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%e preent here a calculation of the energies and the polarixations of the surface phonons in a
~»~tie case: a (001) surface of a fcc crystal covered with a C(2X2) monolayer [experimental case of
Ni(100)+SC(2&2) for instance). The method, derived from a former calculation by Nazis and WnIIin

on the clean (001) surface of a bcc crystal, is applied to any type of C(2X2) monolayer: reconstructed,

nonreconstructed, and P(1&1) structure. The results are given for the waves propagating in the [100]
direction. A correspondence between the spectra of the P(1X1) and reconstructed C(2X2) structures is

demonstrated. For C(2&2) structures, the low-wave-vector phonons depend m~tnly on the bonds

between adsorbate and substrate atoms. The high-wave-vector phonons depend, iu addition, on the

bonds between the adsorbate atoms. In particular, a clear-cut test is provided for deciding between the

reconstructed and nonreconstructed C(2X2) structures.

I. INTRODUCTION

Important improvements have been recently ob-
tained in the knowledge of the vibrational proper-
ties of the surfaces, both in the experimental and

theoretical fields. Infrared absorption spectros-
copy, long used for determining the vibrational
frequencies of various species adsorbed on sub-
strates exhibiting an important surface-volume
ratio, has been extended to the cases of monocrys-
talline and polycrystalline substrates. SLow-

electron-loss spectroscopy has been successfully
applied to the clean surfaces of Zno (0001) and Si

(ill), ~ and to some adsorbed monolayers. Very
recently, the analysis of the scattering of helium
atoms of thermal energy has allowed to determine
the dispersion curve of the Rayleigh-type surface
phonons on LiF (100). Furthermore, the low-
energy-electron-diffraction (LEED) technique and

theory are now sufficiently developed to determine
the crystalline structure of an adsorbed monolayer
in simple cases. Experimental techniques are
thus available for measuring the characteristics
of the surface phonons in the case of an adsorbed
monolayer.

Theoretical work on this subject has been most-
ly devoted, up until now, to the case of a P(1 x1)
adsorbed monolayer. In this case, the adsorbed
monolayer has the same crystalline structure as
the uppermost layer of the substrate. One ean
vary the mass of the adsorbed atoms or the
force constants between adsorbed and substrate
atoms. ' Various crystalline structures for the
substrate have been investigated: {i) simple cubic
with central forces between first and second neigh-
bors and angular forces between first neighbors8;

(ii) body-centered cubic with the same types of
forces; and (iii) face-centered cubic with the same

types of forces" or Lennard-Jones-type interac-
tion. '

The method used for the calculations is general-
ly a perturbation method which implies the calcu-
lation of the matrix elements of the Green's func-
tion for the clean surface. A complete analytic
solution is possible only in the case of a simple
cubic lattice. ~' In the other eases, the authors
use either an expansion formula, only valid for
high-frequency phonons, or a direct numerical
calculation. '1 In this last case, the crystal is
reduced to a finite number of layers. Very re-
cently, the general effects of a reconstruction of
the surface plane on the optical surface phonons
have been investigated. '

It then seems to be useful to proceed further to
real experimental eases. One of the most simple
real situation we intend to study here is that of an
adsorbed monolayer in C(2x 2) structure on the
(001) surface of aface-centered-cubic crystal. A

number of distinct situations are possible: the
mass of a substrate atom; the force constants be-
tween adsorbed a'.oms and between adsorbed and

substrate atoms can be different from the bulk
force constants; the C(2x2) adsorbed layer can be
either a monoatomic layer of foreign atoms [here-
after referred as a nonreconstructed C(2x2) layer
and denoted C(2 x 2)NR] or mixed layer of foreign
and substrate atoms [hereafter refered as a re-
constructed C(2 x 2) layer and denoted C{2x2)R].

A comparison between experimental and theoret-
ical results would allow to determine which situa-
tion is met for any given adsorbate-substrate sys-
tem.
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Since the Green's-function method cannot be used
in a complete analytic way in this case (face-cen-
tered-cubic substrate), we have extended a method
developed by Gazis and %allis in the case of a
clean (001) face of a body-centered-cubic crystal.
In this method, a displacement field is assumed,
of the following form:

(u, v, iv) =K(X, I', Z) exp[-qz+i (k„x+4„y-&ut)],

which must be compatible with the atomic equations
of motions in the bulk and at the surface. (z de-
notes the direction normal to the surface. ) At a
given snt of &„k„, and &o, the compatibility im-
plies a certain value for q. If q is purely imagi-
nary, the displacement field corresponds to a bulk
wave. If exp(-q) is real positive (negative), the
displacement field corresponds to a Rayleigh (al-
ternating Rayleigh) wave. If q is complex, this
corresponds to a generalized Rayleigh wave (the
displacements are a product of a sinusoidal and a
decaying exponential function). This method has
the important advantage to give, in addition to the
dispersion curves, the polarization and the atten-
uation factor of the surface waves.

In Sec. II, we will describe the model we have
adopted for the crystalline structure and the force
constants. In Sec. ID, we discuss some general
properties of the model. In Sec. IV, we develop
the equation necessary for the calculation. The
results and discussions are given in Sec. V.

II. DESCRIPTION OF THE MODEL

A. Crystalline structure

As already mentioned above, various types of
C(2x 2} adsorbed layers have been recognized ex-
perimentally. ' %e have then adopted for the crys-
talline structure of the surface, a very general
model able to describe each particular system.
In Fig. 1, we give a top view of the (001) surface
of a fcc crystal covered with the most general type
of a C(2 x2) layer. The crystal atoms are arranged
in a square lattice. Qn this lattice, two types of
atoms, A and B, are adsorbed. TheA atoms, for
instance, because of their radius, cannot get clos-
er to one another than building up a square Lattice
M2XM2 greater than the crystal one, and rotated
by 45'. This constitutes a C(2x2) lattice. The B
atoms are inserted in the vacancies of the A lat-
tice; this implies that they build up another C(2x 2)
lattice imbricated in first one. For sake of sim-
plicity, the adsorbed layer is assumed to be pla-
nar, i.e. , we assume the length of the bonds A—
crystal and B-crystal to be equal. Furthermore,
the distance —,

' d between the adsorbate plane (n = 0)
and the first substrate plane (n = 1) is assumed to
be equal to the spacing —,'a between the substrate
(001) planes. These translations of the atom posi-
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FIG. 1. Crystalline structure of the Ni(100} surface
covered with the most general type of C(2x 2) monolayer.

tions from their actual ones, provided that they
are small, are equivalent to a simple normaliza-
tion of the force constants between the atoms in
the n = 0 and n = 1 planes. As the adsorbate plane
contains two distinct types of atoms, the atoms in
the n = 1 plane must be considered of two different
types, C and D, defined by their different sur-
roundings.

