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The spin dynamics in a nearlywne&imensional Heisenberg system —the solid free radical Tanol
(2,2,6,6-tetramethyl+piperidinol-1&xyl) —is studied through dynamical-nuclear-polarization {DNP)
experiments (Overhauser efFect) and proton spin-lattice relaxation-time (T,) measurements. As the
couplings between the electronic spins and the protons have been determined in Tanol, absolute
deteraunations of the values of the electronic-spin-frequency correlation functions at the electronic
Larmor frequency (co,) and at the nuclear I.armor frequency {eo„)can be achieved by performing both
DNP and T, measurements. The value obtained at eo, is in agreement with theoretical calculations in
one-dimensional Heisenberg systems using the method of Tahir-Kheli and McFadden. The value
obtained at co„ together with the frequency dependence of T, are explained by introducing a cutofF
efFect in the spin-difFusion process in one dimension. A derivation is given which expresses the
magnitude of the cutofF efFect in terms of the interchain couplings. An evaluation of the interchain
couplings, using T& measurements, is presented. The values of the interchain couplings, which are
consistent with both the T, measurements and the'Neel temperature are J ~ J2 10 'J, where J is
the intrachain exchange (J/k =4.1 K), and Ji and J2 are the interchain couplings along two axis
perpendicular to the chain. Ho~ever, it cannot be excluded that, in Tanol, the disturbance of the
spin-difFusion process is due to finite-length efFects.

I. INTRODUCTION

Spin dynamics in one-dimensional Heisenberg
systems described by the exchange Hamiltonian

N i
= —2cTo~ sf sf+1 ~

i

where 40 is the exchange integral between nearest-
neighbor spins s& and s„i, have received consider-
able attention in recent years. The "motion" of
the individual electronic spins can be studied
through microscopic correlation functions such as
I",(f) = (So(f)Sf(0))j((80) ), or their frequency Fou-
rier transforms @f(&u). The more spectacular
point is that the @f(&o) functions, which are the
spectral densities of the spin motion, are expected
to diverge as u 0, in one- and two-dimensional
systems. This divergence comes from the very
slow decay of the correlation functions as t- ~.
A diffusion process which is expected to correctly
describe the long-time low-frequency behavior of
the spin motion gives a decrease as t /, where d
is the dimensionality. The divergence of the spec-
tral densities at zero frequency can be immediately
seen by considering the area below the curves
which represent the correlation functions. The
area is infinite for d ~ 2.

More complete treatments have been derived by
other authors. Ca,rboni and Richards gave exact
numerical calculations for finite chains (up to ll
spine s= a) and showed that the results may be ex-
trapolated to N- ~. ' Tahir-Kheli and McFadden
constructed an alternative theory, based upon a
two-parameter Gaussian representation of the gen-

eralized "diffusivity". Recently„a very complete
theoretical derivation has been presented by Mc-
Lean and Blume. These treatments yield com-
parable results: basically, that as &u -0, eq(&o)
diverges.

To date, the main experimental verifications of
the theory have been based upon an analysis of the
EPR line. First, in a study by Rogers, Carboni,
and Richards, ' the frequency dependence of the ex-
change-narrowed dipolar linewidth of the copper
salt Cu(NH, ),804H&O (CTS) could not be explained in
terms of the Kubo and Tomita theory with Gaussian
correlation functions. This afforded the first evi-
dence of the peculiar behavior of the spin correla-
tion functions in one-dimensional systems. Then a
"better" chain was found with the salt (CH3)~NMnC4
(TMMC), in which the one-dimensional character
is so pronounced that it has an effect on the EPR
line shape. Deviation from Lorentzian line shape
was observed, showing that the transverse-mag-

t3/5' 5netization correlation function behaves as e '
An interpretation was proposed that used correla-
tion functions which took into account the chain
character of the system. Recently, several other
one-dimensional spin systems have been studied in
the same way. '

Although EPR has been revealed to be a useful
tool to study dynamic properties, the relationship
between the individual spin motion and the EPR
line is not direct. It involves four-spin correla-
tion functions. Moreover, the frequency linewidth
dependence is originated in the "—', effect. "8 More
direct information would be provided by neutron
scattering measurements since the differential
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scattering cross section is expressed in terms of
two-spin correlation functions.

The idea of the present work is to use the nucle-
ar spins surrounding a given electronic spin as
probes which "feel" the fluctuating electronic mag-
netic field. The resulting nuclear relaxation rate,
under certain conditions which will be detailed in
Sec. II can be expressed as

(T,) '=AC'o((o„)+B40(+,), (2)

where the @0(&o}are the frequency self-correla-
tion functions of the spin components so, with
a = z, +, and v, and ~„are the electronic and nu-
clear Larmor frequencies in the static magnetic
field Ho; A and 9 are terms of coupling between
the nuclear and the electronic spins. Spin-dynam-
ics studies through longitudinal and transverse
nuclear relaxation-time measurements have al-
ready been published. For instance Myers and
Narath achieved the exchange spectrum in para-
magnetic GdP by measuring the 'P nuclei relaxa-
tion times as a function of the magnetic field. The

F linewidth in MnF„KMnFz, and RbMnF3 was
measured by Hone and Silbernagel as a function of
the temperature in order to study the temperature
dependence of the microscopic correlation func-
tions. These works, however, were concerned
with three-dimensional -lattice spin systems.

