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The problem of incorporating the sects of many-body static spin correlations in excited orbital

crystal-field levels is discussed by introducing the concept of fa correlated efFective field. The resulting

theory has the conceptual simplicity of molecular-field theory and can be used for problems where

excited orbital'crystal-field energies, exchange energies, and thermal energies are all of the same order

of magnitude. Correlations are determined by forcing a consistency with the fluctuation theorem and

the resulting statistical theory is shown to have an accuracy equivalent to that of random-phase Green's

function techniques in the quenched-orbital (spin-only) Heisenberg limit.

I. INTRODUCTION

One of the more difficult statistical problems in

many-body magnetism is an adequate description
of a lattice of interacting magnetic ions for which
thermal energy kT, exchange J, and single-ion
crystal-field splittings are all of the same order
of magnitude. In particular, we think of those
situations for which it is impossible to write a
spin Hamiltonian of concise form. These are pre-
dominantly systems involving magnetic ions with
large unquenched orbital angular momentum.
Thus, for example, a system of ferrous or cobaltous
ions in quasicubic ligand field and with strong
superexchange paths (such as in FeO or CoO)
might constitute just such an example at temper-
atures of the order of (and above) the Neel points.

Such systems, involving a thermal population
of excited orbital crystal field levels, are still
commonly txeated in a molecular-field approxi-
mation. ' The reduction of magnetic interactions
to effective local fieMs has the great mathematical
advantage of reducing the many-body problem to
that of an ensemble of noninteracting effective
ions and, in addition, maintains a simple physical
picture in terms of single ion energy levels and
their perturbation by the local field. In such a
local field fxamework there is no more difficulty
in assessing the effect of exchange on excited
orbital levels than on the ground orbital levels.
The weakness, of course, is the extreme crude-
ness of the molecular field approximation itself
which, by replacing all ions except one by their
ensemble averaged states or, for dynamics, small
deviations therefrom neglects all interion spin
and orbital 8Iatip correlations.

At low temperatures, when it is possible to
ignore any thermal population of excited orbital
levels, it is always possible to construct a concise
spin-Hamiltonian formalism and to pursue spin-
vave statistical methods and the like. 6 For
higher temperatures it is difficult to envisage a
tractable formalism which does not in some manner

retain the concept of a local field. In this paper
we consider the possibility of constructing an
equilibrium theory within a local field framework
(and which therefore contains much of the con-
ceptual simplicity of molecular field theory itself)
which is able to include, in a reasonably sophis-
ticated manner, the impox tant effects of static
spin and orbital correlations. To do this we intro-
duce the concept of a "correlated effective field"
to take the place of the molecular field. This
same concept has been used by the author recent-
ly in connection with problems in the theory of
lattice dynamics. ' The present paper is re-
stricted to a discussion of static properties. The
corx esponding dynamic theory can be generated
by linear-response techniques (in analogy with
that derived for soft lattice modes in Refs. 7)
and differs fxom time-dependent molecular field
theory in the same sense that self-consistent
phonon theory differs from time-dependent Har-
tree theoxy in lattice dynamics.

Advantage is taken of the fact that conventional
molecular field theory violates the fluctuation
theorem. We establish below that static correla-
tions can indeed be incorporated into a local-field
framework and in such a way that merely requir-
ing the resulting theory to obey a rigorous re-
striction imposed by the fluctuation theorem deter-
mines these correlations completely. We expect
the theory to be of greatest value in discussing
the effect of cox relations on excited orbital levels
and in describing disordered but highly correlated
motion of magnetic moments with large orbital
components.

II. THE CORRELATED EFFECTIVE FIELD

For simplicity we shall consider a system of
interacting magnetic ions for which the interion
exchange can be written in a simple diagonal bi-
linear form between real spins 8

x.,=-Z Z Z ~, s,". s,",
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where i and j run over all lattice sites and y runs
over the three orthogonal spatial directions x, y,
z. The total magnetic Hamiltonian is assumed to
be of the form

K=K K, +K... (2.2)

where X, is the Hamiltonian describing the mag-
netic ion at site i in the absence of interion ex-
change J, and includes contributions from intraion
Coulomb and exchange forces, crystal field, and
spin-orbit origins. In addition, we assume that
the eigenvalues E&„and eigenfunctions y&„of X

&

are known and that the energy separation of the
lowest several levels is of order J and kT (at a
temperature T of interest).

Consider a particular site i, selected at random.
The motion of the spin (S,) and orbital (L,) com-
ponents of angular momentum at site i can be de-
termined only by those terms in (2. 2) which in-
volve i explicitly. It follows that only the equations
of motion for spin involve the interactions explicit-
ly. Writing the motion in detail we have

and

L,", = (i/h)[K„L*,] (2. 3)

S', = ((/8)[K„St] —2 Z (J((s(s('- J('(S(s(),
(2. 4)

together with the additional equations resulting from
a cyclic permutation of x, y, z, (where [, ] is a
commutator).