As can be seen in Fig. 1, we can describe each
experimental situation by an appropriate choice of
A and B atoms. If the B atoms are suppressed,
we obtain a nonreconstructed adsorbed layer, de-
noted C(2x 2)NR: this is, for instance, the exper-
imental case of ¹i(100)+NaC(2x2). If 8 atoms
are crystal atoms, we obtain a reconstructed ad-
sorbed layer, denoted C(2x2)R: this is for in-
stance, the experimental case of ¹ (100}+OC
x(2x2). ' Recently, King has proposed a de-
composition of the CO molecule in the W (100)
+ COC(2 x2) system. If the same decomposition
occurred on ¹i(100) this would correspond to the
case where A is a carbon and B is an oxygen.
Finally, if we assume A=B, the adsorbate plane
reduces to a P(1 xi) lattice; this case is less fre-
quently observed but it allows us to compare our
results with previous workv ' and to better under-
stand the effect of reconstruction on the surface
phonons. "

The Brillouin zone corresponding to the crys-
talline structure of Fig. 1 is given in Fig. 2 where
the projection of the bulk Brillouin zone on the
(001) surface is compared to the P(1x1) and
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in the two cases. This general property is inde-
pendent of the type of interaction between atoms.
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FIG. 2. Brillouin zones for the surface waves in the
P(1x1) and C(2 X2) cases compared with theprojectionof
the bulk Brillouin zone. The hatched areas are the irre-
ducible parts of these Brillouin zones.

C(2x2) Brillouin zones. The hatched areas are
the irreducible parts of these Brillouin zones.
This means that each surface mode in the P(1 x1)
ca,se is obtained when its vector (k„k, ) is con-
tained in the I'ZX area. In the C(2x2) case, (k„,
k,) can be restricted to the double-hatched area
limited by I'X, I'Z, and the k, = m/a axis. A gen-
eral property of the surface modes in the two cas-
es can be deduced from the symmetries of the
Brillouin zones. If we consider the particular case
where A. atoms and B atoms are nearly identical,
the C(2x2)R structure tends to a P(1 x1) structure.
Each surface mode for the P(1xl) structure with

a wave vector lying in the double-hatched area will
be a surface mode for the C(2x2)R structure with

the same wave vector. Furthermore, for the
C(2x2)R structure, the points E„E', and Ea are
equivalent (E, and Em are deduced from each other
through a reciprocal-lattice vector, E, and E' are
symmetric with respect to the k„= 0 axis). Then,
to each surface mode associated with Ez will cor-
respond a surface mode of the same energy asso-
ciated with E'. As E' and E2 are symmetric with
respect to the k„=v/a axis, if we get n branches
for the P(1 x1) structure, the n branches deduced
from the first ones by symmetry with respect to
the k„= w/a axis will be also surface modes for the
C(2x2)R structure. In other words, if we obtain
n branches for the P(1 xl) structure, they will
correspond to 2n branches for the C(2x2)R struc-
ture. These 2n branches can remain surface
modes but can also fall, through the symmetry,
into bulk bands and become virtual surface modes.
This point has already been noticed by Dobrzynski
and Mills; it will be extensively discussed fur-
ther. For now, let us simply note that, as the
C(2x2) Brillouin zone is half the size of the P(1xi)

By restriction to small atomic displacements,
the interactions between the atoms can be de-
scribed as harmonic potentials. The force con-
stants of these harmonic potentials will constitute
with the masses of A and 8 atoms the parameters
of the calculation. We will restrict ourselves to
the central-type interactions (in the sense of de
Launay between nearest neighbors. The approxi-
mation is necessary to limit the number of param-
eters [seven parameters in the C(2x2)R case in
this approximation, and at least nine in any further
developed approximation]. On the other hand, this
approximation can be quite valid for the bulk modes
of nickel or copper crystals. In fact, the disper-
sion relations for the bulk phonons calculated in
this approximation agree quite well with the exper-
imental data obtained from inelastic neutron scat-
tering, as already mentioned by Clark, Herman,
and Wallis. ' In the case of nickel, the central
force constant n» between nearest-neighbor bulk
atoms is adjusted in such a way that the experi-
mental and calculated maximum frequencies coin-
cide. For nickel nN& N, 3.79x10—— dyn/cm. The
comparison between theory and experiment is
illustrated in Figs. 3(a) and 3(b) for copper. We
have used for the frequencies of the phonons the
reduced quantity 0 given by the equation

0 =(o Ms/2n~s

where is the actual frequency of the phonon and

M„ is the mass of a bulk atom.
In the low-energy range the validity of the cen-

tral-force approximation can be tested on the elas-
tic constants of the material. In this model, we
have the following relations:

Cll = 2 a Jfs/a, C44 = C12 = aNAI/a

In the case of the nickel, with n„& „&=3.79X10
dyn/cm, the calculated elastic constants are, re-
spectively, 13, 12, and 28% different from the ex-
perimental data. In the case of copper, the force
constant has been adjusted to the maximum fre-
quency: ac„c„=2. 72x10 dyn/cm. The calculated
elastic constants C», C44, and C» are 11, 1, and
38% different from the experimental data, . From
a general point of view, considering the above re-
lations between n», C», C«, and Cfgp a neces-
sary condition for the validity of the central-force
model is C&,-—2C44. From the experimental data,
one can see that only nickel and copper in fcc crys-
tals and iron in bcc crystals fit this condition.

If we than adopt the approximation of the central
forces between nearest neighbors, in the case of a
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FIG. 3. Comparison between the experimental dispersion curves tNicklow et aE. (Ref. 20)] and the calculated ones (in
the approximation of central forces be@veen nearest neighbors) for copper. We have used for the frequencies the re-
duced quantity 0 (see the text). The reduced wave vector p is given by the equation p =kn/&, where n is the lattice con-
stant. (a) Waves propagating along the [1001 direction; (b) waves propagating along the f&10k and t&ill directions.

C(2x2)R adsorbed layer, we will have to take into
account the following force constants: e» between
type A and B atoms, and, in the same notation,

By referring these con-
stants to the bulk constants, we finally get the fol-
lowing reduced set of parameters:

reduced masses

p~ =M~/Ms& ps=Mes
reduced force constants

Pcs = o'xs~o'ss Psu = +ss~+ss

PkA +AA~+sst PBB +ss~+JIJV

lt must be noted that P~ and Pss are next-nearest-
neighbors force constants in the sense of the bulk
distances, and should be neglected in our nearest-
neighbor approximation. Nevertheless, these
constants are necessary to describe the bonds in
the adsorbate plane, especially in the case of
C(2x2)NR (suppression of B), where pzz remains
the only force constant in the adsorbate plane.

HI. GENERAL PROPERTIES OF THE MODEL

From the symmetry of the crystalline structure
of the model, we can deduce two general properties
of the atomic vibrations, which are independent of
the force-constant model adopted.

