have given, for the first time, a measure-
ment of the Landau parameter A, in a metal. Sup-
port for the heuristic treatment evaporated upon
completion of the first phase of the work, '7 which
dealt with the effect of A, on the fields in a semi-
infinite slab. At that point, three important pre-
dictions of the model, a uniform Fermi liquid
terminated by a single diffuse scattering surface,
had emerged.

(a) The maximum field amplitude deep within the
medium is not at ((o,/(u) = (1+A,) '.

(b) The effect of A, on the fields within the slab
is much greater than its effect on the fields in the
anomalous skin depth (and hence on the surface
impedance). It is great enough to suggest that a
transmission experiment in this geometry would be
measurably influenced by a reasonable-sized A, .

(c) The effect of A, on the fields within the medi-
um is small enough to calculate via first-order
perturbation theory.

The first of these conclusions raised doubts
about the value of A& suggested in Ref. 3. It did,
however, leave open the possibility that a full cal-
culation (including A„A2, and a finite slab) might
still reproduce the data, perhaps with A& at some
value other than the one suggested by the heuristic
treatment.

The second of these conclusions made the full
calculation a matter of interest, for the promise
that Az would measurably affect the calculation left
open the possibility that a value of A, might be ex-
tracted from the data of Ref. 3.

The third of these conclusions made the full cal-
culation feasible, for it allowed us to consider a
variational treatment in which two fields, rather
than six, had to be varied.

The secondphase of the work, thatreportedinRef.
16, laid the mathematical groundwork upon which
the final phase was built. In that work we developed
the variational technique and the representation for
$00, both of which were essential for the work con-
tinued here. From that work there emerged two
intex esting observations.

(i) The first term of either the two-sided Wiener-
Hopf method or of the multiple-reflection series, 24

both techniques presumably being expansions in the
parameter e ~, provided an exceQent approxima-
tion to the true solution even for I as small as 0. 1.

(ii) The change in physical problem from the
semi-infinite medium to finite slab produced a
large change in electric field Po but very little
change in electric current g~.

The full variational calculation reported here is
at variance with the heuristic treatment. This
means merely that one or more of the three added

assumptions [(a)-(c) of Sec. VI] has been proved
false. Unfortunately, the full variational calcula-
tion cannot be made to agree with the data of Ref.
3. In particular, the observed strong sharp trans-
mission peak near &o,/&u = 1 does not show up in the
calculation. Moreover, the shape of the calculated
spectrum in that region is not similar enough to
what is observed to allow a determination of A,

The variational calculation does account for
asymmetry of the QKO amplitudes which it, like the
heuristic treatment, ascribes to A2. It also sup-
ports features of the earlier two papers and of other
bulk studies. Among these shared features are the
following.

(a) The role of A„away from cyclotron phase
resonance, is to augment the GEO amplitude on the
high- (low-) field side of CPR for negative (posi-
tive) sign of A, .

(b) The change in the physical problem from non-
correlated electrons to correlated quasiparticles
produced large changes in the (electric) field $0 and
the (quadrupole moment of the distribution function)
field $3, but very little change in the electric cur-
rent.

(c) This rigidity of the electric current, namely,
the possibility of changes in $0 and gz but not in P„
which is the essence of the physics of the modes
discussed by CCM, resulted in the finite-slab
equivalent of these modes appearing in the trans-
mission spectrum. The analysis here predicted,
and the numerical work confirmed, that in this
model, the mode is signaled by an increase in
transmission.

An interesting new aspect of the variational cal-
culation is its prediction that the CCM mode should
appear with reasonable observable strength in
transmission experiments carried out in thicker
samples as a secondary maximum located at mode
cutoff. The most interesting aspect of the varia-
tional calculation, however, is its failure to ac-
count for the observations on the thin slabs-in
particular, for its failure to predict the strong
sharp transmission peak at &o,/v = 1, which is the
most prominent feature of the data. This has
destroyed the possibility which was proffered in
Ref. 3, namely, that the transmission spectrum
could be understood to be a consequence of bulk
Fermi-liquid th'eory and reasonably simple bound-
ary conditions on the quasiparticles.