In molecular-field theory, the equilibrium equa-
tions of motion [E(I. (2. 4)], are reduced to single-
body form by approximating all 5& by ensemble
averages (5(). In contrast, we shall introduce
the concept of a correlated effective field by re-
placing each 5( by the sum of two contributions,
one its ensemble average, the other a term pro-
portional to the instantaneous deviation of 5( from
its own averaged position (5P. Specifically we
write (2. 4) as

h"„„=2 Z J,",[(S",,) + a"(S",—(S,"))].
f

(2. 8)

S', = (ijK)[K(, S(] —Z (J((a' —J((a')(S(s(+ S(s()

(2. 8}
together with the cyclic permutations. It is now

possible to establish an effective (correlated field)
Hamiltonian K, (eff) from which the above zero-
field equations result in the formal manner

S", = (ijl)[K', (eff), S",] (2. 10)

It is

Ko(eff)=K(-Z Z J((a"(S(), zero field,

(2. 11)
where A. runs over the directions x, y, z.

In order to exa,mine magnetic response in the
paramagnetic pha. se, we now introduce an infini-
tesimal static applied field h, in direction y.
Taking the susceptibility to be diagonal in the
coordina, te system x, y, z, we put ensemble aver-
ages in directions P. a y e(lual to zero. Using (2. 5),
(2. 8), and (2. 10), we obtain the correlated field
Hamiltonian K, (eff) in the presence of field h, in
the form

Since we have not subscripted o.", we have taken
all lattice sites to be equivalent. In a paramag-
netic phase, for which the formalism is simplest
and on which we shall concentrate in the present
paper, this does not necessarily restrict us to
exchange of ferromagnetic sign and, as is physical-
ly evident from (2. 8), the correlation parameters
will tend to be positive for ferromagnets and nega-
tive for antiferromagnets.

Consider first the paramagnetic phase in the
absence of applied field. Putting ensemble aver-
ages e(lual to zero, using (2. 5) and (2. 8), and

properly symmetrizing to render the observable
8", Hermitian, we find the "correlated-field" equa-
tions of motion

S", = (i/8) [K(, S*,] —S,'h",„,+ S~(h,'„, , (2. 5) K, (eff) = K((eff) —h, ((("

where correlated field jg,"„,is assumed to take the
form

h,"„,= 2 Z J(([(S()+A"(((S"(—(S())), (2. 8)

to define correlation parameters a" (y=x, y, z}
the effective fields can be expressed in terms of
a" alone, e.g. ,

and A, &
are temperature-dependent static correla-

tion parameters of as yet unspecified form. In-
deed we do not need to know their detailed form
since, by writing

(2. &)

(2. 12)-5 2J(,S(((s() —a"(S,")),
with K, (eff) as in (2. 11), and where p signifies
magnetic moment.

Thus, with (2. 12), we have achieved the reduc-
tion of the many-body problem to a single-body
(or rather noninteracting ensemble) form. To do
so, while maintaining a measure of spin correla-
tions, has cost us in general three temperature-
dependent parameters e, e", e, although of
course in any particular circumstance, two or
even all three may be equal by symmetry. We
shall now show, in Secs. OI and IV, that even in
the most general situation with three different
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parameters, they are all determined in an unam-

biguous fashion by forcing a consistency of the

formalism with exact requirements of the fluctua-
tion theorem.

III. MAGNETIC RESPONSE IN THE CORRELATED FIELD
APPROXIMATION

In the paramagnetic phase and in the absence of
applied field, the correlated effective field Hamil-
tonian X((eff) for the ith magnetic ion is given by
(2. 11). Its eigenfunctions y(P„(a) and eigenvalues
EP„(a) are readily calculated (as functions of the
correlation parameters a") for any particular
case. Consider now the application of a static
infinitesimal perturbing field parallel to direction
y. The resulting perturbing Hamiltonian 3C,

' in
the correlated field approximation is, from (2. 12),

I

X(=- h(]((-~ 2J((S([&S(& -a"&S(&]
f

(s. 1)

The resulting perturbed eigenvalues and eigen-
functions to first order of smallness in h(P, &S(P),

&S(P&, are

E,„(a)= E'(„(a)+ (X,')„„, (3.2)

q („(a)= y(p„(a)

+5 (X() ((p( (a)/[E,'„(a)—E', (a)],

where

(x,') „=&q'( (a)i x('i 9)('„(a)&,

(3.3)

(3.4)

and all subsequent subscripted matrix elements
also refer to the unperturbed basis (]p„(a).

