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The specular reflection of conduction electrons is limited, even at an ideal metal surface, by a
mechanism suggested by Price. This process, loosely called umklapp surface scattering, is studied
theoretically in this paper. The grazing-incidence behavior is analyzed, and special singularities in the
reflection coefficients are predicted. The singularities are related in a simple manner to the
Fermi-surface geometry. The results appear relevant to experiments on magnetic surface-state resonance,
the anomalous skin effect, and the thin-film size effect. The umklapp mechanism is interesting especially
because it represents an intrinsic limit on specular reflection which cannot be removed by cleaning and

polishing the specimen.

1. INTRODUCTION

New experimental techniques, such as magnetic
surface-state resonance, ! have revived theoretical
interest in the diffuse and specular reflection of
conduction electrons at metal surfaces. For spe-
cially prepared surfacesof Ga, In, Sb, Bi, Zn, and
even Cu, surface-state-resonance experiments
show that a large fraction of electrons are specu-
larly reflected (at grazing incidence).~? Such spec-
ular reflection is obviously limited by surface
roughness*'® and by adsorbed contaminant or oxide
layers, ®7 but the specular reflection is also lim-
ited by an intrinsic mechanism that applies even at
an ideal metal surface.

This additional mechanism is one in which an
electron jumps to a distant point on the Fermi sur-
face during reflection (while still conserving the
component of its wave vector parallel to the crys-
tal surface). The process may be loosely de-
scribed as umklapp surface scattering.® Originally
suggested by Price, ° the effect was briefly dis-
cussed by Pippard, '° Chambers, ! Greene, ! and
Friedman, '® but apparently has never been studied
in detail. The umklapp mechanism is interesting
especially because it represents an intvinsic lim-
itation on specular reflection which cannot be re-
moved by cleaning or polishing the specimen.

This paper constructs a theory for umklapp sur-
face scattering in a simple situation of high sym-
metry. We show that the reflection becomes spec-
ular at grazing incidence, determine the power law
of this angle dependence, and predict where on the
Fermi surface the umklapp mechanism is most
likely to be observed. For certain crystal orien-
tations, our theory predicts that the reflection prob-
ability will show characteristic singularities re-
lated to extremal points of the band structure.

The umklapp surface scattering is most likely to
be unambiguously detected by surface-state-reso-
nance experiments, for those experiments focus on
electrons of the metal with definite angles of inci-
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dence. But the umklapp scattering may also prove
to play an important role in thin-film resistivity
(size effect) or even quantum-limit behavior in thin
films, as well as for the anomalous skin effect or
other surface-related topics of traditional metal
physics.

To illustrate a specific case, a section of the Cu
Fermi surface is shown in Fig. 1. If a conduction
electron at point A on this diagram approaches the
metal surface, the usual specular reflection trans-
fers it to the nearby image point A’. During this
transition, the component K, of wave vector paral-
el to the crystal surface is conserved. The elec-
tron velocity in state A’ is the reflection of the
original velocity in the surface plane; but the elec-
tron can also jump from A to the distant point B on
the neck of the Fermi surface (again conserving
K,). The velocity at B also points back into the
bulk, but has changed magnitude and direction and
the reflection from A to B is nonspecular. (Al-
though nonspecular, it is not diffuse.) Because of
the anisotropic distribution of necks on the Cu
Fermi surface, electron surface reflection near
point A should be anisotropic with respect to the
plane of incidence. Experimental search for this
anisotropy is feasible with existing surface-state-
resonance techniques. '™

Section II sets up a mathematical description of
the jump-scattering process for an idealized Fermi
surface. General properties of the reflection coef-
ficients are identified by adaptation of nuclear-re-
action scattering theory. The small-angle (graz-
ing-incidence) behavior is determined by a special
negative-angle symmetry.® The grazing-incidence
expansion, and a related discussion of singular
points, is given in Sec. HII. Since the grazing-in-
cidence scattering involves extremal points on the
Fermi surface, it is not surprising that the angle
dependences exhibit a characteristic structure de-
termined only by the Fermi-surface geometry.

In Sec. IV the probability of specular reflection
is formally calculated in terms of Bloch functions
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and a surface boundary condition. The results il-
lustrate and verify the symmetry discussion of Secs.
II and III. It is noted that for a special (unreal-
istic) boundary condition, ¥ =0 at the surface,
there is no umklapp surface scattering.

Stern and Howard, !* in a discussion of semi-
conductor inversion layers, adopted this boundary
condition (¥ =0) to avoid intervalley surface scat-
tering. In fact, intervalley surface scattering is
an instance of the mechanism considered in this
paper, although in the semiconductor case the term
“umklapp” becomes especially inappropriate. ?
Kravchenko and Rashba'® have recently considered
the carrier redistribution among valleys in the
presence of intervalley scattering, but they di-
rected their attention primarily toward electro-
static effects which do not arise in metals.

Section V concludes our discussion and mentions
some applications. The Appendix is devoted to a
wave-packet analysis of the definition of reflection
probability. Although this definition is plausible,
it requires careful discussion because it plays a
basic role in the theory.

II. SURFACE-REFLECTION MATRIX

The analysis to follow is limited to low-index
surfaces which have the full translational period-
icity (parallel to the surface) of the bulk metal.