What has gone wxong~ It is hard to imagine any
mechanisms which would invalidate or seriously
modify the standard apparatus of bulk Fermi-liquid
theory under the conditions of the experiment. Our
present knowledge of how the particles interact
with the boundary faces of the slab is great enough
to let us recognize that the diffuse-scattering
boundary condition is a gross simplification. How-
ever, we have no simple physical arguments which
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we can make to connect any feature of quasiparticle
behavior at the boundary with any of the unexplained
features in the transmission spectrum. Nor do we
have sufficient mathematical power to make a
frontal analytical or numerical attack on the prob-
lem seem promising. Still, it is possible to offer
some suggestions which may be of use.

The transmission problem assuming specular
boundary conditions and a correlated Fermi liquid
has not, to our knowledge, been solved numerical-
ly. We bypassed this problem (even though its ex-
plicit analytic solution can be evaluated with per-
haps 5' of the labor we expended here) because of
our prejudice that the CPR peak in the data made
uninteresting a model which (in the absence of cor-
relations) could produce no peak. Once the focus
of the investigation changes to the role played by
boundary conditions, then the specular-boundary
problem becomes interesting again as another
solvable model whose results can be compared with
what we have presented here.

There is yet another interesting boundary condi-
tion which should be mentioned, namely, the one
suggested by Carolan and Van Gelder. ~ In their
work the quantum-mechanical consequences of the
boundary are noted explicitly. Briefly, the elec-
trons which are most effective in establishing the
skin-effect field are those which are in Doppler-
shifted cyclotron resonance with the field. When

v, = v, this is the group of electrons with zero mo-
mentum normal to the surface. But if electronic
wave functions vanish at the surface, and if it takes
a healing distance of the order of a de Broglie wave-
length for the electron density to return to its bulk
value, then this group of electrons is the one with
the longest healing distance. Their exclusion from
the surface region must have a strong effect on the
fields at the surface, because their presence (in
the nonguantum description) is the most important
factor in establishing the distribution of the field.
Carolan and Van GeMer reported calculating a
transmission peak even with specular-boundary
conditions and no Fermi-liquid effects. One won-
ders what further exploration of their model as ap-
plied to thin slabs, or of extensions of their model
to include Fermi-liquid effects, might reveal.
Finally, it is tempting to speculate whether some
phenomenologica1 treatment of surface roughness 6

would be 'of as much use in explaining the data ht;re
as it was in the corresponding surface impedance
problem.

It would be wrong to conclude without again men-
tioning the remarkable agreement between the
heuristic treatment and the experimental data.
Even if no model supports the heuristic treatment,
the empirical conclusion which can be drawn from
Ref. 3 is that the observed tqansmission T looks
very much like the nonlocal conductivity c„(D) csl-

Let us first establish notation for the integrals
we shall encounter, all of which are of the form

f, f, @1(«)&(« y)4~(y-)&«&y

To accommodate the relation (4. 8) which we shall
use throughout, we shall define

(f, &, g)-=f, f f(f -«)&(«-y)g(y)«dr=(g; &, f).
(A I)

If f, K, or g is an exponential, we shall suppress
the argument (L -«), («-y), or y.