First, the crystal has the "axial inversion sym-
metry" (each atom lies on an axis, normal to the
surface, such that a rotation of j.80' about this axis
carries every atom in the crystal into a position
formerly occupied by an equivalent atom). This

implies I that the displacements of each atom, for
a given vibration mode, are situated on an ellipse
which has one axis perpendicular to the surface
and the other parallel to the surface. Further-
more, the plane containing the normal to the [001]
surface (i. e. , the [001]axis) and the [100]axis is
a "complete reflection symmetry" plane~~ (a re-
Qection through this plane carries every atom in
a position which was formerly occupied by an

equivalent atom). This implies a "partitioning"
into two classes for the surface modes with a wave
vector (k„, k„) parallel to this plane: one class of
modes polarized in the sagittal plane, i. e. , the
plane containing the [001]and [100]axis (two-thirds
of the modes) and another class of modes polarized
along the [010)axis, i.e. , of pure shear-horizon-
tal waves (one-third of the modes). The same
property is found for the [110]direction in the
P(1 x1) case.

Another important pr operty of our model is re-
lated to the type of interactions retained for de-
scribing the elastic energy of the crystal. In this
central-force approximation, as the elastic energy
depends only on the relative distance between near-
est neighbors, the expression is unaffected by a
rotation of the crystal as a whole. In other words,
the force-constant model has rotational invariance,
which is a necessary condition for obtaining the
correct dispersion relations in the long-wavelength
region. " This rotational invariance is obtained
whatever the masses and the force constants are
in the surface region.

Finally, the maximum number of surface modes
can be determined for each case of surface crys-
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talline structure. In the case of P(1xl) monolay-
er, if Nis the number of atoms in a (001) plane,
2N atoms (plane n = 0 and n + 1) have a neighborhood
(in the sense of nearest neighbors) distinct from a
bulk atom neighborhood.

Consequently, 3 x 2X surface phonons wil 1 ap-
pear . This will correspond to six branches of sur-
face modes in the Bril 1ouin zone . It must be noted
that this number is an upper limit of the number
of surf ace branches . In fact, for a given set of
parameters, some of the surface branches can be
located inside the bulk bands . In this case, they
correspond to virtual surface modes. As already
discussed above, the C(2 x2)R structure will have
twice as many branches as the P(1 xl) structure.
The maximum number of surface branche s in the
C(2 x 2)R structure will be 12 associated with four
types of atoms (A, B, C, D) distinct from the bulk
atoms. In the C(2x2)NR case, three types of
atoms (A, C, D) remain, corresponding to a maxi-
mum of nine surfaces branches, divided into real
and virtual surface modes for a given set of pa-
rameters.

IV. EQUATIONS AND METHOD OF CALCULATION

A. Two types of bulk atoms

Before developing the equations, it is necessary
to examine in detail the distinction introduced by
type-A and type Batom-s between the substrate
atoms. Let us consider the plane n = 1. One type-
C atom has two A atoms and two B atoms as near-
est neighbo rs . The interactions involved with the
A atoms are directed in the plane defined by the
[100] and [001]directions, associated with the force
constant e„„.The int eracti ons involved with the
B atoms are directed in the plane defined by [010]
and [001]direction, associated with the force con-
stant +» . In the case of D atoms, the roles of
and B are exchanged. It is to be noted that type C
and type D build up a C(2 x 2) R lattice which can be
formed by translation from the adsorbate plane.
One possible translation, which carries A onto C
and B onto D, corresponds to the vector

A I + ] Aax+-, az

z is directed towards the inside of the crystal .
The same considerations can be applied to the

atoms of the plane n = 2 where we have also. two
types of at om s C and D obtained from the C and D
atoms of the plane n = 1 through a translation of t.

)l z

~ Type C atoms

o Typ e 9 otoms

FIG. 4. Bulk unit cell for the fcc crystal in the case
when the bvo types of atoms C and D are distinguished .

Then, from plane to plane, the distinction applies
to every bulk atom . The crystal must be divided
into two sublattic es C and D. As these sub 1attic es
are built up by means of t, the atoms of one type
are contained in planes parall el to t, i .e ., in the
(010) planes, two adjacent planes containing atoms
of different types. This is illustrated in Fig. 4.
The unit ce11 for the subl atti ce of type C atoms is
shown in Fig. 4. It is built up on the vectors 5„
S0, S0 and is a rectangular prism.

A quarter of the corresponding Brillouin zone
[a rectangular prism with the following dimen-
sions: (0 2 2v/a, W2 2v/a, 2v/a)] is shown in Fig.
5 inserted in the Bril louin zone of the nondi fferen-
tiated crystal .

B. Equations of the movement

Since the interactions are limited to the nearest
neighbors the atoms in the planes n ~ 2 are "bulk "
atoms The atomic di spl acements in the bulk and
at the surface are then described by the fol lowing
set of equations: (i) six equations for the plane n
= 0 (type-A and type-B atoms); (ii) six equations
for the plane n = 1 (type-C and type Datoms). -(iii)
six equations for the planes n = 2 (type-C and type-
D atoms). If u~, v~, 00~, denote the displacements
of a type j atom along x, y, and s and if I, m, n
label the equi librium position of this atom with re-

spect

t to x, y, z, the equations have the following
form:

for the type -A atoms:
B B

N/™NS&~1 in, 0 +AA &~l ~ I, s ~ 0++1-0,m, 0 ~ l, m, 0&+ 0 &Ae ~algal, m+1, 0+ni-l, m-1, 0+ 1-lcm-1s0+ ~lol, m-1&0 & n1, m, 0

C ~ A,+ ~l+1, m+1~0 41,a-1~ 0+ vl 1,m 1~ 0 +1 1~ Sl+1,0)+ 0 YAM 1 1+1~m, 1+s1 lissy 1 2 Iiai0
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p~ (Mii/Qriri) rri m o= [Eq (1) with ir» 5~ l» mr C» D]
1 I C C D

pX (~rrirarrrr) rrr, mO = a Parr ( rOr«i m 1+m~i, m+i, r+ rOr- r m r+ rrrr, m i i 4 +i,mO

C C+ rrrr+r, m, i —Nrr-r, m, r] (1)

(2)

+ ging+i, yg, 1 Mg i,gnai+ g ate+is&

ira=[Eq. (1}with A 8, C D]

r'ra=[Eq. (2) with A 8, C D]

r'rirr=[Eq. (8}with A 8, C D]

for type-C atoms in the plane n = 1:
g ~«C 1 n / A D D(~rri+rrrrr Slim, l a pkrr &Sr+i, m, O+Sl i, miO Srym, r+ ~i 4mIO ~r+ipmyOI+ a iur+4m+l, i+Sr limni, i+Sr l, m i, i