We shall neglect surface roughness and contamina-
tion effects. If the surface has this translational
symmetry, then the parallel component of the elec-
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FIG. 1. Cross section of the Cu Fermi surface, to il-
lustrate the umklapp scattering process. The crystal is
cut so that the (100) wave vector (K,) is normal to the
surface. Electron states near point A are approaching
the crystal surface from below. Reflection from A to A’
is the usual specular reflection. Reflection from A to
the neck state B is the jump scattering or “umklapp” pro-
cess. In preparing this drawing, the Cu Fermi surface
was assumed to be convex near point A,

tron wave vector is conserved during collision with
the surface, along with the electron energy. '8
The wave vector of the electron changes during re-
flection to one of the points of intersection of the
Fermi surface with the line of constant E,,.

For convenience, our discussion is phrased in
terms of an idealized Fermi surface, shown in
Fig. 2. While very simple, this Fermi surface
still exhibits the most interesting effects; however
the discussion is easily adapted to more lifelike
geometries.!” For the value of K, shown in Fig. 2,
there are four relevant Bloch states; ¢, and ¢, are
Bloch waves approaching the crystal surface and
#, and ¢, are Bloch waves leaving the surface (the
electron velocity is the local normal to the Fermi
surface).

Two independent scattering solutions of the com-
plete Schrodinger equation exist in this case and
these are uniquely specified by their incident wave
parts'®:

\Ili=¢i+§R,,,<5,¢+\I/}°°, i=1,2and k=1,2 . (1)

R, is a reflection coefficient which indicates the
amplitude of the reflected wave J),,; R;, is a func-
tion of -I:Z,, and would also depend on energy if that
were not fixed at the Fermi level. In general the
wave function ¥; contains a part localized near the
surface, denoted ¥}°, which decays with distance
into the bulk. Our attention will focus on the region
far from the surface, i.e., on the asymptotic form
of the wave function, which contains only propagat-
ing waves:

‘1’1=¢1+Rud-’1+31262 s (2)
V= ¢+ Ryyy + Rypfy - 2"

The functions ¢,(T) are Bloch functions of the in-
finite crystal and have the usual form in the region
far from the surface:

6,@) =u,F ekt | (3)

Changes in the Bloch functions near the crystal
surface may be thought to be included in the local-
ized term ¥}° of Eq. (1) and need not be considered
in the asymptotic region. It is convenient to fix

the normalization of the Bloch functions so that
¢,(T) is normalized to a constant on the unit cell
and the constant may be chosen to be unity:

[lo®|2dr=1 . (3"

The wave functions ¥; are scattering solutions
of the time-independent Schrédinger equation, but
it is useful to keep in mind their wave-packet in-
terpretation. If an appropriate superposition is
made of states near ¥,, for example, then one has
a state which begins as a wave packet of type ¢,
approaching the crystal surface, and later is a
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Y, = ¢, + Ryd, + R, $,

FIG. 2. Model Fermi surface chosen to illustrate the
umklapp surface scattering. The Fermi surface consists
of a central electron sphere and also a set of smaller
electron spherical pockets at the corners of the zone. A
representative value of E,, is shown., The inset on the
right shows the wave function ¥, for this case.

superposition of reflected wave packets of types ¢,
and 52 leaving the surface. Since these two re-
flected wave packets have different velocities, they
will separate from each other and there will be

no interference between them in the reflected cur-
rent or reflection probability.

With this wave-packet interpretation in mind, we
define the probability of reflection from incident
state ¢; to reflected state ¢, as the »atio of normal
components of the reflected current density of state
k to the incident current density in state i:

P,=h-3,/a-3, . (@)

The currents are computed from the asymptotic
wave function of Eq. (2); i is a unit vector normal
to the crystal surface. The projection of the cur-
rents onto the normal is very natural because elec-
tron motion along the surface does not by itself
constitute collision with the surface. The defini-
tion of Eq. (4) is an important part of the work of
this section and is further clarified by a wave-
packet discussion given in the Appendix. It is
shown there that P;, is the total probability in the
reflected wave packet of type £ for a normalized
incident wave packet of type :.

If v, is the electron velocity at a point ¢ on the
Fermi surface, the probability P;, computed from
Eq. (2) is
iV,
=

e v; IRfklz ’ (4’)

Pyp=

where again 7 is the unit normal to the surface.

We introduce angles of incidence of the beams mea-

sured between the velocity vector and the surface
plane; 6 is the angle of incidence of beam 1 and ¢
is the angle of incidence of beam 2 (see Fig. 3).
In terms of these angles, Eq. (4') reads

Py = |Rul2 )

v, Sin
- Ly SIng 'Rlzlz s ®)

127y, sinf

M. MORE

l©

v, sinf 2
217 : |Rz1 | ,
v, 8ing

Py = |Raz[2

For a smooth-metal surface, with no diffuse
scattering, an incident electron must appear in
states &'1 and 432 and nowhere else. This implies
that probability is conserved in the sense that

2
2 Pp=1 (=1, 2)
kel

or, explicitly,

Uy sin
1R11‘2+v15m§|R12|2=1 , (6a)

vy sinf

|Rop |2+ 2=—"|Ry[?=1 . (6b)

There is an additional equation implied by proba-
bility conservation, however, and that is

R v, Sing /Ry,\ *
—al 2> fH2) g
Raz +1‘)l siné (Rn_) (SC)

Equation (6c) is required in order that probability
be conserved not only for the incident waves ¢, and
¢, but also for any linear combination of the two.