The diagonal matrix elements of p,
" in the per-

turbed basis are noir

&q(„(a)~ i((~ q)(„(a)& =(i ()„„+5[(X'()„„(](,t)„„+(i(()„„(X,') „]/[E',„(a)-E', (a)]
m&n

(S. 5)

(S.6)

(3. 7)

Using simple Boltzmann statistics, field-dependent ensemble averages &S(P)„, &L(P)„, can now be obtained
to first order in small quantities. Putting zero-field averages (S",)p, (L",)p, and &i((P&p equal to zero in a
paramagnetic phase, we obtain

kT(S()))= h(&i(( '. S()p+Z 2eP(([&S( &))
—a"(S(&()](S('. S()p,

k T(L( &])
= h( &]( (

' L ( & p +Z 2eP(( [&S( & () a (S( & ])]&St '. L( )p

where, for arbitrary operators A„B„wedefine

(q ' B~) e 5 (q~: Bg)„exp[ —E,„(a)(ex]/2 exp[ —E,„(a)/ep]
N 5

in which

(A(.'B()„=(A()„„(B(}~+kT2 [(A()„(B()~+(B()„~(A()„]/[E( (a) —E(„(a)].

(S.3)

(s. 9)

Using the fact that zero-field averages ( ~ ~ )p are site-independent, we now. Fourier transform (3.6)
and (3.7) with respect to the lattice to obtain

kT(S"(q)),= h(q) &i(, (P: S",),+ 2[J"(q) —a"J"(0)](S (q)),(S", : S,"), ,

k T(L"(q))„=h(q) &i(t: L,"),+ 2[J"(q) —a"J"(0)](S"(q))„(S",:L(p&„
I

in which L"(q), S"(q), etc. are the Fourier trans-
forms of L~&, P&, . .., and where

JP(q) Q J(' f(f ((-()
fag

y,"(q) = &2S"(q)+kL "Ag&„/h(q) .
After a little algebra we find

kTX (q) =
&u t: V(&p+ fP(q)

(3.14)

with q a wave vector. Equations (3. 10) and (3.11)
are readily solved for (S"(q))„and (L"(q))„explicit-
ly.

Writing the magnetic-moment vector (in units
of Bohr magneton)

](. =2F+kK (s. is)
in terms of the real spin and orbital angular-mo-
mentum vectors (allowing for an orbital reduction
k of scalar form), the wave-vector-dependent
susceptibility ]('."(q) now follows directly as

where

2[J"(q) —a"J"(0)]&i(( S,")'.
k T 2[J"(q)—a"J"(0-)]&S,":Sp,

We shall now establish, via the fluctuation theorem
that g g U "(q) = 0. Using (3. 16), this immediately
determines the correlation parameters as

Z q"(q)Pa(q)/2 e"(q)p'(0), (3. )q)

where
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IV. THE FLUCTUATION THEOREM

Consider the exact many-body Hamilton 3C in the
presence of an applied field in the direction y.
It can be written

3C = 3Co —Z p g k ( (4. i}

where ~ is the zero-field Hamiltonian. Introduc-
ing the wave vector q, we can rewrite (4. 1) as

3C=3Co-Z p"(- q)k"(q) . (4. 2)

By definition, the ensemble average &p "(q})„is

&p"(q)&„=Tr[pr(q)e e"]/Tr(e e ), (4. 3)
where

P =1/kT (4. 4)

The wave-vector-dependent susceptibility X"(q}
now follows from (4. 3) by direct differentiation
with respect to h"(q). Recognizing that

g; p"(-q)kr(q) does not in general commute with
the zero-field Hamiltonian, we proceed as follows.

By direct differentiation we verify that

[rir(q)] '=kT 2[dr(q)- a Jr(0)]&Sr, :S",), .
(3. ia}

The equations (3. 1S), (3.17), and (2. 11), the last
of which is required to generate the zero-field-
correlated single-ion eigenvalues and eigenfunc-
tions necessary to evaluate &Sf: S,")o, now close
the problem and allow for the determination of
static paramagnetic properties in the correlated
effective- field approximation without more ado.

The general formalism set out above takes on a
particularly simple form for high-symmetry
situations. An example might be for Coo in its
(cubic) paramagnetic phase. We note from (2. 11)
that for a system which has, by symmetry, J",

&

= J",~= J',
&
=J,~ and e"= e = n'=0. , the correlated

effective-field Hamiltonian 3C~o(eff) differs from
X, by only a constant. This means that local ith
ion eigenfunctions and energy separations are not
functions of o and that the entire self-consistency
problem reduces to a single implicit equation
(3.17) for a.