(8)

(8)

+ egg+i, e-1,,1++i+1,m, I+gag-iaeoaa @gaeoi+ g+ioe+1, 1 &g+iae-iai+ ~g-1&m-iai

D C C—rrr-r, m+r, i+rrrr. i,m, a ror-r, m. a)

i-C 1 I B B C 8
(~ri~&rrrr) rrr, m, i= a pirrr (rrr. m+r, o+&r.m-4o 2 r. r, mr~+.r-m~ or rim+i ~ o}+a ("i+rlm+4i+++i~m-i i

D D D D
g~iogg 1,1+g i,~+ioi+ ~goyg+ioa+ ~gontmioI gomo1

D D D D D
+rrr+1, m+4r sr+i, m i, i+sr i,m i, l rrr 1,m+1, 1+r, +r, ma ror, m i, a)

(~rrirarrrr) rrrr, m, i = a pari (r«&+i, m, O+ir'r-i, m, O 2 rr'r, im+rrr i, O m-rrr+r, m, O)+ a pirrr (rrrr, m+r, O+ rrrr, m-r, O rOr, m, i
C C D+~i,m-r, O ~i, m+i, O)+a ( irr+r,r,ma+rO- r,r.ma+rr, rr+m, ra+~i, -m, r-a4 rr,rr,mi

r+l, m, a sr-l, m, a ~(,maria &r, m-i, a)

for type-D atoms on the plane g= 1:

uir=[Eq. (7) with A 8, C —D]

iirr =[Eq. (8) with A 8, C —D]

rrrir=[Eq. (9) with A 8, C D]

for type-C atoms on the planes g ~ 2:

i'rc=[Eq. (7) with A C, 8—D, P=1]

rrc=[Eq. (8) with A C, 8 D, P=1]

rrrc=[Eq. (9) with A C, 8 D, p= 1]

(8)

(10)

(ll)
(12)

(18)

(14)

(18)

for type-D atoms in the planes n~ 2:

rrir=[Eq. (10) with A C, 8 D, P=l]
'r'rir =[Eq. (11)with A C, 8 D, p= 1]

roir=[Eq. (12) with A-C, B-D, P=l]

(18)

(1V)

(18)

If we try for the displacement fieM the following solution:

-( i, ,„, rr, ,„,„, io, ,„,„)=(U~, V, Wr) expi[ ,'k„la+ —,'k„—mri+ah, nu —ort]

the bulk equations [(IS)-(18)]reduce to the matrix system

A B t'

—2+ cosy„cosy»

A=i 0

—sing„sing»

—sin@„sing»

0

—2+ cospx cosg»
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—SlIlp» Slnpy

—sing„sing,

cosp» cospy + cospy cosrpg

- sing„sincp,

—sing„sing,

cosp~ cos+I

j=C or D,

0 =&a M„/2n„„, y„= —,'k, a, with r=x, y, z.

With the appropriate change of basis

ds =(1/~2(d +d ), d„s = (1/~2(d -d ),
the matrix system becomes

(~+a o g(s&~

which becomes

(Ds ds =0, D„s Chs =0), with Ds =A+ B~ DAs =& B ~

W

W 2m
a

X
2%
0

It must be noted that D~ is identical to the dynami-
cal matrix D of the nondifferentiated crystal (where
type-C and type-D atoms are identical). The first
equation D~d~ = 0 gives then the eigenvalues and
eigenvectors of D in the first Brillouin zone of the
differentiated crystal. Qn the other hand, it must
be noted that

det ID.s (Ps) I
=det

I Ds (" Ps) I

The second equation D»d» = 0 gives then the ei-
genvalues and eigenvectors of D in the second
Brillouin zone of the differentiated crystal. As it
is shown in Fig. 5, the ensemble of the first and
second Brillouin zone of the differentiated crystal
is effectively equivalent, through the appropriate
symmetries (rotation of 180' around the WLW
axis) to the first Brillouin zone of the nondifferen-
tiated crystal. Every eigenvalue and eigenvector
of D is then effectively given by the system of
equations. '~

By setting (ys &, qs ~, Xs &) as the components
of ds solution of the matrix equation Dsds = 0 (p
being the band index) for a given set of (0, k„, k„)
and (gas ~, q s s, Xs ~) as the components of d„s
solutions of the matrix equation D»d» = 0 under
the same conditions, the atomic displacements
take the following form:

(u', v', w')
3

=~I:lfs..bs.. ns; &s..) e~~&s..
p=1

ws, (q'xs. p Rxs,p &s.y) ~ ~ 4&s.t~

FIG. 5. Brillouin zones associated with the two types
of bulk unit cell. Solid line is part of the first Brillouin
zone of the fcc crystal. Dashed line is same part of the
first Brillouin zone'in the case of the distinction between
C and D atoms, i. e. , when the unit cell is the one given
in Fig. 4. Dot-dashed line is part of the second Brillouin
zone in the case of a distinction between C and D atoms.

(u, v, su )
3

&s,~ (V&s,p ns, p . &s,o) exp& 4s,o
p=1

AA p(psAs, p OAs, p ~AS ~ 0) exp 'f %As pl (21)

with
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Qs p=i (q)„ I+(I()p m+q)ps, pu —(()f) )

(t ss, p
= 1 ((Ipz I + ((pp ~+ q pAs p u &f)

For a given set of (0, k„, k„) the system (19) be-
comes an equation in y, . If q, is real, the dis-
placement field corresponds to a bulk phonon. If

q, is complex, A falls outside the bulk bands. %e
can set e'"&"= g "', with q real or complex.

Following the nature. of q, the displacement field
can be a Rayleigh, alternating Rayleigh, or gener-
alized Hayleigh wave as discussed in Sec. I. For
getting a real surface wave, it is necessary for
the six solutions of (19) [qs p and q» p with (p= 1,
2, 3)] to be simultaneously distinct from a purely
imaginary number, otherwise me obtain a virtual
surface wave.

pi

(u', e~, u)'), ,„,g

y '4s.i 4,~)e*P(-e sr)))'
(22)

=(8 ) ~[As, (Ps,p qs, p &s,p) 'exp( qs, p)
pug

Ass, p (qw ,)s&pa , sos, p) exp ( ques, p)])
(23)

with

Ij&
= 'E((Ipj+ q)&PE —(df )

(u ) '() ) u) }(,~.0=(s } ~~s.p (&s.p) '4.p» "s.p
p1

+z„,, (rp„,„q,,„~,,)), (24)

3

(u, 5 8P)(, , ()= (& )
~
+~s,p (q)s, p Os,p ~s,p

I p-j.