For the first stage of the calculation, we shall
set 21 =21 —0, and use (4. 5) and (4. 8) as trial func-
tions to evaluate i1 [Eg. (8. 8)] with the result

P, =[($1, $0+Ac ~) (P+i01bG, $01)

+((00+&e ', K„, &00+Re ~)

+(4+&e ', 41)1[(4'„5g01, P)] ' (»a)
[F;+8F,(P-}A+F,(p}A']/G„ (A2b)

where

&1-=(e', tP)+(8', K„, qQ), (A8a)

F, =(e ~, E„, e ~}, (A8b}

&0=(01, 4)+i&(41, G, 0')+(4.', & „4)+(g 0',),
(A8c)

~0 (41& ~01& 41) (AM)

The two variational equations s p, /SA = 0 and 8@/&p
= 0 become

(A4a)

culated using Landau Fermi-liquid theory, pro-
vided that A, (whatever its true value may be) is
taken almost e1lual to sero. Is there an underlying
reason that this may be so~ Certainly the idea that
A& is relatively ineffective in altering the fields in
this situation (where the large conductivity constant
5 acts to suppress the current) makes it plausible
that there is validity in a treatment which discards
A~ at the outset, but this statement is a long way
from having a model which explains the resem-
blance between the transmission and the conductiv-
ity.
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APPENDIX A: OUTLINE OF VARIATIONAL CALCULATION
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and

dP E3 P
(A4b)

This problem, defined by Eqs. (A2)-(A4), was

solved in Ref. 16, and so we start our calculation
with both A and P known.

For the second stage of the calculation, we main-
tain A~ = 0 but let A2 be infinitesimally small.
Using (4. 5), (4.6), and (4. 3) as trial functions to
evaluate l1 [Eq. (3.8)], we have

p, =[($1 (0)+ib($1, G, $1)+($0, K11, $0)+(~0 ~1)+ihz(~0 K1z, $2+Be )

+ihz(gz yBe ', K», tt'0)+ihz((&+Be ', 1+ihzKzz, (&+Be ')]/Go
= [fo+ 2f1(q)B+f2(q)B'1/Go,

(A5a)

(A5b}

where

f1/zhz (e K21 40) + (e 1 + zhzK22 42) =f1,

f /2ih =2(e ', 1+ihzKzz, e ') =f, .
The variational equations 8 p/8B=, O and 8p, /8q = 0
give

and, going to the limit A~ = 0, we have

f1=(e', 42)+(e K21 40),

f, =(e-', e ').

(A7a)

(A7b)

and

f1(q)
fz(q)

1

dq fz(q)

(A6a)

(A6b)

In the Az = 0 limit the solution to (A6b) is given by
q =P. With q known, B can be evaluated using (A6a).

Solving (A6), we have B, q, and therefore $2.
For the third stage, we keep A& = 0 but let A2 be
finite, and we use (4. 7) and (4. 3) as trial functions
to evaluate i1 [Eq. (3.8)], with the result

P = [(41 40+ 540) + i&(41 G 41) + (40+ 540 K11 40+ 540) +(40+ 540 41) +ihz(40+ 540 K12 42+ 542)

+ihz($2+5/2» K21, il'0+5/0)+ihz($2+5/2» 1+ihzKzz, $2+5/2)]/Go
=

( Vo + 2 V1 + Vz)/Go

(A8a)

(ASb)

where Vo is independent of, V, is linear in, and V,
is quadratic in, the fields to be varied. In particu-
lar, we have

0 ($1» ~0) +2 (~1» G» 41) +(~0» K11» ~0) +(40» kl)
A,

+22hz(~0» K12» ~2)+2hz(~2» 1+zh2K22» 42)

The first four terms here are the same as those
appearing in (A2a) and, because of (A4a), their
sum is Eo —E',/E, . The last two terms here can be
added together to give

ihz($2» —1+ ihzK22, $2) +2ihz($2» $2+K12$0) .
If tt»0, $1, and $2 actually satisfied (4. 8} instead of
being merely our variational approximation to the
actual solution, then $2+K,z)0 would be zero. To
the extent that our variational approximation is a
good one, this term wi11 be small. Since we are
not particularly interested in improving our varia-
tional approximation for tt»0 and $2 but are interested
in ~$0 and 6/2 as the changes in $0 and P2 induced

by A2, we drop this small term and are left with
A

Vp —Fp E1/F + ihz($2, —1 + ihzKzz, ttz) . (A9a)