Another general limitation is imposed on R;, by
time-reversal symmetry:

;R?}anaik . (7)

This equation, like that for the conservation of
probability, applies in the form given only to re-
flection from a smooth surface. In this case the
electron wave equation is invariant under time re-
versal, which reverses the velocities of electrons.
Let it be further assumed that the surface has 180°
rotation symmetry about the unit normal i.!” Un-
der the combined symmetry T of time reversal
and 180° rotation, the incident and reflected Bloch
waves are simply interchanged:

T¢i=¢3i§ Tﬁf’i:‘i)i (=1, 2)

If the electron Hamiltonian has time reversal and
rotation symmetry T, then T¥, is also a solution

FIG. 3. (a) Surface

Riz 2 scattering state ¥ = ¢,
+ R“J)l +Ryydy, with angles
6, & identified. (b) Sur-
face scattering state ¥,
S

=y +R2,d;1 +R22l;52.
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of the Schrddinger equation and so must be some
linear combination of ¥, and ¥,. It is possible to
exhibit this linear combination if one recalls that
time reversal has the effect of complex-conjugat-
ing the expansion coefficients in a superposition:

T¥ =Tdy+RE T, + Ry T,
= 951 +RE G +RE b,

The incident wave part of this expression is R, ¢,
+R¥, ¢,, which uniquely determines the coefficients
in the expansion of T¥, as a superposition of ¥,
and ¥,:

TY¥, =R}{ ¥, +RL Y,
A similar equation holds for T¥,:
TV, =¢,+RY 61 +RE ¢, =Ry ¥V, + RS L,

Equation (7) follows from these two equations when
coefficients of the waves ¢->, are equated. A more
extensive discussion of time reversal and probabil-
ity conservation is given by Blatt and Weisskopf for
the analogous case of nuclear-reaction scattering. !°

A useful formula is deduced by combining Egs.
(6) and (7):

ﬁsz:”! S}ne . @)
Ry v,8ing

If Eq. (8) is substituted into Eq. (5), one finds the
expected connection between the probabilities of
the reciprocal transitions 1-2 and 2-1,

Pp=Py . (9)

This equation follows from probability conserva-
tion and time reversal in the forms (6) and (7),
respectively. Equation (9) expresses the principle
of detailed balance and is a requirement for ther-
mal equilibrium between electrons at different
points on the Fermi surface. 2°

Another symmetry, quite distinct from time-
reversal symmetry, plays a useful role in pre-
dicting the glancing incidence behavior. This ad-
ditional symmetry refers to the extension of the
reflection coefficients to negative angles of inci-
dence.® The argument given in this section is
quite abstract and the reader will find it useful to
examine both the explicit form of R;, constructed
in Sec. IV and also general works on collision the-
ory (where a similar symmetry property appears
in the form of the Jost function representation of
the scattering amplitude or S matrix).? The ef-
fective result of the discussion to follow is the set
of Eqs. (12), which are applied in Sec. II.

The wave function ¥, =¥} considered now as a
mathematical function of the angle of incidence 6,
may be continued to negative values of that angle.
The analytic continuation is never difficult when

an explicit formula for R, (0) is available. The
negative-angle wave-function does notf refer to
electrons incident from the vacuum outside the
metal; indeed the electrons are confined to the
metal at the energy considered (E =E;) for any
angle 6. Rather, ¥} obeys a special boundary
condition which may be understood by following the
changes in ‘I'f,” as 6 is decreased through zero.

The analytic continuation ‘Il‘_lg’ is depicted in Fig.
4 (6 is a positive number). This wave function
consists of a beam ¢, of unit strength leaving the
surface (this term is the analytic continuation of
the original incident beam), a beam ¢, of strength
Ry,(~ 6) approaching the surface (this is the con-
tinuation of the original reflected beam R,,¢,) and
a second reflected beam ¢, of strength Ry,(-6).
In the continued wave function ‘If(_lg), then, beams
¢, and ¢, have interchanged roles with no change
in ¢, (the latter point is amplified below). The
coefficients Ry, (- 6) and R,,(— 6) are obtained by
analytic continuation, but they are also the values
such that \I/‘_l,,) solves the Schrodinger equation.

Thus the continuation of ¥, to negative angles of
incidence has the form

‘I’(_15)= (51 +R11(— 9)¢1+R12(— 9)(52 . (10)

The incident wave part of this expression is
Ry, (- 0)¢, and because the scattering state is
uniquely specified by its incident wave part, the
state ¥4 must equal Ry, (- 6)¥Y.

In the same way the scattering state ¥{2'=¥,,
when continued to angle — 6, becomes

V8= ¢, + Ry (= )y + Rop(= 6), (10"

The incident wave part of this is ¢, + R, (- 6)¢, and
so this must equal ¥‘2+ R,,(- 6)¥{"’. To summa-
rize, the continued wave functions are

‘I’(U=R -0 ‘I’(l)
-6 11( ) ] ’ (11)

‘I’ig)= ‘I’:)Z) + Rz1(" 9)‘1'(91)

Equations (10) and (11) are easily translated in-
to conditions on the reflection matrix R;,(~ 6) by
comparing coefficients of the reflected waves @,.
The resulting equations are

Ry (=6)=1/Ry(0) (12a)
Rj_z(" 9) = Rlz(e)/Ru(e) > (12]3)
RZI(- 9)=—R21(9)/R11(9) N (120)

FIG. 4. Statewf's’ cor-
R, (-8)¢, ¢, responding to a negative
angle of incidence for state
R2(-8) ¢, b1.
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Rzg(— 9) =R32(9) - Rlz(e)Ral(e)/Ru (9) (12d)

This set of equations follows from the assertion
that the analytic continuation wave functions ‘I/(_’;
are solutions of the original Schrédinger equation.
It is quite possible that this symmetry breaks down
in the presence of important spin-orbit coupling
or other velocity dependence of the potential. In
Sec. IV the wave equation is solved with a fixed
(velocity -independent) boundary condition imposed
at the metal surface, and the resulting closed-
form expressions for R;, obey the symmetry given
in Eqgs. (12).

