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In addition to presenting an expression for the pressure which is valid for all treatments of exchange
and correlation, we derive a new relation for the kinetic energy of the cores which, in the muf5n-tin

approximation, lee&a to an algebraic cancellation of various core contributions to the pressure. Thus,
numerical difficulties associated with total~ergy and pressure calculations are greatly reduced.

INTRODUCTION

Calculations of the total energy and pressure-
volume relation for solids are of considerable cur-
rent interest. In addition to providing a means of
studying phase stability and finding compressibili-
ties, a comparison of predicted and measured lat-
tice constants offers a way of checking the approx-
imations (muffin-tin approximation and approxima-
tions for exchange and correlation effects) used in
most energy-band calculations.

Two contributions are made in this paper. In
Sec. I, we show that Slater's derivation of the
expression for the pressure can be generalized to
apply to any treatment of exchange and correlation.
Straightforward application of this pressure ex-
pression involves serious numerical difficulties
arising from cancellation between very large kinet-
ic- and potential-energy contributions from the
core states.

The main point of this paper is that, at least in
the muffin-tin approximation, the pressure expres-
sion can be rewritten so that this cancellation is
effected algebraically. This largely eliminates
the numerical difficulties usually associated with
these calculations. The muf fin-tin approximation
is discussed in Sec. II, and a new expression for
the kinetic energy of the cores is developed in Sec.
III; this expression can be used to check the ac-
curacy of the core calculation. In Sec. IV, it is
used to simplify the pressure and total-energy ex-
pressions.

I. TOTAL ENERGY AND PRESSURE

U= —2Z g der + + d'r der'
g, Ir-KI

„p(r)p(r') g, y. 1
(3)

where p(r) is the electron charge density,

(4)

[-V~+ V(r)] g, = e, g;,
where

(5)

5U 5E„
5p(r) 6p(r)

p(r )=-2Z~ +, d r
R Ir- I fr-r I

The first term in Eq. (3) is the Coulomb inter-
action between the electrons and the nuclei, the
second term is the Coulomb interaction of the elec-
trons with each other, and the last term is the
Coulomb interaction of the nuclei with each other.

The final term E„in Eq. (1) is the exchange-
correlation contribution to the total energy; it is
defined as the difference between the exact total
energy of the system and T+ U as given by Eqs.
(2) and (3). The general form of this term is not
known, although a number of approximations for
it have been suggested. s'4

Variation of the total energy with respect to the
electron charge density leads to an effective one-
electron Schrbdinger equation of the form

The total energy of a solid with the nuclei frozen
is given by ' (all quantities in atomic units)

E = T+ U+Exc ~

Here T is given by

and

QE
p„(R=—

5 (q

+ p„(r) (5)

where the it), 's are the solutions of an effective one-
electron SchrMinger equation, and the sum ex-
tends over all occupied electron states.

The potential energy U in Eq. (1) is given by

is the exchange-correlation contribution to the ef-
fective one-electron potential.

An expression for the pressure may be obtained,
following Slater, ~ by operating on Eq. (5) with
(r V), multiplying by $V, and integrating over all
space. Using the conjugate of Eq. (5) to reexpress
the term gf (V —e&)(r ~ V)li;, we find
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II. MUFFIN-TIN APPROXIMATION

Using Gauss's theorem, noting that all surface in-
tegrals vanish because the wave functions vanish

sufficiently far outside the crystal, and summing
over occupied states, one obtains

2T = f p(r ~ V)Vdmr . (&)

To obtain an expression for the pressure, one sub-
stitutes Eq. (6) into (7), carries out the differentia-
tion term by term, and identifies the pressure
from the total force on the nuclei. These manipu-
lations are described in detail in Slater's paper, '
and lead to the result

3P& = 2T+ U f p(r—v) p„~d r, (6}

where 'V is the volume of the crystal. This result
is exact and completely general, whereas Slater's
derivation applies only to the Xe method.