-z„„,( (n„„„~.„)) . (as)

By transporting E(Is. (22)-(25) into (1)-(12), we
finally obtain a linear homogen system of 12 equa-

C. Boundary conditions-method of ca}cuhtion

Assume that, for a given set of (0, k, , k„), the
system (19) gives a real surface wave with six
values q~ p and q„~ p distinct from a purely imag-
inary number. This surface mill exist in the crys-
tal if the displacement field, given by (20) and (21),
satisfies the boundary conditions, i.e. , E(ls. (1)-
(12). In other words, a solution of (1)-(12)must
have the form

(u', v', ps'),

tions with 12 unkllowns (els p, eT~s p, fj, K»
p = 1,2, 3). The determinant 6 of this system must
be null for getting the compatibility of the surface
wave with the boundary conditions.

The method of calculation consists then in the
following steps: at a given set of (k„k,), 0 is
varied from 0 up to a certain maximum in relative
increments of 10 ', for each set of values one cal-
culates 6; when A vanishes, the set (k„, k„, qs p,
q„s p) characterizes a real surface wave. Due to
the size of 6 and the small increment necessary,
a full exploration in 0 for a given set of (k„k„)re-
quires approximately 30 sec on a IBM 360-91 com-
puter in the case of a C(2x 2)R structure.

In the case of a C(2X2)NR, one has to set P»
3 8 3=P~~=P~~=0 and to impose g =p =so =0. This

last condition leads to three linear relations be-
tween J8 p and J» p, which, mith the nine remain-
ing equations of movement, still give a 12 x12 sys-
tem for ~.

From (22)-(25) it is clear that the maximum
amplitude for the displacements lies in the planes
n = 0 or n = 1. This is due to the nearest neighbors
approximation we have retained. In a longer-range
forces model, this maximum could be situated
deeper into the crystal, as mentioned by ALLen,

Alldredge, and de Wette. 's

V. RESULTS AND DISCUSSION

As already discussed in Sec. III, in the [100]
direction (k„=0, 0 & k„& 2v/a) the bulk and surface
modes are divided into tmo classes: one-third of
the modes are transverse modes (hereafter denoted
y' modes), i.e. , with a polarization in the [010]
direction; tmo-thirds of the modesare mixed modes
(hereafter denoted XZ modes), i.e. , with a polar-
ization in the (010) plane. The system (Dsds = 0
D„sd„s = 0) reduces to two e(luations of the first
degree and two equations of the second degree in
A. The'determinant 6 separates into a 4x4 and a
8x 8 determinant. It must be noted that such a dif-
ferentiation into F and XZ modes offers an impor-
tant experimental interest since the 'probe" parti-
cle (photon or electron) can be sensitive to the
polarization of the surface modes.

VFe shall therefore in full detail, the case of the
surface phonons propagating in the [100]direction
for the various structures. Some preliminary re-
sults have already been published. '

A. P(1 x 1) structure

Vfe shall discuss upon the influence of the vari-
ous parameters on the dispersion curves of the
surface phonons. As A and B are identical in this
stx ucture, there remains only three parameters:
(i) the relative mass u„of the adsorbed atoms,
(ii) the relative central force constant P»between
nearest neighbors in the adsorbate plane; and (iii)
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TABLE I. P(l x 1) structure. Computed cases for the

study of the influence of the mass of the adsorbed atom

Value of

. 1
2
0.5
0.25
0.1

Notation

CS
1
2
3

Physical situation

clean-surface case
heavy-atom case
light-l. tom case
light-atom case
light-atom case

the relative central force constant P~ between an
adsorbed atom and its nearest neighbors substrate
atoms (situated in the plane n = 1). A supplemen-

tary parameter p„A will also be introduced for
comparison with the other structures. It is the

relative central force constant between next-near-
est neighbors in the adsorbate plane. In the

C(2x2)R case p„„wiii become p», the central
force constant between nearest-neighbors atoms of
the same type in the adsorbate plane, while P»
will become P».

Tables I and II present the various sets of param-
eters for which we have computed the energies of
the surface modes.

In Table I, while keeping the force constants as
in the bulk

PAN I AA 1 y I AA

we have varied the mass of the adsorbed atoms.
In Table II, restricting to a typical case (g„

= 0.6) we have changed the force constants.

1. General remarks

The results are shown in Figs. 6-10. In Fig. 6,
one can see the bulk bands corresponding to (k„=0,
O~k, & 2v/a). The maximum frequency for bulk

phonons is 0~„=2. As discussed in Sec. IV, the
real surface phonons exist only if they are situated
outside of the bulk bands. In fact, due to the parti-
tioning into X and XZ modes for the bulk and sur-
face modes, the phonons of one class of modes are

TABLE II. P(1x 1) structure. Computed cases for the
study of the influence of the force constants (@A=0.5).

Value of Value of Value of
P~ PAA P'AA Notation Physical situation

influence of PAA
influence of P~
combined influence
of PAA and P~
combined influence
of every P

2s/a

FIG. 6. Influence of the mass of the adsorbed atoms on
the surface modes in the case of a H1x 1) overlayer.
The various sets of parameters are defined in the figure.

orthogonal to the phonons of the other. Consequent-

ly, a surface phonon of the F class can overlap with
bulk band of the XZ class and vice versa. This
particular case is observed in Fig. 6, 9, and 10.

The possible regions for the surface modes are
then, as shown in Fig. 6, (i) the region under the
bulk bands ("acoustical modes" ), (ii) the region
above the bulk bands ("optical modes"); (iii) in the
case of XZ modes, an intermediate region is also
possible: a "gap" in the bulk bands ("gap modes" ).

In order to increase the "visibility" of the re-
sults when the surface branches are very close to
bulk bands we plot in Fig. 7 the difference between
the acoustic Xg branch energy and the bulk band
limit energy on an enhanced scale. In Fig. 8, we

have focused on the gap region. As discussed in
Sec. III, the maximum possible number of branches
is two branches of Y modes and four branches of
XZ modes. The real number of branches depends,
of course, on the particular values chosen for pa-
rameters. In case 3, for instance, we have one
optical F branch (Fig. 6), two optical XZ branches
(Fig. 6), one gap XZ branch (Fig. 8), no acoustical
F branch (Fig. 6), and one acoustical XZ branch
(Fig. 7). We finally get four XZ branches and one
Y branch in this case. In cases 6, 7, and 8, we ob-
tain, for a very narrow range in k around Sv/2a
(Fig. 8), five XZ branches, and one F branch. Al-
though the total number of six possible branches is
not passed beyond, such a number of XZ branches
is in disagreement with the arguments on the par-



3978 G. ARMAND AND J. B. THEE TEN

P (1x1)(001}L100j X Z

&~~ &AA &A'A

3 go 2 2 0.5 1 1 0

I

7r
0

FIG. 7. Acoustical surface modes for various cases
of P(1x1) overlayer. For clarity, instead of &, we have
plotted the difference bebveen 0 and the lower limit
&q~ of the bulk bands at the same k.

titioning of the modes. We have not been able to
explain this disagreement, only met for a very par-
ticular set of k„k„p's, and P's.