To further clarify the meaning of Eqs. (12), we
note that the reflection matrix is a function of the
electron energy (fixed at the Fermi energy) and of
the parallel wave vector E.,. R, is not a single-
valued function of K, because each fixed value of
-IE,, is compatible with positive or negative angles
of incidence. The change from positive to negative
angle 6 is simply an exchange of labels of beams
¢, and ¢, (while ¢, and $, are unaltered). Ry, has
a branch-cut (as a function of K,) joining the ex-

tremal points where beam ¢, is at grazing incidence.

The values of R;;, on the two sides of this branch-
cut are then linked by Egs. (12); the usual side of
the branch-cut, on which 6 >0, corresponds to the
usual scattering boundary conditions of Fig. 3.

An entirely analogous analytic structure is asso-
ciated with the angle ¢, i.e., with the analytic con-
tinuation of R;, which exchanges labels of beams
¢, and ¢, without affecting beam ¢,. This symme-
try may be analyzed in the same way and gives rise
to Egs. (13):

Ryy(= @) =Ry;(¢) = Ryp()Ry1(6)/Rap(¢p) , (132)
Ryp(= ¢)==Ry,(¢)/Ryp(d) (13p)
Ry (= @) =Ry (9)/Raa(9) (13¢)
Ryp(= ¢) =1/Ryy(0) (13d)

It is also possible to simultaneously exchange 6
with - 6 and ¢ with — ¢. This complete symmetry
inverts the matrix of reflection coefficients, as
may be verified by an analysis like that given in
Egs. (10) and (11):

[R(~6, —¢)];=[R(6, ¢));r - (14)

As shown in Sec III, Egs. (12)-(14) limit the
small-angle scattering in a powerful way. The
symmetries do not make possible a numerical cal-
culation of the reflection matrix (information about
the surface potential is required for that) but they
do yield restrictions on R;, which greatly reduce
the number of free parameters. The resulting ex-
pansion is similar to the effective-range expansion

for nuclear-reaction threshhold scattering, but is
applied here not to the energy dependence but rather
to the angle dependence of the reflection ampli-
tudes.

III. GRAZING-INCIDENCE BEHAVIOR

For magnetic surface state resonance, or for
the anomalous skin effect, the electrons of greatest
interest are those which approach the metal sur-
face at glancing or grazing incidence. It is desir-
able to determine the general nature of grazing-
incidence scattering, and fortunately that case is
primarily governed by simple geometric features
of the band structure. This means that the results
to follow are easily adapted to any metal.

Two general statements will be shown to describe
the umklapp surface reflection: First, the surface
reflection becomes specular at grazing incidence
according to the linear law

P(0)=1-2a6 +2a%6%+--+

where the coefficient @ determines the nonspecular
or umklapp reflection probability for finite angle

of incidence 6 (again measured between the incident
velocity and the surface plane). Second, the coef-
ficient « is largest for electrons at points where
the Fermi-surface radius of curvature is largest
(e.g., for belly electrons in the case of Cu).

Both these qualitative statements are true for
electron scattering from surface roughness, unfor-
tunately. 5 m fact, the nonspecularity coefficient
a for surface roughness scattering depends more
strongly upon the Fermi-surface radius of curva-
ture than it does for umklapp surface scattering.
Thus, unless the surface roughness scattering is
reduced to very small values by special surface
preparation, it seems most appropriate to search
for the umklapp scattering at necks or pocket re-
gions of high curvature.

The umklapp mechanism does have a strong an-
isotropy with respect to the plane of incidence, and
by comparing experiments done on different sam-
ples one may attempt to identify the umklapp sur-
face scattering via this anisotropy. The other pos-
sibility for a clear identification of the umklapp
scattering comes from the singularities in P(6) at
finite angles 6,, which will be studied in this sec-
tion.

The probability P(6) of specular reflection dis-
cussed here is the diagonal probability P;,(6) of
Sec. II. The jump-scattering events should not be
referred to as diffuse scattering, however, because
for smooth surfaces the jump scattering is con-
fined to a definite direction in space (see Fig. 3).

The small-angle expansion of P;;(6) is obtained
by expanding R;; in powers of the angle 6, assum-
ing R,;(0) to be analytic for small angles. The as-
sumption of analyticity is a strong assumption but



9 UMKLAPP SURFACE REFLECTION OF CONDUCTION ELECTRONS 397

is not unreasonable. It is borne out by the model
calculations of Sec. IV and also by the very nature
of Egs. (12). For example, R,,(6) obeys Eq. (12a),

Ru("e):l/Rll(e) ’

and this equation is not compatible with a pole or
other simple singularity at #=0. Thus it is rea-
sonable to assume that R;; is analytic about 6 =0.
A first and most obvious consequence of Eq.
(12a) is that R;,(0) must be (plus or minus) unity.
For electrons inside a containing surface, the neg-
ative sign is correct, and the expansion then is

Rjy(0)==1+a,0 +as6%+..- . (15)
The second coefficient in this expansion is deter-
mined in terms of a, by Eq. (12a);

ay=-%as . (15"
Setting a, = @ +ipB, we conclude that

P,(8)=|Ryy|%=1-2a6 +2a%6% +... . (16)