In the case of one-dimensional spin systems in-
terest must be concentrated on the low-frequency
part of the exchange spectrum, that is, at (d„.
This leads us to consider nuclei with predominant
dipolar hyperfine coupling [since the term A in (2)
only comes from dipolar couplingj. Consequently,
the T, value will depend on the exchange spectrum
at both frequencies &u, and &u„. Since ~„(-10'rad/
sec} is a very low frequency compared to the lin-
ear exchange frequency v„=Jo/tf ~10" rad/sec the
theoretically predicted divergence of @0 (ur) as
w, -0 should result in an extremely short relaxa-
tion time, getting shorter and shorter as e& is de-
creased. Experimentally, in "real" chains of
spins, finite relaxation times are observed which
do not go towards zero as co~- 0. This indicates
that in the systems under investigation the diver-
gence breaks down at a frequency larger than ~~.
Therefore, 4'0(u&„) =@0(0). In order to determine
both 40(0) and 4'0(v, ) we need two independent ex-
perimental measurements. The first is provided
by the nuclear relaxation time (T,), and the sec-
ond is supplied by the NMR enhancement obtained
by dynamic nuclear polarization (DNP). The re-
lationship between these two quantities and the
spectral densities will be derived in Sec. II. It is
important to note that the couplings between the
electronic and nuclear spins are supposed to be
known. This means that a determination of the
hyperfine coupling tensors have been previously

performed. This is discussed in Sec. IG, in which
the solid free radical Tanol and its magnetic prop-
erties are reviewed. The experimental results ob-
tained from the DNP expe-riments and T, measure-
ments are related in Sec. V. In particular, the
divergence of C'0(e) as v-0 is not actually ob-
served. The finite value of C'0(0) is interpreted by
introducing a "cutoff" process in the spin-motion
correlation. In Appendix B we present a deriva-
tion of the cutoff effect, and different possible
causes of the breakdown in the linear diffusion pro-
cess are examined. The influence of interchain in-
teractions of the EPR line shape was discussed re-
cently by Hennessy, McElwee, and Richards. We
used the same kind of physical considerations, but
through alternative experimental methods.

II. NUCLEAR RELAXATION AND OVERHAUSER EFFECT
DUE TO EXCHANGE

sa (I) &I Et / hsa s-I Ft /h

We may define three reservoirs corresponding
to the electronic and nuclear Zeeman interactions
(Z, and S„), and to the spin-spin interactions.
These reservoirs are coupled by the electronic nu-
clear couplings:

K4f+ SjKj gl g
ju

(4)

where K j „denotes the tensor of coupling between
sj and z~ It is suitable to decompose X,& into
terms having characteristic commutation rules
with the three reservoirs Z„S„, and E:

X~~ =Ko+K(+K2+K3,

where

Ko ——Z kt"sf'„,

Kg —-Zkf "sgl„+C. C.

Kz —Z k, "s)P„+c.C.
jg

K3=K3, +K3

The reservoir-network model is a convenient
way of deriving the general expressions of the nu-
clear relaxation rate and of the Overhauser en-
hancement. "' We consider a solid containing
N, electronic spins sj and W'& nuclear spins i„ in a
static magnetic field Ho. The electronic spins are
in mutual interactions: exchange E and dipolar &
interactions. We assume E» D. The modulation
of the spin component s,' (a = z, +) comes essentially
from the adiabatic part of these interactions:
F=E+D, where & is the secular part of the di-
polar term,
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lgoo factors"} with spectral densities

N j

(dN

with
+OO

@;((o)= — I', (t)e' ' dt,2r (8)

FIG. 1. Reservoir network describing the dynamical
nuclear polarization (Overhauser effect) and the nuclear
relaxation due to the electronic spins. Z, is the electronic
Zeeman reservoir, ZN the nuclear Zeeman reservoir.
& contains the exchange interactions and the secular part
of the dipolar couplings: E=E+ D . L is the lattice. K~

and K3 are parts of the hyperfine couplings [see Eq. (5)].

and

(so (t)s, (0}}
(so so *}

,(, 1) g( '")( '")
~ ~

I

A, = os(s+1) ~Z +, for i=0.
I

(10)

with

Ko~= Z ko~ s )1„+C. C.

The K, term which is purely dipolar commutes
with Z„but not with ZN or I'. So, it introduces a
binary coupling between these two reservoirs. The
K3 te rm doe s not commute with any of the three
reservoirs: It introduces a ternary coupling. The
two remaining terms K, and K„which commute
with Z„, do not connect this reservoir, ' therefore
one may neglect their influence. These commuta-
tion rules enable us to set up the network of cou-
plings which is represented in Fig. 1. The lattice
reservoir L and its couplings with the spin res-
ervoirs have been represented. The exchange-
lattice coupling will be assumed to be efficient
enough to maintain the exchange reservoir at the
same temperature as the lattice. This assumption
may not be valid at low temperature, but in the
present study we restrict ourselves to high-tem-
perature regions (T &200 K).