Before studying the influence of the various pa-
rameters, we can analyze in a general manner the

types of branches which can be obtained in the var-

ious cases. The starting point is the clean surface:
no 7 surface mode, one acoustical XZ surface
mode, and one gap XZ surface mode (Figs. 6 and
8). When the mass of the adsorbed atoms is in-
creased, the energies of the surface modes de-
crease and vice versa. Consequently, no optical
surface modes will be obtained with pA greater
than unity. The number of acoustical surface
modes will increase and the number of gap surface
modes will decrease towards zero. This is the
case 1 illustrated in Figs. 6 and 8. On the con-
trary, if p„ is lower than 1 and (or) the P's are
greater than 1, optical surface modes will appear.
The acoustical XZ surfaces modes will be very
close to the bulk bands (Fig. 7) and turn to gap XZ
surface modes for large P's (Fig. 8). In fact, the
optical surface modes, having a higher energy than
the bulk modes can be more easily separated from
them experimentally. Furthermore, the experi-
mental cases of C(2x2) monolayers correspond to
pA&1 and p~ 1. Consequently, in the realistic
cases, striking and experimentally interesting fea-
tures will be located in the optical surface modes
region. The following discussions will be mostly
focussed on this region.

A qualitative explanation of the results obtained
in this region can be obtained by using the following
remark: the optical surface modes have a high en-
ergy; this is associated (see Appendix A) with a
strong damping into the crystal. A .crude approxi-
mation is to assume that the damping is so strong
that the atomic motions in the plane n = 1 are very
weak with respect to the ones in the plane n = 0. In
other words Q, v, to, Q, v, gg are negligible
with respect to Q, v", so", Q, v, uP. In this
very strong damping approximation, Eqs. (1)-(3)
take the following form:

A A
O'A g m 0 pAA WQg+i, m+1, 0+Qg~i m+1 0+glori m~1 p+Ql+1 mii 0

—4Ql

A A A a ( n A fist
g+iom+1, 0 l+i, m i, p+ Vl "iom "io0 —Vl i,m+1, 0~+ ~AN~ +Qg m 0&

A A A A A—pA ~~ Vl m 0 I AA &Vg+iom41 p+Vgiiom+i, p+ Vg iom f Q+ Vg+1 m 1 Q 4 Vg m p+Qg+1 m+1 p

A A A a
l 1,m+1o0+Ql i,m~1 0 g+1,m iop~ f ANx —2 Vgomo0) y (2 )

p~ f1 +'i.m, o= P~» (-4ovi, m, o)
I (3')

For a surface wave propagating in the [100]direc-
tion

0 V=[(4p +2p ) —4 p cosy ] V, (2")

(u", v", cu ), o
= (U, V, W) exp (ik„x—i &A) p~ A W= (4 p~~) W (3")

We finally get the system

&~ 0 U=[(4P„„+2P~)—4P» cosy„] U, (1 )

In other words, in this very strong damping approx-
imation, the XZ modes separate into X modes and
Z modes. The X modes are superimposed on the
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1 ~ 7

P (1x1){001)[100j XZ

~AM ~AA ~AA

1 2 1 1 0
2 05 1 1 0
3 0.25 1 1 0
4 0.1 1 1 0

2 0
1 0
2 0
2 1

surface

P (1~1)(001) [100j

p = 0.5
I

~AM ~AA C AA

1.4 /&X
3 6 7 8

I

2m
a

I

n/a

FIG. 8. Gap surface modes in the cases as in Fig. 7.

Y modes, their energy varies as a sinusoidal func-
tion of k, exhibiting a minimum for k, =O and a
maximum for k„=2m/a. The Z modes, on the con-
trary, have a constant energy independent of k„.

The effect of a weaker damping is to couple the
X and Z modes and to induce a "splitting" in the
energy curves. This is schematically depicted in
Fig. 11. The optical surface modes obtained in
case 4 (Ffg. 6), i.e. , in high-energy cases where
the damping is strong, have a form very similar to
the one displayed in Fig. 11.

In fact, when the surface branches get closer to
the bulk bands, the damping gets weaker and the
"splitting" is increased between the two XZ curves.

For k, =2m/a it can be shown analytically that
the Z amplitude is equal to zero. As th6 maximum
bulk frequencies are equal for Y and XZ modes the
surfaces modes X and Y are symmetric. This gives
a common point for this particular value of k„.

2 Influence of the force constants on the optical surface modes

P (1x1)(001) [100]

p, = 0.5

~AM I AA ~A

7 2 2

8 2 2

8Y

2

bulk modes

8XZ

7XZ

FIG. 9. Influence of the force constants P~ and P~
on the optical surface modes in the P(1&& 1) case. Bulk
modes are separated in&& and & classes (see the text).
Due to the different symmetry F branches of surface pho-
nons can overlap &~ bulk bands.

The influence of p,„has just been discussed. For
the following we restrict ourselves to a realistic
case p,„=O.5. In this case, for realistic values of
the P's (between 1 and 3), no acoustical Y mode will
be obtained and the acoustical XZ modes will be
very close to the bulk bands (Fig. 7). The influ-
ence of the parameters will then be mostly visible
on the optical surface modes. Case 2 (p„=0.6,
P~=P»=1, P„'„=0)can be taken as a referencei

bulk modes ( XZ-Y)

I

m/a kx

FIG. 10. Influence of the force constant P~ on the
optical surface modes in the P(1 X1) case. See caption
of Fig. 9 for the destination between bulk bands and pos-
sible overlap of surface phonons branches.
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imp g2 g&
2t AM St AA

0- 2%0
I
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0

FIG. 11. Very strong damping approximation: The
left-hand curves give the optical surface modes in this
approximation. The right-hand curves give these modes
in the approximation of weaker damping.

one gets, in this case, one optical Y branch and
one optical XZ branch (the lower part of the XZ
branch falls into the bulk bands).

The influence of P» can be tested by comparing
cases 2 and 5 (Fig. 9). From (1 ), in the very
strong damping approximation the energies of the
X, F, and Z modes at k, = 0 do not depend on P„„.
We verify in Fig. 9 that the 5Y and 2Y, 5 XZ, and
2XZ branches are superimposed in the region of
low k„'s (long wavelengths). The effect of p„„is
then limited to high k„'s. This can be explained in
the following way: P„„increases the short-range
coupling between the adsorbed atoms. Its influence
is then dominant on the modes of short wavelengths.
We have also represented in Fig. 12 the atomic
displacements associated with a Y mode at k,
=2m/a. It is clear from the figure that P„„has an
influence on this Y mode.