Furthermore, from (AS}, we have

V1 ——(5~0» '4+K11~0)+ hz(5~0» K1z, $2)

+2hz[( 42» $2+K1240)+zh2( 42» K22» 42)l ~

V1 = 2hz(5/0» K12, gz) + (ihz) (5/2» Kzz, $2) . (A9b)

Finally, we have

Vz-—(540» K11, 5~0)+ 2ihz(5~0» K1z, 5/2)

+2hz(5/2» 1+zhzK22» 5/2). (A 9c)

Again, because we are not interested in further
improving the quality of our variational solution to
(4. 8), we drop those terms in V, which would have
vanished if the tt)& were indeed the exact solutions
to (4. 8). This leaves us with
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FIG. 9. Transmission amplitude as a function of mag-
netic field as calculated for three different sets of p& pa-
rameters. The physical parameters are the same as
those in Fig. 4 except that I- = 0.1. Note the over-all
similarity of the three curves here and the sharp feature
neax v,/~ =1.12 which is present in Fig. 9(a) but absent
in Figs. 9(b) and 9(c). values of the p& parameters are
given in Table I.
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(dc /QP

Mq~ --(u„K)q, u~)

=ih2(u„K,o, u~)

(i ~ No + 1, j ~ No + 1)
(i~No+1, j ~No+1 or

(A12a)

j~No+ I, i &No+I) (A121)

Let us use the forms (4. 14) in (AQ). Changing
the notation of (A14) slightly so that o. , P, and the

a; are regarded as the set of linear variational pa-
rameters b;, while $2 and e ~»" are regarded as a
set of given functions u, (x), would allow us to write
(4. 14) compactly as

bpo =Z b;p;(x), i ~ No+ I

Cga =Z b(p, ,(x), i &No+ 1

=iho(uq, I +ihoKo2, u&) (i &No+1, j &No+1).
(A12c)

The variational equations bp/bb; =0 giv, e

ZMub, = —F, ,

u =(Vo —V,)/G, . (A14)

which may be solved for the b&. Using that solution
gives V~ = —V~ and, as a result,

which would give us

V~ =ZF,b„
Vq

——ZZMubgb~,

(A'10a)

(A 101)

Finally, we let A.
&

be nonzero. The fields just
determined are used in the variational principle.
The change in p. which results is

be=&hi((4o, Kii &x)+iho(&o Koi &~)~Go

N p+],

=ihq go+ Q beau„K(~, P~q +iho go+ Z bgug, Kqq, $g Go.
Np+3

(A15)



4024 G. A. BARAF F

TABLE I. Real part of P&.

Parameters
used for 3(d)

20
10

—10.5
—21

19
9

—11.5
—22

4, 5, and 8

17
6

—6
—17

16
7

—7
—16

Figure

9(a)

25
18
11
4

25. 5
18.5
11.5
4. 5

9(b)

20
10

—10.5
1.5

19
9

—11.5
—1.5

9(c)

20
10

—10.5
—21

19
9

—11.5
—22

All others

N() =0

N2=0

Our final value for p. is then

g = (Vp —V,)/Gp+ by, . (A16)

APPENDIX B:COMMENTS ON CERTAIN NUMERICAL
ASPECTS OF CALCULATION

For the special choice f(x) = e" o'", we have the
exact evaluation [cf. Eq. (3.9), Ref. 16]

l &kle'"p'"g, (x) dx = —
i (Z + 1},

0 ib (B3)

It is clear that numerical representations of the
fields g, g„and Pp are needed if the various inte-
grals appearing in Appendix A are to be evaluated.
For PpP, the most convenient representation is that
developed in the appendices of Ref. 16, namely,
one of the form

gpP(x) = f g(u)e ' "'*du. (Bl)

The explicit form for Pp is given in that reference.
Although the representation (Bl) is not valid in

the skin-depth region, the error introduced by
using this representation can be virtually eliminated
by making use of Eq. (4.4} in such a way that values
of PpP(x) near x= 0 do not appear in any of the terms
to be evaluated. Examples of this technique appear
repeatedly in Sec. III of Ref. 16.