Let us denote by a, and nN the inverse tempera-
tures of Z, and ZN, and by 00 the inverse tempera-
ture common to the lattice and to E. In the high-
temperature approximation and neglecting the di-
rect nuclear relaxation towards the lattice, the
evolution of (AN is given by

N ~34' X3(+» +e}(~z»zo+ ~Z»zo}

—(&» &o)(&z»»+ z'»»+ — z'»)

where & ~~+ are constants of evolution from P to Q
reservoirs (P, Q = Z„, Z„F) through the coupling

K,(q =3+, 3 —,1). They are expressed in terms
of the products of coupling constants ("geometrical

A. Nuclear relaxation time

B. Overhauserwffect enhancement

When the EPR line is saturated by microwave
pumping, a new thermal equilibrium is obtained
and the NMR signal intensity, which is proportional
to o.N, is modified. We define the Overhauser-
effect enhancement p as p=(n» —oo)/oo. its ex-
pression is drawn from (6) while at a steady-state
regime (dn»/dt= 0) and from (7) and by assuming
complete saturation of the EPR line (n, =O):

$,( t A— A,' )C';(&o, )
~» &g(Ao. + Ao-)@i(~.)+o&~Aic'f(~»}

(14)

Experimentally the enhancement at complete
saturation can be obtained by measuring the en-
hancement as a function of the microwave power

At thermal equilibrium all the temperatures are
the same: o.N = o., = oo. The nuclear relaxation
time is the recovery time of nN after an initial dis-
turbance which makes eN &oo at t= 0:

da'» a»(t) &ro-
dt Tg

Setting o.,=so in (6) and comparing it to (11), one
has

(Ti) '=&z„'z, +&z'„»+&z„'».

Using (7) one obtains the general expression

(2»T, )
' =2 (A,', + Ao'. )4",(ur, ) + —Z Af@;((o»),

(13)
where we have made the approximation C,(~, +to „)
=@~(~.).
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and extrapolating it for infinite pumping power.
In the case of strong isotropic exchange inter-

action @;(&o)=@';(&u) and thus the labels + or s may
be dropped. The general expressions (13) and (14)
imply not only the frequency self-correlation func-
tion 40{~), but also all the cross functions C,{~).
In the following, we will assume that the influence
of the cross terms may be neglected. This sim-
plifying assumption may be justified by the decrease
of the geometrical factors A,'(-f ). Asfor the spec-
tral densities 4 &(&o), their values at low frequency
(a& = 0) do not decrease appreciably with increasing
i. In addition, it must be noted that (13) and (14)
suppose that a single nuclear reservoir is involved,

or, in other words, that all the nuclear spins are
at the same temperature. This implies an efficient
cross-relaxation mechanism among the nuclear
spins. The nuclear-nuclear coupling must be al-
ways stronger than the nuclear-electronic coupling.
If not, it shouM be necessary to define several
Zeeman nuclear reservoirs, say, n. Every nu-
clear reservoir S„'" (i = I, 2, . . ., n) has its own

temperature e~". At thermal equilibrium all the
n&~~ are the same: o.&"=00. But under dynamic
polarization one may have a&" &a&'. Such a situa-
tion gives rise to "distorted" NMR lines. As it
will be related in Sec. IV, this case was observed
in Tanol for some orientations of the crystal axis
with respect to the static magnetic field. A com-
plete treatment of the effect is feasible, "taking
into account all the possible nuclear reservoirs
and their mutual couplings (nuclear cross-relaxa-
tion terms) The .n different nuclear-spin temper-
atures are obtained by solving the system of the n
equations of evolution. Nevertheless the present
discussion is limited to the case where a single
nuclear-spin temperature is sufficient to describe
the system under polarization. Experimentally
this simplified situation is rather well approached
in Tanol when the crystal-axis orientation corre-
sponds to the maximum (negative) enhancement of
the NMR lines.

Thus, under the conditions of (i) strong isotropic
(Heisenberg) spin-exchange Hamiltonian, (ii) neg-
ligible cross terms, and (iii) strong nuclear cross

, relaxation, we obtain the simplified expressions

III. PROPERTIES OF TANOL

The sample chosen. for this kind of study must
fulfill the following conditions: (i) Magnetic prop-
erties correspond to a one-dimensional Heisenberg
Hamiltonian, (ii) hyperfine coupling is known and

has a mainly dipolar character, and (iii) electronic
relaxation times {T„and Tz ) are not too short so
that saturation of the EPR line can be achieved
with reasonable microwave power. The third point
leads us to organic free radicals since in such
compounds the spin-orbit coupling is weak enough
not to contribute to the spin-lattice relaxation
time. The required dipolar character of hyperfine
couplings excludes the free radicals of aromatic
types. In all these respects the nitroxyde free
radical 2, 2, 6, -tetramethyl -4-piperidinol -1-oxyl
(Tanol) is a good sample. Furthermore, Tanol
has the advantage that in a single crystal all the
molecules are parallel to each other. The un-
paired electronic spin s = ~ is located on the nitrox-
yde bond. As represented in Fig. 2, there are 18
protons per molecule, the NMR signal of which will
be observed in our experiments. The lattice is
monoclinic with parameters a=7. 10 A, b=14. 0 A,
c=5.64 A, and P=(a, c)=119.8'. There are two
molecules per unit cell located at (0, 0, 0) and (s,
25, 0). The (a, c) plane is a mirror plane for both
the crystal lattice and the molecule. ' The posi-
tions of the protons have been determined. Two
protons are located in the mirror plane: H(0, )
and H(1). The 16 others can be arranged in eight
pairs symmetrically with respect to the mirror
plane. A projection to the mirror plane (a, c) is
represented in Fig. 3.