The influence of P» can be tested by comparing
the cases 2 and 6 (Fig. 9). In the very strong
damping approximation, an increase of P~ simply
increases the energies of the optical surfaces
modes without changing the shape of the branches
(the sinusoidal branch keeps the same amplitude
8 P„„/p„). In Fig. 9 we verify that an increase in

P~ induces a general increase of the energy of any
surface mode. This is due to the fact that an in-
crease of p~ reinforces the coupling between the
adsorbate and the substrate. This leads to a long-
range coupling increase between the adsorbed
atoms via the substrate in addition to the short-
range coupling increase between adsorbed and

substrate atoms. Any surface mode will then be
dependent on P~.

The influence of P„'„can be tested by compar-
ing the cases 7 and 8 (Fig. 10). The Y modes are
not influenced (the terms in P~ vanish for the Y
modes). As P„'„represents the coupling between
next-nearest neighbors in the adsorbed layer, the
distance between these neighbors being g in the
[100]direction, the surface modes having a wave-
length of the order of 2g will correspond to anti-
phase motions of these neighbors and will be the
most influenced. We verify in Fig. 10 that 7XZ
and 8XZ branches are superimposed in the k„= 0
and k, =2m/a regions and strongly distinct in the
k„= v/a region. By examining the atomic displace-
ment associated with a XZ mode at k, = w/a, as
shown in Fig. 12, the influence of P„'„ is clear.

As a conclusion on the P(1x 1) case, we can say
that the very strong damping approximation gives
a satisfactory qualitative explanation of the re-
sults. The nearest-neighbor force constants P~
and P~ strongly influence the energies at the opti-
cal surface modes, P~, mostly in the region k„
= 2v/a and with a predominant effect of P~ for all
k„. The next-nearest-neighbor force constant P„'„
modifies the energies of the surface modes mostly
in the region k, = v/a.

B. C(2 x 2) structures

1. Correspondence between P(1 x I) and C(2 x 2)R

The P(1x1) structure can be considered as a
limit case of a C(2x2)R structure where A and B
atoms are identical (p„=p~). When p, „w ps, the
symmetry of the adsorbed monolayer and the cor-
responding Brillouin zone are modified. In the

[100) direction the reduced zone changes from 0
&k, &2v/a to 0&k, & v/a. As already discussed
by Dobrzynski and Mills~ and in this paper (Sec.
IIA), the introduction of new zone boundaries in-
duces the opening of gaps in the surface-modes
dispersion relations and an increase of the number
of surface-. mode branches by folding up of the
branches in the new reduced zone. This corre-
spondence between P(lx 1) and C(2x 2)R is illus-
trated in Fig. 13. The dispersion relations of the
optical-surface F modes obtained in the P(lx1) and

C(2 x 2)R cases with the same set of force constants
are plotted: P~ = P» = P» = 2, P» = P» = 0, and
with distinct masses for the adsorbed atoms p.„
=0. 546, p~ =1 for C(2x2)Rand p„=0.5 for
P(1x I). If p,„and g~ were nearly equal with p„
= 0. 5 the Y mode branch would be curve 7, which
is obtained from the P(1x1) Y mode by folding up
the part k, = v/a to k, = 2v/a on the part k, = 0 to
k, = v/a. The differentiation of the mass p~ opens
the gap in the curve at the point k, = v/a and de-
creases the energy of the modes (p~ is increased).
This leads to curve 5, calculated for the C(2x2)R
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kx=—7T

0

FIG. 12. Schematic explanation of the influence of P~
and P~ on the surface modes. The atomic displacements
associated with the optical surface modes of wave vectors
&/a and 2&/a are represented. In the case k„=2r/a, the
nearest neighbors vibrate in antiphase, P~ has a strong
influence. In the case &„=&a, the next-nearest neigh-
bors vibrate in antiphase, P~ has a strong influence.

structure with p,„=0.546 and p,~ = 1. The same
considerations, though more complicated, can be
made on the XZ modes in the two structures [cases
P(lxl) 8 and C(2x2) 8]~

Because of this correspondence obtained by the
folding up of the P(lx 1) Brillouin zone, a number

of properties of the C(2x2)R structure can be ob-
tained from the discussion on the P(lx1) case. An

important point to notice in this folding operation
is the fact that surface modes in P(1 xl) structure
can be mixed with the bulk bands in the case of the
C(2x2)R structure and then become virtual states.
For instance, the gap modes of the P(l x 1) case
are folded up into the bulk bands in the C(2x2)R
case and then are no longer localized modes. Con-

sequently, in the C(2x2)R case, we can only have

optical and acoustical surface modes.
From the combined effects of the folding up of

the Brillouin zone and the possible mixture of sur-
face branches and bulk bands, we verify that the
maximum number of surface branches in the
C(2x2)R case is 12, since this number is 6 for the
P(lx 1) structure.

2. Influence of the various parameters

We have focused on the experimental case of S
atoms adsorbed on Ni (100). In this case p,„=0.546
and ps =1 [Ni atoms are combined with S atoms
for building up a C(2x2)R structure] ~ The remain-

XZ

P(1~1) 8
C(2 2) 8----

0

P(1~1) 7
C(2~2) 5--—

0

Tt]
kx OO

FIG. 13. Correspondence between the optical surface
modes in the &(1x1) and &(2& 2)R structures. The force
constants are the same in the two structures.

ing parameters are then the nearest-neighbor force
constants P», P», P», and the next-nearest-
neighbor force constants P» and P». The influ-

ence of P~, P~, and P~„ is illustrated in Fig. 14.
Case 1 (P„s =P„„=Ps„=1; P„„=Pss = 0) is given as
a reference. We obtain one optical Y branch, one

optical XZ branch, and two acoustical XZ branches.
All these branches are very close to the bulk
bands.

The influence of p» can be obtained by compar-
ing case 2 (P~=2, P„s=Ps„=l, P„„=Pss=0) to
case 1. The increase of p» induces an increase
of the energy of each surface mode. Only one
acoustical XZ branch remains. The optical
branches are nearly simply obtained from case 1
branches by shifting upwards. Such an influence
agrees quite well with the observed influence of

p~ in P(lx1) case.
The influence of p» can be obtained from the

comparison of the cases 4 and 5. As can be seen
in Fig. 14, the difference between the surface
branches in the two cases is very weak. This in-
dicates that the B atoms (the "heavy" atoms) do not
influence the surface phonons via their binding with

the substrate atoms.
The influence of P» is deduced from the com-

parison of the cases 1 and 3. The energy of each
surface mode is increased with a more pronounced
effect on the modes in the k„=0 region. Such an
influence corresponds to the effect of P» on the
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c(2.2)(00~) goo]h)
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0
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C(2~2)(00'}) ['}00]XZ R
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buik mod~es
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FIG. 14. (a) Opti. cal surface modes in the C(2& 2)R structure for various sets of parameters. (b) Acoustical surface
modes in the same cases as in Pig. (a). In addition, the cases 6-10 (meaning given in Fige 15) are given.

modes in the 0, = 2w/a region in the P(l x 1) case,
since the regions k„=2w/a and k, =0 are superim-
posed in the C(2x 2)R case.