The coefficient of 62 in Eq. (16) is determined in
terms of the coefficient of 6, and this is a very gen-
eral characteristic of surface scattering which al-
so holds for scattering from fine-scale surface
roughness or from adsorbed atomic impurities.
The relation is weakened to an inequality for a sur-
face with large-scale surface roughness. 58

The reflection amplitude R,,(6) obeys Eq. (12b),

R]_z(" 9)=R12(9)/Ru(é) ’

and in view of Eq. (15) this implies that R, is pro-
portional to 6 for small angles. If it is assumed
that

Ri5(0)=5,0 + 002+« a7
then substitution into Eq. (12b) yields
17"

A connection between b, and a, is also readily es-
tablished via Eq. (6a). Because of the assumed
symmetry of the crystal, one expects that

v,=0v%+0(6%), i=1,2 (18)

1
by==za1b,

$=0¢°+0(6") , (18")
where the superscript 0 denotes the extremal val-
ues. Then inserting Egqs. (16) and (17) into Eq.
(6a), one finds

| b, |%=2av)/v) (sing)® . (19)
The phase angle y associated with b,,

by=|byle™ | (19"

is not determined.
The next reflection amplitude is R,,(6), which
obeys Eq. (12c¢),

_6)=-Bal®)
R21( 9)‘ Ru(e)

This equation is compatible with a nonzero value
for zero angle,

R21(9)2C0+C19+"° (203.)
Substitution into Eq. (12c) yields
a=-za¢0 , (20b)
and then substitution into Eq. (8) gives
0 (in )0
cy= by L2 (8Ine)” (20¢)

41

The final reflection amplitude is R,,(6). The ap-
propriate expansion is

Ryp(0) =dy+di0+ 5+ (21a)
Substitution into Eq. (12d) yields
dy=-3byc, , (21b)

but it is also clear that |dyl %=1 because P,(6)
must approach unity for small angles 6 where Py
=P,, will vanish. Even the value of this unimod-
ular number d, is determined in terms of the phase
angle x of Eq. (19') as

dy=e®* | (21c)

which is verified by substitution of (20) and (21) in~
to Eq. (6b).

All the quantities appearing in the small-angle
expansion are thus parametrized in terms of a, =«
+iB and x. It may readily be verified that the pa-
rametrized amplitudes obey the remaining equa-
tions such as Eq. (6¢c). However, this parametri-
zation does not itself give us any idea of the nu-
merical magnitude of the parameter «.

The value of a, and hence the importance of the
umklapp scattering, can be calculated only by mak-
ing a more detailed model of the surface physics
(surface potentials, boundary conditions, and
“band-bending” phenomena). On the other hand, it
is possible to give an argument to show that the
relative value of « is largest where the radius of
curvature of the Fermi surface is largest.

Although the argument given here is based on the
idealized Fermi-surface model of Fig. 2, it seems
plausible that the qualitative result is generally
valid. The key feature of this Fermi-surface mod-
el is the close proximity of the value of ﬁ,, for
which 6 =0 to that for which ¢ =0. Because of this
proximity it is possible to make a simultaneous
expansion for small values of both 6 and ¢, and
with this expansion one can compare the grazing-
incidence behavior on the two sheets of the Fermi
surface.

If the “belly” electrons (of type ¢,) are at graz-
ing incidence, the angle 6 is small and the specular
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reflection probability is

Py =1~2a6 +2a%6%+...
as was shown above.
ability is

P, =206 - 2a%6%+ ... . (22)

The umklapp scattering prob-

A similar expansion is appropriate about the other
extremal point, where the “neck” electrons (of type
¢,) are at grazing incidence and the angle ¢ is
small. This expansion is

Pp=1-2a"¢p+2a% ¢p%+ ...

2

which defines the expansion coefficient a’ associ-
ated with the extremal point for the neck clectrons.
In the vicinity of this latter extremal point the
umklapp scattering probability is

Py =P, =2a"¢ -2a’2¢%+ ... (22"

If the two segments of the Fermi-surface over-
lap only a little, and the projected extremal points
are close together, then one may attempt a simul-
taneous expansion over the region where both 6
and ¢ are small. This expansion has the form

Py,=2v0¢ —2/%6%¢% + .00 (23)

where y is a new coefficient. Equation (23) is com-

patible with (22) and (22’) if
a=‘y¢0 » a’=‘)’90 ’

where 6, is the value of 6 for which ¢ is zero, and
¢, is the value of ¢ for which 6 is zero [e.g., re-
call Eq. (18")]. If the Fermi surfaces are locally
spherical, it follows from the geometry that

K63 gquhg ’

where K; and K, are the corresponding radii of
curvature. Thus

a/a’ = (K,/K;)''? (24)

and so « is larger than a' if K, > K, (as in Fig. 2).
In this sense the jump scattering is more impor-
tant for electrons at points where the Fermi-sur-
face radius of curvature is largest.

It seems important to qualify this observation
by recalling that the surface roughness scattering
is even more strongly dependent on the local radius
of curvature of the Fermi surface, according to
existing theories of surface roughness scattering.’®
Thus an experimental search for umklapp surface
scattering is more likely to succeed at a point of
small radius of curvature (neck or pocket states)
where the roughness scattering is weaker.

The argument leading to Eq. (24) is very spe-
cialized, but the result is probably more generally
true. The factors 8 and ¢ which led to Eq. (24)
have their origin in the constrained density of
states
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which enters reflection probabilities as in Eq.
(4"). It is very plausible to suggest that these
state-density factors dominate the angle depen-
dence of the reflection probabilities in general.