The coupling between the electronic spins and
the protons requires 18 tensors of coupling, but
only ten are different because of the symmetry.
%'e determined these couplings by recording the
NMR spectra of single crystals of Tanol at helium
temperature as a function of the static magnetic
field direction in three crystallographic planes.
Given any direction (8, P) the line of a proton p, is
shifted by an amount

(2vT~) = (A~, + AB )@0(&o,)+ 2ApQ(&u~)

(u (A„-A, )40{(u,)
&u» (As, + A~ )@0(&u,)+kA, @0(&uz)

' (16)

where all the terms are autoterms. It clearly ap-
pears from (15) and (16) thatif th, e geometrical
factors 0, are known, by measuring T& and p, the
values of the frequency self-correlation function
can be determined at the two frequencies ~, and

ar ~

FIG. 2. Tanol molecule (2, 2, 6, 6-tetramethyl-4-
piperidinol-l-oxyl).
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FIG. 3. Structure of Tanol crystal viewed along b axis.
[Projection on the mirror plane (a, c).]

&H"(8, g) =(hy„) '(s')Zko "(8,p), (17)

where y& is the nuclear gyromagnetic ratio and

where (s P-XHO, with Z the magnetic susceptibility.
From the angular variation of &H", it is theoreti-
cally possible to determine the tensor which de-
scribes the coupling of a proton with the ensemble
of the electronic spine K„=g„K~„, that is to say,
to determine its three principal values and the
three angles which define the direction of its
principal axes. But this would mean that the angu-
lar variation of the NMR-line positions of every
proton would have to be followed without any am-
biguity. As the NMR spectra were only partially
resolved (we operated in 16.6-kG magnetic field),
the problem could not be solved entirely for every
proton. Therefore, we resorted to a simplified
model. We assumed it was possible to account
for the traceless part of K„by calculating the di-
polar interactions with electronic spin densities
localized on a few points. The best agreement of
the calculations with the observed angular varia-
tion was obtained with a simple four-point dipolar
model by assuming (i) spin density =0. 3 and 0. 7
on the nitrogen and on the oxygen atoms, respec-
tively, and (ii) electronic spin located in the w or-
bital lobes at points separated by 1.2 A. We have

considered the electronic spin located on the same
molecule as a given proton and the electronic spins
located on the ten neighbors. The calculated angu-
lar variation of the shift enabled us to identify most
of the protons on the NMR spectra. After a proton
has been identified, its measured shifts along any
three perpendicular axes give the scalar coupling
directly. The obtained values are listed in Table
I, column a. Large uncertainties are mentioned
for protons H(2-2) and H(4-1) which have not been
identified, and for H(4-2} and H(5-1}which have
been identified in only one plane. In column b we

IV. EXPERIMENTAL

The DNP experiments, which will be reported
here, were performed in a magnetic field of about
1 kG. The electronic pumping frequency was sup-
plied by a carcinotron and amplified to 10W'-15W'

in a traveling-wave tube. It generated a rotating
magnetic field of about 5 G in a reentrant cavity.
The device was a wide-line DNP spectrometer
which enabled us to perform measurements in the

TABLE I. Scalar coupling constants of the protons of
Tanol in the solid state (Ref. 17). Berliner's notations
are used (Ref. 16).

H(01)
H(1)
H(2-1)
H(2-2)
H(4-1)
H(4-2)
H(4-3)
a(5-1)
H(5-2)
H(5-3)

a
(Oe)

—1.48 +0.1
0.82 y0. 1
0.0 y0. 3

—1 5'''0 0-15" 00
0.2

—0.5 y0. 3
0.6

—0.5 y0. 3
2.45 g0. 2

b
(Oe)

—2.0
+0.3
—0.5
—1 3
—0.8
—0.3
—1.0

0.0
—1.0
+2.0

Experimental results.
Values actually used in the computation after taking

into account demagnetizing field effect.

have listed the values that we used in later calcu-
lations. The demagnetizing field (0. 5G) has been
subtracted by assuming the samples to be spheri-
cal, though they are not. The value given for
H(4-1) was obtained by subtra, cting the sum of the
values of H(4-2) and H(4-3) from three times the
coupling of the C4 methyl group observed in solu-
tion: —0. 73 G." For H(2-2) we took the value

corresponding to the middle of the uncertainty.
In short, we used a model of the coupling be-

tween electronic spins and protons consisting of
(i) a scalar part, the values of which are listed in
Table 1, column b, and (ii) a dipolar part calcu-
lated from a four-point model.

