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The density of spin-wave states for an amorphous ferromagnetic cher has been calculated by using

the coherent-potential approximation. A comparison with the recent exact numerical calculation of

Huber shows very good ag-~ent even near the high~ergy band edge where the conventional

mean-field theory is found to be inadequate.

I. INTRODUCTION

Recent inelastic-neutron-scattering experi-
ments~'~ at low temperatures have revealed the ex-
istence of spin waves in the linear-chain antifer-
romagnetic (CD~)~NMnC1~ (TMMC). Although these
spin-waves become overdamped and finally disap-
pear at high temperatures, at low temperatures
they are well defined for wavelengths shorter than

the correlation length.
Studies of static and dynamic properties of such

magnetic chains have been reported by many au-
thors. ~ Most recently, Huber~ has calculated the
spin-wave densities of states for disordered one-
dimensional ferromagnetic and antiferromagnetic
chains with nearest-neighbor interactions, by us-
ing Sturm-sequence algorithm originally introduced

by Dean. ' He considered an amorphous ferromag-
netic chain characterized by randomly distributed
nearest-neighbor exchange interactions.

Dean's theory is a nonanalytic theory and the ex-
act solutions for the density of states are obtained
numerically. Recently, Montgomery, Krugler, and

Stubbs~ (MKS) and Foo and Bose~ (FB) have pro-
posed analytic theories for the amorphous ferro-
magnets. The MKS theory is basically a mean-
field theory and is valid only in the weak-scattering
limit. The FB theory is based on the coherent-po-
tential approximation (CPA) which serves as an in-
terpolating scheme between the weak and strong
scattering limits. Both of the theories do not take
into account the local spin fluctuations and the tem-
perature effects and thus are valid only at very low

temperatures. A comparison of the two theories
reveals that the FB theory predicts a critical fluc-
tuation 4, beyond which the ferromagnetic states
become unstable-a result which cannot be repro-
duced by any mean-field theory. However, for the
density of states of a three-dimensional lattice, the

FB theory shows only a minor improvement over
the MKS theory.

For the one-dimensional case, however, one ex-
pects the conclusion to be somewhat different.
Since the density of states of a pure ferromagnetic
chain has a singularity at the upper band edge and

since the MKS theory is perturbative in nature, one

would expect it to be in severe disagreement with

exact solutions near this edge-a conclusion con-
firmed by Huber's calculations. %hen applied to
an amorphous ferromagnetic chain the MKS theory
shows a dip at &o/2' =4 (upper energy edge), and

a spurious peak at qven higher energy. But the ex-
act solution indicates a smooth density of states in

this energy range.
The purpose of this paper is to point out that the

FB theory is more accurate especially for the one-
dimensional system. In Sec. II we shall outline the

FB theory very briefly and discuss the outcome of

our calculation for the one-dimensional case.
II. THEORY AND DISCUSSION

The Hamiltonian for an amorphous ferromagnet
which is approximately represented by the "lattice
model" is given by
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FIG. 1. Distribution of the spin-wave modes in an
amorphous ferromagnetic chain where the fluctuation pa-
rameter 6=0.5 Jo. Energy E is measured in units of Jo.
The histogram corresponds to the exact numerical cal-
culation of Huber for a chain of 50 000 spins. The dashed
line represents our results obtained by using the CPA.
The dotted line shows the results of the MKS theory.
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where J,z represents the nearest-neighbor exchange
interaction, which is assumed to be randomly dis-
tributed between Jo —& and Jo++ where Jo repre-
sents the mean value and 4 the fluctuation from the
mean. In the spirit of the CPA, one can describe
the actual amorphous system by an effective Ham-
iltonian which retains the symmetry of a perfect
lattice, and is characterized by a yet-to-be-deter-
mined coherent exchange interaction J,. Then one
considers a single actual exchange interaction J,&

immersed in such an effective medium, and J,
is determined self-consistently by requiring that
the net scattering from such a single scatterer J,&

must vanish on the average.
The t-matrix elements corresponding to J&& can

be shown to be

(2)

(4)

The value of J,is determinedby requiring (T«) =0,
which leads to

J,=Jo —a + & coth (&/a) (6)

Then the spin-wave densities of states can be cal-
culated via

p(E) = —(I/w) ImGO(E~ J~) (6)

For a one-dimensional ferromagnet, the Green's
functions have the form of

Go= [E(E—4 J',)]

Gg = (1/2 J,)[1 —(E —2J,)Go]

(7)

using (6), (6), and (7) one can calculate the density
of states for the amorphous linear ferromagnet in
the CPA. The MIGS theory can be derived from Eq.
(4) by letting n 0, then

- where Go and G& denote the diagonal and the first
off-diagonal matrix elements of the coherent Green's
function G,. Taking the configurational average of
the t matrix we have

(3)

where

J~ =So+ & /3n„
where a~ is evaluated from Eq. (4) by setting J,=J,.
The criterion for the validity of the MKS theory is
that )am/3a„( «Jo. But at E=4J'~, J„approaches
infinity or l & /3a~l »JO, and thus near this region
the MES theory becomes invalid.

The densities of states calculated via the FB the-
ory is shown in Fig. 1. The result shows that the
FB theory is indeed in good agreement with the ex-
act numerical solution.
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In this calculation the functional form of the exchange in-
teraction has been taken to be J= J() (1-~+ Y), where
Y is a random number between 0 and 1. This functional
dependence is the same as that of Huber except for a
misprint of a factor of y in the third term in Eq. (19) of
his paper {Ref. 4).