The picture of surface reflection behavior may
be extended further by examination of Eq. (23).
For values of ¢ less than the critical value ¢, 0
is related to ¢ by

(o) ol -]

(25)
for the spherical geometry of Fig. 2. Inserting
this value into Eq. (23) we obtain the approximation

Pip=20"¢[1 - (¢/po)?] Y2

-2a"%¢2 (1 - (¢/Pg)%]+ - (239
for the angle dependence of P,, in the range 0<¢
< q’)o,

According to Eq. (23"), the umklapp scattering
vanishes linearly with angle as ¢ approaches zero,
but it vanishes with a more dramatic squavre-7root
dependence as ¢ approaches ¢,. There is no jump
scattering for ¢ > ¢, for the Fermi-surface geom-
etry of Fig. 2.

At and near the angle ¢,, electrons on the “neck”
portion of the Fermi surface are coupled, by the
crystal surface, to the extremal states of the
“belly” part of the Fermi surface. This coupling
appears as a square-root dependence of the spec-
ular reflection probability; this singularity is a
threshhold singularity.

Observation of such square-root singularities
would make possible an experimental comparison
of the relative location of two extremal points on
the Fermi surface.

The singularity predicted for the Fermi surface
of Fig. 2 is a sharp narrowing of the surface-state-
resonance (SSR) linewidth (for electrons of type
¢,) when the angle of incidence exceeds ¢, and the
jump scattering becomes impossible. In this case
the grazing-incidence electrons with angles ¢ < ¢,
would be, generally speaking, more strongly (non-
specularly) scattered than electrons of larger an-
gles of incidence. While strictly in agreement with
Eq. (16), this behavior contradicts the spirit of the
trend toward specular reflection at grazing inci-
dence deduced from theories of surface roughness
or contamination scattering. *~7

If the Fermi-surface geometry is slightly differ-
ent, one may find the opposite sort of singularity,
in which the jump scattering suddely becomes pos-
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sible at a critical angle of incidence. In this case,
the probability of specular reflection would be unity
up to the critical angle, and then decrease abruptly
via a square-root law. In this case, the SSR line-
width would not obey the H, H*/®, or H? laws dis-
cussed in the literature.®

IV. SURFACE BOUNDARY CONDITION

In this section the surface reflection coefficients
are approximately expressed in terms of matrix
elements of the Bloch functions and a surface
boundary condition. We do not attempt to obtain
numerical values for R, but rather aim to verify
and clarify the results obtained above from sym-
metry considerations. This is done by showing that
a natural sequence of approximations yields a re-
flection matrix which obeys Eq. (12). The result
also demonstrates that the umklapp process does
not occur if the surface boundary condition is
¥ =0 on the surface plane.

Expressions will be sought for the reflection co-
efficients R, in the scattering state

\I’l(f) = ¢1(-f) +R11$1(F) +R12(52(-{') . (2)

As mentioned in Sec. II, the true scattering eigen-
function contains a term localized near the metal
surface, which was denoted ¥}°°(F) in Eq. (1).
This localized term contains “band-bending” ef-
fects associated with the electrostatic potential of
the metal surface, as well as alterations in the
Bloch functions associated with lattice relaxation
in the surface layers.

During the symmetry discussion of Sec. II, the
wave function was examined in the asymptotic re-
gion (far from the surface) where it was quite
proper to neglect the surface term ‘I/}"c. However,
in the present discussion, Eq. (2) is used even
near the nominal surface plane, and \If}“ will be
neglected as an approximation. 1t would seem that
this approximation is reasonable in metals, if not
in semiconductors.

We consider a crystal which has inversion sym-
metry with respect to some point in the unit cell,
and choose that point as the origin of coordinates.
The coordinate axes are aligned along appropriate
crystal axes, and the crystal surface is normal to
the z direction (z >0 is the region outside the crys-
tal). It is also assumed that the (infinite) crystal
would have reflection symmetry in the plane z=0.

The plane z =0 defines the “surface” in the fol-
lowing sense: it is assumed that all atoms entirely
in the region z >0 are removed, and the remaining
atoms held rigidly in their original positions (omit-
ting lattice relaxation effects). The last layer of
atoms (near the plane z =0) will give electrostatic
equipotential surfaces which extend into the region
z >0, but the effects of this potential (and the work-

function barrier) are described by a boundary-con-
dition function D(x, y), which is the logarithmic
derivative of an eigenfunction on the plane z=0:

¥,(x, 3, 0D, ) =5 ¥,(x, 3, 0) (26)
This eigenfunction, and hence D(x, y), depends up-
on the energy E and the conserved parallel wave
vector K,. Dlx, y) is periodic in the surface plane,
with periods induced by the lattice symmetry.
D(x, y) could also be determined by seeking the
solution of the Schr&dinger equation in the region
2z >0 which has the specified energy E =E, appro-
priate wave vector parallel to the surface plane,
and approaches zero as z—=. Since this solution
is unique, the same boundary-condition function
D(x, y) applies to both ¥, and ¥,.

It is useful to define special matrix elements

Dij j(j)*(x, ¥, O)D(x y) ¢j(x: yy O)dxdy )
(27)

1]

QijE /(1) (xy Y, 0)

where the two-d1mens1ona1 integrals are taken
over a unit cell in the surface plane. The values
of the matrix elements are the same for any sur-
face cell, since all the Bloch functions under con-
sideration have the same fixed parallel wave vector
K,,. We shall use the notation D;3 for the matrix
element involving @,:

5=/ ¢1(x, 9, 0Dz, ») $,(x, v, 0)dxdy

In terms of these matrix elements, Eq. (26) be-
comes

Dy +Ryy Diy + Ry Dy5= Qg +Ryy @7 +R13 @45
Dyy +Ryy Dy7+Ryp Dp5 = Qg + Ryy Qa7+ Ryp Q23

S ¢sx, 9, 0)dxdy

(28)

Equations (28) are obtained by multiplying (26) by
$¥(i=1, 2) and integrating over the unit surface
cell.