Heat-capacity measurements were first per-
formed by Lemaire et al. as low as 1.3 K. For
the heat capacity of magnetic origin, they obtained
a curve C„=f(T) which showed a broad maximum
near 4 K, and which was explained in terms of an
antiferromagnetic exchange interaction between
neighboring spins along linear chains. The agree-
ment with the theoretical calculations of Bonner
and Fischer 0 gave 2/k= 4. 16 K. This behavior
was confirmed by magnetic susceptibility measure-
ments. Recently, heat capacity measurements
have been extended as low as 0. 35 K." A sharp
peak appears at 0.49 K, which gives the Neel tem-
perature.
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The principle of our method of determining the
exchange spectral densities is based upon expres-
sions (15) and (16), from which

40((gr, ) = -~6(Aq, —A3 ) p/2n T(, (18)

where the factor —660 takes the place of &u,/~„
since we are dealing with protons, the "geometri-
cal factors" A„and 03 are calculable from the
coupling-constant model explained in Sec. III, and
the values of p and T, are given by measurements.
The absolute value of @o(&u,) can be deduced. Then
4'0(to„), which is =@o(0), is obtained from (15).

It turned out that the nuclear-signal enhancement
is strongly dependent on the orientation of the crys-
tal with respect to the static magnetic field, and
that it is negative for most of the orientations.
These two experimental facts are consistent with
the mainly dipolar character of the electronic-nu-
clear couplings. The polarized NMR signal has
been recorded for different orientations when the
crystal is rotated around its b axis. The maximum

frequency range between 2 and 8 GHz. NMR sig-
nal was detected with a frequency-scanned Robin-
son oscillator and recorded after lock-in detection.
In typical record the signal-to-noise ratio of the
unpolarized signal Pp was - 10. The Overhauser-
effect enhancement (p) corresponding to an infinite
pumping power was obtained by extrapolating the
curve [P(W)/Po —1) as a function of W ~, where
P(W) is the polarized signal intensity with a pump-
ing power W. In case of distortion of the polarized
signal double integration was performed from the
lock-in derivative signal. At maximum pumping
power the saturation factor was no larger than 0. 3.
This leads to an uncertainty of about +20% on the
extrapolated enhancement value. We performed
DNP experiments on a powder sample and on sin-
gle crystals. Several crystals were used. They
had been selected because of a particular mor-
phology. Two favorable cases may occur: either
long crystals which were grown with the c axis
along the long direction (typical size: 10x3&2
mm), and flat crystals offering the (a, c ) plane as
cleaving plane (typical size: 4X4&&2. 5 mm). The
crystal was affixed to a rod which allowed rotation
around the c axis (or b axis, depending on the type
of the crystal} inside the rf coil. A strong flow of
cold nitrogen gas was blown on the sample to avoid
heating by microwave power. The temperature
was controlled by a thermocouple which was in-
serted inside the sample, and regulated in the
range 250-300 K.

Nuclear relaxation times were measured with
pulse sequences m, 2n in a conventional pulsed NMR
spectrometer. Measurements were performed
between 4 and 54 MHz.

I

V. RESULTS AND DISCUSSION

enhancement occurs when the c axis is about par-
allel to Hp, Its extrapolated value is

p ~= —100+20 .
At orientations corresponding to small enhance-

ments (the region perpendicular to the c axis) we
observed distorted polarized NMR signals. Some
of them may be clearly interpreted as the super-
position of negative and positive signals, showing
thus the coexistence of several nuclear-spin tem-
peratures in the sample. The quantitative inter-
pretation of this effect requires calculations which
take into account several nuclear reservoirs and
their cross relaxation, as ell electronic cross-
correlation terms. '4 As the purpose of the present
paper is not a study of the Overhauser effect in it-
self but its use as a tool for getting information
about spectral densities we will restrict ourselves
to the region of the c-axis approximately parallel
to Hp where apparently, only one nuclear-spin
temperature is sufficient to describe the system.
Therefore expressions (15}, (16), and (18) are
valid. So, all the quantities involved in (18) should
be considered at that particular direction. But,
because of a poor signal-to-noise ratio, it was not
possible to measure the nuclear relaxation time
on single crystals at the frequency corresponding
to the DNP experiments, 4.1 MHz. Nevertheless
the anisotropy of T~, measured at higher frequen-
cies, turned out to be small, of the order of 10%.
Therefore we will take the value of T, measured at
4.1 MHz on a powder sample, (3+0.3) &&10 4 sec.
Then, taking the value of the "geometrical factor"
(A~ —A~ ) calculated in the direction under consid-
eration, we found 40(~,) = (1+0.4) X10 '2 (rad/sec) ',
which in reduced units ~,*= ~, /~„with ~, = J/8
= 5.2x10'~ rad/sec, yields~~

(u,40(0.03) =0.5+0.2 . (19)

This value should be compared to theoretical
predictions. We calculated 40(&u) by taking the
Fourier transform of the self-correlation function,
which was constructed in the following manner:

1o($, t) = 1'o(t)r (t), (20)

where I'o(t) is the correlation function for an "ideal"
Heisenberg chain and y, (t) is a cutoff function which
accounts for the breakdown of the spin correlation
function. The function 1'0(t) is defined by