Most of the appearances of g1 in the integrals
appearing in Appendix A here can also be eliminated
by use of Eq. (4.4}. The two which cannot are
those found in (A15). To handle these terms, we
recognize that the current is so sharply concen-
trated near the surface of a semi-infinite medium
that, for all functions f(x}which vary slowly on the
scale of the skin depth, we can expand f(x) near
@=0 and retain only the lowest-order terms in the
integral,

f f(x)tiipi(x) dx= J f(x)/pi(x) dx

= f, [f(0)+C'(0)l 0',( )d»x

= f(0) f gp(x) dx+f'(0)

x f +P|(x}dx

which is of the form (B2). Comparing (B2) and
(B3), we have

f gp(x) dx= (- kgZ/b), (B4a)

J +P(x)dx = 1/ib . (B4b)

Thus, (B2) becomes

f f(x)f,( )xdx = —(kplZ/b)[ f(0) —f '(0)/(ikplZ)],
(B5)

where Z is the dimensionless surface admittance.
This quantity is so large that we may drop the sec-
ond term in (B5) for functions which vary slowly on
the scale of the skin depth, which is the case for
those in (A15). Thus, for example,

0 L
(Pp Kgg& Pg) =

fp fp Pp(L»)K„(x —y)Pi( y) dxdy

= —(kpfZ/b) f gp(L x)K„—(x)dx.
(B6)

The remaining integrals involve the fields
happ

and

gp, which are related. Because of the definition of
the kernels (2. 4}, we have

K.,(x -y) = ~5iu f"dx'K„(x' y) e(y-x-) i-x 11

Then, using (4.4b) and (4.4c), we have

Pp(x) = —f Kpg(x —y)gp( y) dy

=~~ f, [s~P(y)+~P(y)]dy

Considering the relative sizes of PP| and tg, we
drop the first term here and obtain

Pp(x) = @~5 J gp(y)dy

= v 5 f (a+ u) 'g(u)e '""'*du. (B7)

Finally, we must comment on the choice of N0
and N2, the number of exponential terms taken in
the representation of &g0 and 6tt), according to
(4. 14), and on the choice of the decay constants P,
appearing in the same equation.

We found that the results of the computation were
qualitatively similar and relatively insensitive to
the choice of the p& values when we took N0 and N2
equal to 2, 3, or to 4. We chose the forward-
propagating terms as
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P, =y&+ zIma

and the backward-propagating terms as

Pz = —(yz + alma),

where the y& were real numbers, greater than
unity, which described the decay lengths of the
terms. We distributed these y& in a range between
1 and an upper limit set by the requirement that
the term be slowly varying relative to Pz. This
upper limit decreased as the slab became thicker,
and so for the thickest slab, we were able to dis-
pense with the exponential terms (i.e. , took No and

Nz equal zero) altogether. The values of yz, set at
the beginning of a calculation, were held fixed while

the magnetic field was swept through a range (i.e. ,
while a transmission spectrum was calculated).
Occasionally a sharp feature of no obvious physical
origin would appear in the spectrum [see, for exam-
ple, Fig. 9(a)], but the position and strength of the
feature was sensitive to the choice made for one of
the y&. Changing that y& slightly would remove the
feature [compare Figs. 9(a)-9(c)j, leaving the rest
of the spectrum essentially unaltered. The obvious
procedure (ignore those runs in which a fortuitous
choice of y, has introduced a sharp feature) is
probably the correct one, because the variational
technique asks that the parameters of the calcula-
tion be chosen in the way that makes the transmis-
sion least sensitive to their exact value.
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