Under the conditions described there is a close
connection between the Bloch functions ¢, and ¢,,
which follows from the assumed reflection sym-
metry of the original (infinite) crystal. As a con-
sequence of this symmetry,

‘5&(?) =4, ¢k(%)

where T is the image point associated with #:

(X, Yy, —Z) ’

and where A, is a possible phase factor which will
be neglected for convenience (the analysis is easily
generalized to include 4,). It follows that

=
r=(x, 9, 2), T=

Prlx, v, 0)=

(%

¢k(x} y: 0) ’

S0,

(29)
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which implies the relations
Di3=D;;, Q3=-Qy - (29")
With these relations, it is easy to solve Eqs. (28)

to obtain the reflection coefficients

R = — D1 = Qu)Dyp + Qp) = (Dyp+ Q1) (Dyy ~ @3y
BT (Dyy + Q1) (Do + Q) = (Dyp+ Q1a)(Dyy + Q) 7
(30)

Rus= (Dy; = Q11)(Dyy + Q) = (Dyy = Q1) (Dyy +Qyy)
127 Dy +Q11)(Dyz + Qz5) = (D5 + Q1) (Dyy + @5y

(31)

With these formulas we may examine the case
of the special boundary condition ¥ =0 for 2 =0.
This boundary condition, although physically un-
realistic, has often been used in studies of sur-
face reflection or surface physics. ¢ In this
case, it has the effect of altogether removing the
phenomena of interest.

If D(x, y) approaches the infinity uniformly, the
boundary condition of Eq. (26) becomes

¥;(x,y,0=0

In that case, the matrix element D;; becomes much
larger than Q;; in Egs. (30) =nd (31) and the limit-
ing behavior is
limR;;=-1, limR;,=0 (32)
D~w D=
(assuming that Dy D,, — Dy,D,, does not accidentally
vanish). Thus there is no umklapp surface scat-
tering for this boundary condition. The boundary
condition ¥ =0 is too extreme because the work
function is not infinite.

It is also possible to verify the negative-angle
symmetry from Egs. (30) and (31). This is seen
by replacing 1 by 1 in the right-hand subscripts
throughout Egs. (30) and (31), which is the analytic
continuation of R;; to negative angles of incidence
for ¢,. In the case of Eq. (30), for example, this
gives

RlI:Ru(— 6)

D17 - Q1) (Dyp + @gy) = (Dyp + @)Dy - Qg)
(Dy3 + @17) (Dgp + Qgz) — (Dyp+ @1,5) (Dyg + Q1)

__ (D + Q1) Dy + Qpa) = Dy + Q15)(Dyy + Q)
(D11 = Q11) (D2 + Q2a) = (Dyp+ Q1) (Dyy — Q)

1

"Ry, (6)

which agrees with Eq. (12a). It is easily verified
that Eq. (31) obeys the symmetry of Eq. (12b) un-
der the same transformation.

It should be noted that this symmetry property
holds for any values of D;;, Q;; that are compatible
with Eqs. (29). In fact the actual values of D,

Q;; are not arbitrary or independent, but must be
subjected to additional restrictions in order that
Eq. (26) hold exactly true. These additional re-
strictions are also required in orderthat R;, be
compatible with Eqs. (6). However, the symmetry
property (12) holds a fortiori in the presence of
these additional restrictions.

The analysis given above makes various assump-
tions and approximations, and so it is not at all a
discussion of the general case. However, the es-
sential point is that a rather natural set of approx-
imations leads to a reflection matrix which obeys
the symmetry conditions Eq. (12) that are the ba-
sis of the discussion in Sec. III.

V. CONCLUSIONS

Umklapp surface scattering has been studied for
a convenient special case in which the crystal sur-
face is a low-index surface of a highly symmetric
crystal. The original bulk crystal is assumed to
have reflection symmetry with respect to planes
equivalent to the surface plane, and also 180° ro-
tation symmetry about the surface normal. These
restrictions greatly simplify the analysis.

For the model Fermi surface of Fig. 2, there
are two types of electron on the two sheets of the
Fermi surface. The umklapp mechanism depends
on the existence of such inequivalent points, having
the same component of wave vector parallel to the
crystal surface. Such points exist for almost all
multivalent metals and even for Cu, Ag, and Au at
certain Fermi-surface positions.

The umklapp scattering probability varies lin-
early with angles of incidence and the scattering
becomes specular at grazing incidence [Eq. (16)]:

P6)=1-2a6+2a%0%+...

The coefficient 2a? of the quadratic term is deter-
mined in terms of the coefficient 2« of the linear
term, in this small-angle expansion. The value of
a depends on the Fermi-surface position of the
electrons under consideration, and may be differ-
ent for grazing-incidence electrons at different re-
gions or sheets of the Fermi surface.

A comparison of two small-angle expansions
showed that

a;x< VK,

where K; is the radius of curvature of the Fermi
surface near point j. This result is quite plausi-
ble, but the argument presented for it was not very
general or rigorous.