( )
( so (t) so (0) &

(21)(Is (0)I')
where the time development is governed only by
the linear Heisenberg Hamiltonian (1). Thus

S ef A = ef Ect lh e e $Zct I h

For I'0(t) we took the time self-correlation function
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FIG. 4. Fourier transform of the self-correlation
function &0($, t) [Eq. (20)] for different values of the cut-
off parameter ]= u&Ju&, . Dashed lines correspond to the
experimental results (19).

values of the reduced frequency &*= &/&„and
for different $. One notes that, for ~*&0.05,
&o,C,(~*) depends very little on (. But it is not
the same thing for ~ -0:4,((, 0)- $

"s. Note that
our experimental result (19) is in good agreement
with the one-dimensional character of the spin
system, but it cannot afford information on $, that
is, on the "perfectness" of the chain. The value
of $ must be drawn from the zero-frequency limit
of io„4c(t', &*). The latter could be obtained by
putting the result (19) in Eq. (15), where 4(~„)
= C (0). But a more accurate determination is ob-
tained by considering the frequency dependence of T~ .

The experimental nuclear relaxation rate (T&)
has been plotted in Fig. 5 as a function of ~e = &g, /
~„, where ~, = 660~„. The solid lines have been
calculated from

(]/2vTt)t —(As, +fit )@c((,(g,*)+—'(Aq)C'p($, 0),
(23)

where the symbols ( ) refer to powder averages of
the geometrical factors. By taking into account
the couplings of the protons with the electronic spin
of their own molecule and with those belonging to
the ten neighboring molecules, we found

calculated from the results of Tahir-Kheli and
McFadden (Fig. 8 of Ref. 2). For long times,
(Js/ff)t & 2, we extended the curve by a t "s law
expressing a linear diffusive behavior. The dif-
fusion coefficient evaluated in this way is close to
the value expected, for spin 8= —,', from the method
of McFadden and Tahir-Kheli,

4000

D —Ww(J&/R}c —1.V'l(J /R)c (22) 3000

where c is the space between two neighboring spins
in a chain.

The cutoff function y, (t) describes the decay rate
at which the spin motion is deviated from its one-
dimensional diffusive behavior. We define a char-
acteristic "cutoff frequency" , and a cutoff dimen-
sionless parameter $ = ~, /w, . For the moment ]
is just a phenomenological parameter which can be
determined experimentally. We first took for the
cutoff an arbitrary experimental shape

y (f) = s &~x~&

In fact, as shown in Appendix 8, an expression
such as

(f) e-(kca~l t)3/2

may be more appropriate to describe the cutoff
process in nearly-one-dimensional systems. But,
whatever the actual expression used for y, (t}, the
behavior of I', ($, t) is hardly changed.

Thus, by Fourier transform of (20}, one obtains
the frequency self-correlation functions C a($, &o},

which have been represented in Fig. 4 for small

2000

1000
DIM.

3 DIIH.

0.1 Q,2 0.3 0.4

FIG. 5. Proton spin-lattice relaxation rate of Tanol
powder sample as a function of the reduced electronic
Larmor frequency: ~,*=co~/~„, with (d~ =&,HO and ~,
= J/5=5. 2 X10 rad/sec (co,*=0.1 corresponds to Ho
= 2.94 kG. ) The theoretical curves have been calculated
from expression (23) using the powder average of the
geometrical factors (hyperfine coupling) of Tanol. The
dashed curve (two-dimensional) has been obtained by
assigning a reasonable, but arbitrary, cutoff to the fre-
quency correlation functions of a two-dimensional system
given by Tahir-Kheli and McFadden (Ref. 2). [If no cut-
off is assumed C 0(0) is infinite in two dimensions. ] Thus,
strictly speaking, only the frequency dependence of the
dashed curve is significant to exclude two-dimensional
exchange in Tanol.
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y, 2(AS, +Qa ) =1.0 G and y, (Q, )=0.6 G2. The
values of 4e($, &u*, ) and Co($, 0) are the same as in
Fig. 4. From the experimental points (Fig. 5)
we may deduce that $ =50, and therefore

I(o, /k = ( Je /k)/$ =0.08 K . (24)

y (f) &-(u~t) S/2
(25)

where &u, = &u„/$ is the cutoff frequency. However,
our derivation gives a larger value for ~, . For
interchain Heisenberg couplings between nearest
neighbors, where J, and J~ are the exchange inte-
grals along two directions perpendicular to the
chain axis, we get for s = —,

' and with D given by (22)
[Appendix B, Eq. (B12)]

, =4.7(1+n )"'(J,/@)(& /~o) (26)

where o = J, /Ja. If we assume that J, = J2= J (o.'
= 1), the interchain coupling may be evaluated, in
Tanol, by

g /k —3.6x10 K. (27)

In order to obtain some information on the ratio
o = Ja/J„we will use another independent evalua-
tion of the interchain interactions based upon the
values of the Neel temperature (T„=0.49 K a) and
of the intrachain exchange (Ze/k=4. 1 K e).
Oguchi~~ first proposed a derivation to calculate
the interchain coupling for a Heisenberg interac-
tion between nearest neighbors. In Ref. 6 this