%Ye now establish the required relationship

g~ U(q) = 0 by a discussion of the fluctuation theorem
in the present context.

and therefore

e =e o
~ e "opr( —q)e "od8

(4. 7)
to lowest order. Using (4. 7) one can differentiate
(4. 3) with respect to k"(q} in straightforward
fashion to find

X"(q) = (f e'"op, "(-q) e '"
go"(q) d8&,

—
P&u

"( q}&—o&~"(q}&o, (4. s)

where ( ~ ~ ~ )o indicates an ensemble average with
respect to the zero-field Hamiltonian, e.g. ,

(4. 9)( ~ ~ ~ )o=tr[( ~ ~ ~ )e ~o]/tr[e ~o] .
In a paramagnetic phase &pr(q)& = 0 by definition

and (4. S) reduces to

X (q}=(f e oP ( —q)e oP (q}d8&o

a result exact to lowest order in field. Summing
over all allowed q values in the first Brillouin
zone of the reciprocal lattice, w~ obtain

& X"(q) = &&f e'"owe e '"'~rd8&o

(4. io)

(4. »)

where there are A magnetic ions in the macro-
scopic lattice. In the corre]ated field approxi-
mation, we now recognize the equivalence of
and 3C(eff) of (2. 11) for calculating ensemble
averages involving a single (ith) magnetic ion
alone. In particular, we can approximate

(f e exo r exo~rd8)-
t

( j ex& en r ex& see -rd8&
Jp

(4. 12)

Using the basis y,„(a) for which the Hamiltonian
3Co(eff) is diagonal, and hence exp[83Co(eff)]
=exp[8Eo, „(a}]is also diagonal, the right-hand side
of Eq. (4. 12) can be expanded and integrated direct-
ly to obtain

(f ex) &ere&
)

e )( fxf) erd8) p(

(4. 13)
where the colon product symbolism has been de-
fined earlier in (3.S) and (3.9). Using (4. 11)-
(4. 13) we obtain finally the required fluctuation
result

8—e~oe ~=eexo Z pr( —q)k"(q)e ~ .8P
(4. 5)

Z kTXr(q)=N&yf: Pf&o, (4. i4)

It follows, to first order in applied field, that
- jQC -gXp

which, together with (3. 15}, provides us with the
relationship

x g+ e~~p p" —q js" q e ~pde
Z U"(q) =0 (4. 15)

(4. S)
which was used in Sec. IH to close the correlated
effective field equations.



MANY-BODY THEORY OF MAGNETISM ~ ~ ~ 3931

V. THE QUENCHED LIMIT AND A CONTACT MTH
GREEN'S-FUNCTION THEORY

x=-ZZz„f, 5, ,
j

with local ion Hamiltonian R, of (2.2) replaced by
a constant, and with local magnetic moment p, ,
=2m„K, =0.

It follows immediately from symmetry that
a' = n" = a' = o. which, in turn [using (2. 11)] leads
to the finding Xo(eff) = constant. One can there-
fore choose a representation for 5', which is dia-
gonal and, using (3.8), obtain

(5. 1)

+

(s" s") = M'=s(s+1)/3 (5.2)

Putting L",=0 and using (3.15) and (3.18), we find
the expression for wave-vector-dependent sus-
ceptibility )f(q) (where superscript y can now be
dropped in view of the equivalence of directions
x, y, z) in the form

3-S(S+ 1)[)t(q)] '=IT- ', S(S+1)[J(q)--ml(0)] .
(5.3)

It follows that the static uniform susceptibility
is given by

In order to obtain some idea of the accuracy of
the correlated effective field approximation and
to put the present method into some kind of many-
body perspective, it is useful to use it to solve
a ferromagnetic problem which is already sus-
ceptible to more conventional techniques. Con-
sider, for example, the simple case of an isotropic
Heisenberg system with fully quenched orbital
angular momentum. The relevant Hamiltonian
ls

[x(q)]
' - [x(o)] ' = -.' [~(0)- ~(q)] .

From (3.15) and (4. 15) we have

(5. 5)

5 x(q) =4s(s+1)/3kT,

which finally, using (5. 5), leads to an equation
relating uniform static susceptibility directly to
temperature, namely

(5.8)

N '&(4[X(»] "2[~(0)-~(q)]] '=S(S.1)/3yy.
(5. 7)

In particular, for the ferromagnetic situation with
positive J', the uniform susceptibility diverges at
the Curie temperature T, given by

~-' Z [z(0) —J(q)]-' = 2s(s+1)/3nr, . (5.8)

Both (5. 7) and (5.8) are results familiar from the
random-phase Green's- function approximation'0'"
for this simple spin-only magnetic situation. %e
conclude that the correlated effective field ap-
proximation is equivalent to random-phase-ap-
proximation Green's-function theory in the (para-
magnetic) quenched- orbital Heisenberg limit.
More generally a closer correspondence is with
the spherical model, an increased accuracy over
the RPA Green's-function theory being evident for
anisotropic exchange and particularly marked for
the Ising limit.

~4s(s+1)[x(0)]-'=ur- —', s(s+1)z(0)(1 —a),
(5.4)

and that correlation parameter a can be eliminated
between (5.3) and (5. 4) to obtain
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