A simplification of the exchange-correlation con-
tribution to the pressure can be made for those
cases where the exchange-correlation energy is
taken to be of the form

E„=f pe„(p)d'r . (9)

Among others, this approximation applies to the XQ.

methods and the local-density scheme of Kohn and
Sham. One has

d
P..=

d LP~..(P)jl.=,~-.i ~

dp

The fact that p„depends on position only through
its dependence on the charge density p(r) allows
us to integrate the exchange-correlation term in
Eq. (8) by parts, obtaining

3P'0 =2T+ U 3f p(e„—p-„)dsr . (10)

The Xn method~ has the interesting property that
the exchange-correlation term in Eq. (10) is nu-

merically equal to E„as given by Eq. (9).
The major practical difficulty in the use of Eq.

(10) to obtain pressure-volume relations from en-
ergy-band calculations becomes apparent when we
recognize that both T and U contain very large
contributions from the electronic core states,
which are highly localized around the nuclei. These
contributions very nearly cancel each other, since
the pressure is zero at the equilibrium volume,
and serious numerical difficulties involving differ-
ences of large numbers are thus inherent in the use
of Eq. (10). However, it is possible, at least with-
in the muffin-tin approximation, to isolate those
core contributions to T and U which cancel each
other in Eq. (10), which greatly simplifies the cal-
culation of the pressure-volume relation. Before
exhibiting this result, we first describe the muffin-
tin approximation.

QO=Q —$ mR (12)

is the interstitial volume, and 0 is the volume of
the unit cell. The electron-charge density is taken
to be the same in each of the N unit cells of the
crystal.

The potential energy U given in Eq. (2) becomes

U=N
~

—2ZZ d~r(, p(r)
g & Ir- I

R g g Ir —r'-eel
(13)

where all integrations extend over one unit cell.
These integrals are now broken up into integrals
over the muffin tins, within which the charge den-
sity is spherically symmetric, and integrals over
the interstitial regions, where the charge density
is constant. For crystals of cubic symmetry (and
others of lower symmetry, provided the unit cell
is not too anisotropic in shape), angular integra-
tions of quantities such as t r -RI give simply
IXI '. Using this result, and adding and subtract-
ing pp from the charge density inside the muffin

tin, one can eventually put U into the form

u= U/N= —6mZ rp(r) dr+2(4m)
J)

iR
x drrp(r) dr'r' p(r')

+p 4p

2--'C +~'
2 a

(14)

where a is the lattice constant, and C, which is a
different constant for each crystal lattice, is given
by

4was 02A
C=

Ap 2'
6Q+4QO (R'Im

5 ~a I
(15)

The constant A, defined by

A 1 Pd~r ~ 1-Z—
a Qg r R

(16)

can be evaluated for any lattice by the Ewald meth-
od; values for A for the cubic lattices have been
given by Coldwell-Horsfall and Maradudin, ' and
the resulting values of C are given in Table I.

In the muffin-tin approximation, the electron
charge density in each unit cell is replaced by its
spherical average within the inscribed sphere (the
muffin tin, of radius R) and by a constant po in the
interstitial region between the inscribed sphere and
the unit-cell boundaries. To ensure charge neu-
trality,

Z ~g=ppQO=Z 4m f rmp(r)dr

where
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Lattice

se
bcc
fcc

2. 8372976
3.639240
4. 5848756

3.1166857
4. 085521
4. 8320664

TABLE I. Values of A from Ref. 5; values of C from
Eq. (15).

However, another expression exists for t,. It is
obtained, just as in Eq. (7), by operating on the
Schrhdinger equation for a core state with (r V), .

multiplying by gf, and integrating over the unit
cell. Integrals involving core states taken over the
surface of the unit cell will vanish, because the
core states have negligible amplitude there, and
we have immediately

The one-electron potential in each unit cell which

results from varying U+E„with respect to the
charge density p(r) is

2t, = pcr r V Vd r
R

=4m I r'p (r) —dr .C (20)

0, r&R;

2Z +9~, ]
r') -p(r')dr'

Er

+ Sv' rp(r) dr
~o

+ C '"' + p„(r)+Out

—p,„,(p,), r &R .
This is exactly the same as the muffin-tin potential
which would have been obtained from the charge
density using the method of Slater and de Cicco.