To interpret this result we have to analyze the
physical reasons why the linear diffusion process
breaks down. In the following we review cutoff
processes which arise when one deals with real
samples. (i) The chains are not perfectly isolated,
and one has to account for small intezchain cou-
plings. (ii) The diffusion behavior may be dis-
turbed inside the chain itself because the Hamilto-
nian is not purely isotropic. Deviations from the
ideal Heisenberg Hamiltonian (1) result from both
anisotropic terms (Ising-like) in the exchange
Hamiltonian and intrachain dipolar couplings. Fi-
nally, (iii) the chains of spins are not infinite, and
some finite length effects may be expected.

(i) The interchain interactions, by changing the
linear diffusion process into a three-dimensional
process, lead to cutoff effects. Such phenomena
were first discussed by Hennessy, McElwee, and
Richards in a study of the line shape of the elec-
tronic paramagnetic resonance in nearly-one-di-
mensional systems. In Appendix A we adopt the
calculation of these authors to the two-spin corre-
lation functions. In Appendix B, we present a dif-
ferent calculation of the cutoff effects, performing
the derivation directly on the correlation functions
I'; (t). In both derivations similar cutoff functions
are obtained:

TABLE II. Values of the interchain couplings J~ and

J2 which are consistent with both the cutoff frequency
obtained from nuclear-relaxation data u&, = a&$50 [see
Eq. (26)], and the Noel temperature T~=0.49 K. Equa-
tion (28) has been used either in the random-phase ap-
proximation (RPA) or with a Tahir-Kheli (TK) derivation
(Ref. 28).

RPA

Jg/k = 3.4 x 10 K
J2/k =1.8 x10 K

Jg/k =4.5 x 10 K
J~/k =3.8 x10 K

calculation is extended to the case of two distinct
interchain couplings J, and J2:

kT pr/Je =-fs(s+1)f/I (28)

where vector r,„joins the electronic spin located
at the origin to the nth spin of a chain i. We
obtained

ji~/k=7. 5x10 K,
pa~/k=3. 9x10 K .

Comparing these values with Table II, we may
conclude that the interchain dipolar coupling can-
not explain both the cutoff effect on the one-dimen-
sional spin diffusion and the value of the Noel tem-
perature.

(ii) Let us now examine the role of intrachain
interactions. The total intrachain Hamiltonian
will be denoted as X, . The assumption of a dif-
fusion process requires that, in the chain, the
total magnetic flux be conserved. This property

with I=0.64(J /J, )"' [1+0.253 1n(J, /Ja)], where it
is assumed that J'/J', « I and n = J,/J, & l. In Ref.
6, the function f is discussed as decouplings of
Green's functions: f= 1 in the random-phase ap-
proximation (RPA) and f= 1+ [(s —1)/3s][(I- 1)/I]
according to a Tahir-Kheli (TK) suggestion.

From the two independent measurements T, and

T„, it is possible to specify the interchain cou-
plings J, and J,. The values of J, and J, which are
compatible with both Eq. (26) and Eq. (28) are
given in Table II.

We see that the two methods (RPA and TK) lead
to very similar results. The values of J~ and J~,
which are about the same within a factor of 2, can
be compared to the interchain dipolar couplings.
In Tanol, the exchange chains are along the c
axis. There are two neighboring chains in the
mirror plane, corresponding to the + a transla-
tions, and four off-plane neighboring chains. We
define J„and J,„as in-plane and off-plane dipolar
couplings, respectively. These can be evaluated
by the summation
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is expressed as follows:

ixgtlii a ig-~t/h a+) 0

This fundamental condition is satisfied by the eorn-
mutation rule 1 Dqm

(31)

valid as q-0 and ~ -0, we may estimate the num-
ber of spins per chain, which gives a value of po(0)
consistent with experiment: The wave-vector-de-
pendent frequency autoeorrelation function is given
by

If X, is only a Heisenberg Hamiltonian, such as
(1) (R, = E,), one has [3,E,] =0. The correlation
functions for any component of the spin (c, = z, +)
may be described by a one-dimensional diffusive
behavior. Qn the other hand, if K, contains an
extra term which does not commute with 9, the
correlation function I'i (t) will deviate from a pure
one-dimensional diffusive behavior. Thus, ihe
intrachain dipolar interactions give rise to cutoff
effects. The cutoff function, as shown in Appendix
B, is still of the form (25). The cutoff frequency
is angularly dependent and also depends on the
amplitude of the magnetic field Ho. In Appendix 8,
we give the complete expression of ~, , which we
relate to the expression of the EPR linewidth.
Using the result that the EPR linewidth in Tanol
is smaller than 3 Qe we obtain an upper bound of
the cutoff frequency for the autoeorrelation func-
tion:

Su, /k& 0.026 K .
Hence by comparing this value and the result (24),
we conclude that, in Tanol, the intra, chain dipolar
eouplings cannot explain the cutoff effect of the
correlation. functions.