If the result is generally true, the umklapp
mechanism most strongly affects electrons on
large pieces of the Fermi surface where the radius
of curvature is large. However, it should be
strongly emphasized that other surface scattering

b
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mechanisms (e.g., surface roughness scatter-
ing*'s) depend even more strongly on K;. Thus
electrons of small pockets or necks probably offer
a better opportunity to observe the umklapp scat-
tering in competition with unavoidable surface
roughness.

For certain values of the angle of incidence 6,
the parallel component of the wave vector reaches
an extremal point on another sheet of the Fermi
surface. In this case, on one side of the critical
angle 6, the jump scattering is possible, while it
is not possible on the other side. This situation
leads to a characteristic threshhold singularity in
the angle dependence of the probability of specular
reflection.

By utilization of the reciprocity relation P,, = Py,
of Eq. (9) above, and the grazing-incidence expan-
sion for electrons on the distant sheet, one can
readily show that near the singularity the reflec-

tion coefficient has a square-root angle dependence.

The probability of specular reflection has the ap-
proximate form

)1, 6>6,
P(6) ={1 —A[l _ (6/90)2]1/2’ 6<6,
near the critical angle 6, assuming the jump scat-
tering can occur only for 6 <6,.

The calculations of Sec. IV showed that a natural
sequence of approximations leads to a reflection
matrix compatible with the negative-angle sym-
metry of Sec. II. It was also shown that the
umklapp surface scattering does not arise for the
unrealistic, but commonly used, boundary condi-
tion that the electron wave function vanish at the
crystal surface.

Surface-state-resonance experiments are most
suitable for an attempt to directly observe and iso-
late the umklapp surface scattering. There are
two evident ways to identify umklapp scattering:
one approach is to exploit the anistropy of the
umklapp scattering with respect to the plane of in-
cidence of the electrons, while the other approach
is to attempt to observe the critical-angle singu-
larities for a material in which these singularities
occur near grazing incidence.

The umklapp surface scattering mechanism may
also play an interesting role in several other phys-
ical phenomena. In the high-frequency regime
(Holstein limit) of the anomalous skin effect, the
absorption of electromagnetic radiation by a metal
is determined in large part by the nature of elec-
tron surface reflection. Nonspecular reflection of
electrons is associated with absorption of the in-
frared radiation. There is the possibility that
umklapp surface scattering sets the limitation, in
principle, on the quality of metallic mirrors in the
infrared-radiation regime. This possibility ap-

pears to have some contemporary technological in-
terest.

Another problem involving the umklapp surface
reflection is quantum-limit behavior in thin films.
If the films are sufficiently thin, pure, and smooth
that size quantization may occur the surface mix-
ing of standing waves (via the umklapp process)
will give rise to several interesting phenomena re-
quiring careful investigation.
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APPENDIX

This appendix will indicate how the definition of
reflection probability, Eq. (4) of Sec. I, follows
naturally from a wave-packet description of the
surface scattering.

We imagine a large incident wave train in the
form of a rectangular packet of cross-section area
A, and thickness (along the direction of motion) ;.
This wave packet, associated with state ¢,, has the
angle of incidence 6. It is assumed that all dimen-
sions of the wave packet are enormously larger
than the electron wavelength, so that one may com-
pletely neglect wave-packet distortion during the
motion. In fact, if the wave packet is sufficiently
large, the central region of the wave packet is
dominant, and this central region is assumed to be
be essentially the pure Bloch state ¢,. The pre-
cise form of the edges of the wave packet does not
matter if the packet is sufficiently large.

If the Bloch function ¢, is normalized to unity on
the unit cell, as in Eq. (3"), then the total incident
probability is

Plnc=A1 11/9’0 ’

where £, is the volume of the unit cell.

When this wave packet strikes the crystal sur-
face, it covers a surface area (in the surface
plane)

A=A,/sind

where 6 is again measured between the incident
velocity and the surface plane. The duration of the
collision is a time t=1,/v,, where v, is the mag-
nitude of the velocity.

Two reflected wave packets will emerge from the
crystal surface after the collision, one of type zf>1
and the other of type ¢,. The reflected wave of
type ¢, will have the same geometrical configura-
tion as the incident wave packet (i.e., the same
cross-sectional area 4, and the same longitudinal
length ;) but the total probability carried is less
because the amplitude of the reflected wave @, is
reduced by the factor Ry;. The reflected probab-
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ability in the specularly reflected packet @, is thus
Py =AlL|Ry|¥/Q,

which is some fraction of the probability incident.
The second wave packet has slightly different
geometrical properties. Its area A, and thickness
l, are generated by the collision area A and colli-
sion duration T according to
A,=Asing, l=v,7 ,

so the reflected probability in this second wave
packet is

P2y =Azlle12|2/Qo

The statement of probability conservation now
reads

AllllRlllz +A212|R1z\2 =Al

which is easily transformed into the form given in

Eq. (6a),

| o

|R11‘2+%f%;—2§|1212|2=1

The geometrical factors encountered in this dis-
cussion have been mentioned by various authors
under names such as “aspect effect” or “collision
duration effect.” "2 Velocity factors, of similar
origin, are well known in nuclear-reaction scat-
tering theory.

The definition of reflection probability adopted
here leads to the detailed balance principle in the
form of Eq. (9). A quite-different form of this
principle (with velocity factors for initial and final
states) is encountered in discussions of diffuse sur-
face scattering.'®'?® However, in the case of dif-
fuse scattering one deals with a differential scat-
tering cross section, which has different definition
according to the choice of volume element. It is
not difficult to formulate diffuse scattering theory
in such a way that the detailed balance principle ap-
pears in the form of Eq. (9) with the proper choice
of volume element for the diffuse reflection prob-
ability.
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