The influence of the constants AA and BBbebveen
next-nearest neighbors is given in Fig. 15. A
typical influence of these force constants is ob-
served on the highest optical XZ branches. The
cases 6, V, 8 and 9 correspond to the same points
in the 0„=0 region. The influence of p» and p»
is only effective in the P, = w/g region. This is
exactly the same result as for the P(1x 1) case.
The comparison bebveen cases 6 and 8 indicates a
very vreak influence of P», as for P~„. In Fig. 15
we have only plotted the XZ branches since the
I' modes are not influenced [as in P(lx 1) case] by

4A and pBB
As a conclusion for this C(2x2)R case, we can

say that the results are in clear correspondence
with these for the P(1x 1) structure B atoms being
heavy, the force constants associated with their
own motions (ps„and p») have very little influence
on the surface modes. The most efficient param-
eter is P», which influences each surface mode.
dt3» is mainly efficient in the k„=0 region, while
P„„acts only on the k„=w/g region. In other
words, the surface modes in the 4„=0 region re-
flect mainly the value of the nearest-neighbor con-
stants P» and P~. The 0„=w/& region yields, in
a complex form, some information on the next-
nearest-neighbor constant P».

&(2w8(001}f1003XZ R

,& 10,
/

/

~«I BatAB tAv ~m
6 1 0 2 2 2

0 1 ~ ~ ~»4
8 1 1 & ~

Q g 1 &e

10 1 1»» n

8~7
, s.---~o

Q ----6 8.68 910
10 7 6

0846
0.27

FIG. 15. Influence of the force constants P~ and Pg~
on the optical surface modes in the &(2x 2)R structure.

C. C(2 x 2)NR structure

Compared to the C(2x2)R structure, the C(2x2)
NR structure corresponds to a loosening of the
bonds in the surface plane since the number of
atoms in this plane is divided by 2.
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rameter has been suppressed, P». Following the
above discussion we ean predict that the k„=0
region will be the most affected.

The influence of the various parameters is il-
lustrated in Fig. 16. The first major result is
the appearance of new acoustical branches. This
indicates a general decrease of the energy of the
surface phonons. Case 1 (P»=l, P»=0, y,„
= 0. 546) is given as a referencei we obtain one
acoustical F branch, no optical F branch, two
acoustical XZ branches, and no optical XZ branch.
The influence of P» is obtained from the compari-
son between cases 1 and 2; we observe a general
inexease of the enexgy of the surface phonons: one
optical F bx anch and one optical XZ branch appear,
close to the bulk bands. P» has no influence on
1' modes (case 2= case 4=case 5 and case 1= case
3 for Y modes). lts influence of the XZ modes is
obtained by comparing the cases 4 and 5; no effect
in the k„=0 region, and a strong effect in the k„
= v/a region.

As a conclusion, we can say that the force con-
stants play the same role in the three structures.
The major feature of the C(2x 2)NR structure is the
decrease of the energy of the surface phonons.
This effect is a little more important in the k„=0
region. If we compare, for instance, the maxi-
mum frequency of the optical surface modes in the
C(2x2)R and C(2x2)NR structures in the equiva-
lent cases 6 and 4, respectively (nearest-neighbor
constants equal to 2, next-nearest-neighbor con-
stants equal to 1), we obtain for k„= 0,

0 ~=2.76 in the 8, structure

0 „=2.24 in the NR structure (23@lower) .
for k, =v/a,

0 „=3.08 in the R structure,

A „=2.46 in the NR structure (20% lower)

In other words, the experimental measurement
of 0 would be a good test for determining wheth-
er a C(2x 2) layer is reconstructed or not.

VI. CONCLUSION

PIG. 16. Surface modes for various types of &(2x 2)NR
overlayers. (a) Optical surface modes; (b} acoustical
surface modes.

A very general consequence will be a decrease
of the energy of the surface modes. The remain-
ing parameters are p,„, P», and P„„. %ith re-
spect to the C(2 x 2)R case, only one relevant pa-

The major differences between the surface
modes in the three structures are obtained in the
optical surface modes region. A crude model, the
very strong damping approximation, gives a good
qualitative description of the dispersion relations.
A correspondence between the spectra of the
P(1 x1) and C(2x2)R structures has been demon-
strated. For a detailed analysis of the influence
of the parameters, two regions have to be consid-
ered. For C(2x2) structures the k, =0 region
gives information on the nearest-neighbors force
constants and mainly on the adsorbate substrate
constant P~. The k, = v/a region is influenced, in
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e-q

kx= 0.95

C(2~2) R

developed can be, in principle, extended to any

type of ordered adsorbed monolayer.

ACKNOWLEDGMENTS

One of us (J.B.T. ) wishes to express his grat-
itude to the D. R.M. E. for financial support. It
is also a pleasure for us to thank Dr. L. Dobrzyn-
ski who suggested and stimulated this work. We

are indebted to Y. Lejay for his great contribution
in computer programming. We thank also C.
Manus, D. A. Degras, and J. Lapujoulade for crit-
ical reading of the manuscript.

APPENDIX A: DAMPING OF THE SURFACE MODES

(1.5

FIG. 17. Damping of the surface modes for various
cases. R indicates a Rayleigh mode, AR indicates an
alternated Rayleigh mode, and GR indicates a generalized
Rayleigh mode.

addition, by the next-nearest-neighbor force con-
stants between adsorbed atoms. These conclusions
clearly indicate the regions of experimental inter-
est. In particular, a measurement of the maxi-
mum frequency of the optical surface modes pro-
vides a clear out test for deciding between a
C(2 X 2)R and C(2x 2)NR structure.

Finally it must be noted that the method we have

Our calculation determines not only the energy
and the polarization of the surface phonons but also
the value of the z component of the wave vector k,
i.e. , k, = iq. When q is real (Rayleigh-type sur-
face mode), the value of e~ represents the damp-
ing of the surface mode, when penetrating into the
crystal. The lower e the higher the damping.
We have plotted the value of e~ as a function of Q

for a fixed value-of k„and k„=0. This is shown in
Fig. 17. It is evident from this figure that the
damping increases very rapidly with Q. Typical-
ly, for 0=2. 5, e~ is of the order of 0.2. This
means that the atomic motions in the plane n = 1
are 20% in magnitude of the atomic motions in the
plane n = 0 and only 4% in magnitude in the plane
n = 2. The very strong damping approximation
seems then to be acceptable for 0~2. 5.
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