Note that

(r V}V=r = —-av r p(r )drdV 2Z I2 P'

dr

Equations (19) and (20) furnish a fairly stringent
test of the accuracy of the core-state calculation:
it must be true that

Ze, —J„p,(r)V(r) d'r

IV. PRESSURE AND TOTAL ENERGY

A considerable simplification of Eq. (10) for the
pressure results if we use Eq. (20) for t„ instead
of Eq. (19}, and evaluate the potential energy u
from Eq. (18). If we use the subscript v to denote
the valence contributions to all quantities, we have

dV j Z2~~3PQ=2t„—4s drr'p„(r) —~ C ™
dr c

+(r ~ V) p„(r), r&,R

so that we can rewrite Eq. (14) as

I
R

+4a i' drr'p(r)
d

(22)

dr r'p(r)(r. ~)v(r)
~o

+4v ~ «r'p(r)(r &) p( )r
dp

Z2
Oil%

6

The integrations in this expression go out to just
inside the muffin-tin radius, and so do not include
any contributions from the discontinuity in V(r)

yhe use of Eq. (20) for t, results in an algebraic
cancellation of part of the potential energy u, so
that the quantities remaining in Eq. (22) are sev-
eral orders of magnitude smaller than I; or u them-
selves. This cancellation essentially eliminates
the numerical difficulties ordinarily associated
with pressure calculations.

A final practical expression for the pressure is
obtained by inserting

III. CORE STATES t„=De„-J„p„(r)V(r)d'r (23)

%e define a core state as any state which is lo-
calized around the nucleus and has negligible am-
plitude at and beyond the muffin-tin radius. The
usual method of obtaining T for the core consists
in multiplying the SchrMinger equation, Eq. (5),
by P for each core state, integrating over the unit

cell, and then summing over all core states:

~2
OQt

2 u

&p
drrp„(r) „[r'V(r)]

into Eq. (22), and integrating the term involving
dp„/dr by parts:

t, = TJ'N=Qa, —f p, (r)V(r) d r,
where p,(r) is the core charge density.

(19) 32m~ l~xc(po) —Axe( po)]

—4''p(Z) [e„,(R) —q..(ff)] . (24)
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For a given one-electron potential V(r), this ex-
pression involves only the valence-state energies
and the valence charge density; the core states
enter only through their contribution to V(r).

Liberman~ has also given an expression for the
pressure from which the core states have largely
been eliminated; however, his expression involves
integrals of the valence-state wave functions over

I

the surface of the unit cell, which he approximates
by integrals over the Wigner-Seitz sphere. Equa-
tion (24), on the other hand, involves only a single
integral over the muffin tin, which can be performed
without approximation.

A simplification of the expression for the total
energy also results from using Eq. (20) for t,.
From Eq. (1),

dV s s dV ~
s dp ~ ~ Z

E/N= —2w drr p, (r) +t„—4w drr'drs p (r) +4w drr'p(r) *' ——,C '"' + pa„d r .

Using Eq. (23) for t„and integrating dp, /dr by parts,

dV
E/N = —2w drr ~ p,(r) +Ra„—4w dr r p„(r) [rV(r) ]

0
c dr 0 dr

2 8
——', C '"'+Z, e„(po)+4w drr p(r)(4e„—3p„)—4wR p(R)[e„(R) —p„(R)] .out xc

0
(25)

P (r) (-) (26)

where Y~(r) is a spherical harmonic, and the radial
equation for P, is

dP; (l + 1)P;
dr' r

(27)
dQ,„'+(f+l) ' =(V-~,)P,

Multiply the second of these equations by P, , in-
tegrate over the muffin tin, and integrate P; Q; by
parts to find

4w f VP, dr —w;= —4w f Q, dr .

The advantage of this expression is that the entire
core contribution, which is a major part of the total
energy, is lumped into the first term. This term
can be related to simple integrals over the core-
state wave functions as follows: The potential is
spherically symmetric, so the core-state wave
functions have the form

I

Now sum over core states, and compare to Eq, .
(2l):

R

Zw, -4w r p,(r) V(r)dr
0

=2w dhx p (r)—dV
dr

=4wZ I Q, dr . (2S)
i 0

Thus, the core contribution to the total energy per
unit cell, the first term in Eq. (25), is

dV—2wJt drrop, (r)
0 dr

R
= —4wg Q, dr .

i 0
(29)

Use of Eqs. (25) and (29) make it somewhat easier
to find the total energy to the necessary accuracy.
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