The cutoff effect cannot be explained either by a
small Ising-like extra term aJ~g s';s i,&, an order
of magnitude of which may be deduced from the
anisotropy of the g tensor: b Jii-(&g/g) Jii, where
4g is the deviation of g from the value for a free
electron. The three principal g values are g„„
=2.006, g,„=2.003, and g„=2.0093o; this leads to
&Jii/k-10 -10 K. This value turns out to be
much smaller than the intrachain dipolar interac-
tions (hy, )2/c Sk = 1.25 & 10 ' K, which have been
shown not to be large enough to explain the observed
cutoff. Consequently, the anisotropy of the ex-
change should play a negligible role.

(iii) Finally, we consider the effect of finite
chain length. The effect of limiting the number of
spins in the chain is also to introduce a cutoff by
preventing the frequency correlation function Qi (sp)
from completely diverging when ~ —0. The physi-
cal reason of this is that the divergence of itii (&o)

for ~-0 only results from the contribution of the
small wave vectors, (q(-0. Kith a finite number
of spins in the chain, N, the minimum value of
i ql is not zero but qo= v/¹. As a result of this,
Q, (&u) has a finite value at zero frequency. Using
the simple description of the diffusion3~ which is

The frequency correlation function is obtained
by integrating (31) over the first Brillouin zone.
With N spins per chain and setting a& =0 in (31),
one has

(32)

Taking the expression (22) for D, this leads to

N 1= Wn-i/ (J'o/S)C o(0) . (33)

VI. CONCLUSION

First, we have presented an attempt of a purely
experimental determination of the spin correlation
in a nearly-one-dimensional Heisenberg system.
The method, which is based on both dynamical nu-
clear polarization and nuclear spin-lattice relaxa-
tion-time measurements, has been applied in the
crystalline free radical Tanol. A value of the
frequency correlation function at &o, /~, = 0.03 has
been obtained which is in agreement with the the-

With ( =50, one has (J, /h)CO(0) =1 (see Fig. 4) and

thus, from (33), we obtain N = 50. The method of
generalized diffusivity, as used by McElwee,
predicts a somewhat smaller value, N™35.

%e now have to compare this pumber of spins
per chain, N= 35-50, to what is known about the
perfectness of the samples of Tanol. According to
mieroanalysis the deviation from the theoretical
composition is less than 0.3%. However, this is
not a proof of magmatic purity. An estimate of
this could be provided by static susceptibility mea-
surements. The Curie constant of pure nitroxide
free radicals should be C„=0.3VV.2 In Tanol, a
somewhat smaller value has been determined, ~~

C„=0.36; but the uncertainty in this figure, which
is -3'%%u~, does not allow any quantitative conclu-
sion. ~3 An indication that the chains are not perfect
is given by the fact that an increase of the suscep-
tibility is observed at low temperature~~ (T& 2 K).
This low-temperature increase, which seems to be
typical of one-dimensional magnetic systems, may
be interpreted as resulting from finite chains con-
taining an odd number of spinsmo (on the average
there is one odd chain per two chains).

Thus, with the experimental data available at
present, we cannot exclude the finite length of the
spin chains as being responsible for the cutoff
effects observed in Tanol.
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oretical prediction in one dimension using the cal-
culations of Tahir-Kheli and Mc Fadden. However,
owing to the uncertainty in the hyperfine couplings-
especially the scalar parts —and to the difficulty of
achieving quantitative DNP measurements, it was
not possible to obtain the shape of the spin corre-
lation functions over a given frequency range with-
out resorting to a theoretical model. The time
correlation function I', (f) of a real nearly-one-di-
mensional system has been expressed as a product
of the time correlation function I', (f) of the ideal
perfectly-one-dimensional system with a cutoff
function: I', (f) = I', (t) s-&~~s ~~3. This form has been
derived from a pertui bation short-time expansion.
The cutoff frequency ~„which is expressed in
terms of the interchain couplings, can be deter-
mined experimentally from the fit with nuclear re-
laxation-time measurements. This procedure con-
stitutes a method for determining interchain cou-
ylings it room temperature, that is, at a tempera-
ture much higher than the temperature of the three-
dimensional magnetic order resultirg from the in-
terchain couplings. The interchain couplings are
determined through their effect on the high-tem-
perature spin dynamics. Very weak couplings ean
be detected because they cause a dramatic distur-
bance on the long-time persistence of the spin cor-
relation due to spin diffusion in one dimension.

Concerning Tanol, first we have shown that the
frequency dependence of (T,) ' at room temperature
confirms the one-dimensional character of the ex-
change Hamiltonian (three- or two-dimensional
systems can be clearly excluded; see Fig. 5).
Secondly, the magnitude of the cutoff frequency has
been determined to be &o, = +„/50. This value,
together with the Neel temperature, leads to inter-
chain couylings J~ and J~ which are about the same
(within a factor 2), and are two orders of magni-
tude smaller than J. However, the same cutoff
effect may correspond to more isolated chains,
bui the length of which is limited to 35-50 spins.
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E, is the linear Heisenberg Hamiltonian, and
Nc

~r

(Al)

(A2)

where r, is a vector along the chain. In order to
adapt this calculation to the two-spin correlation
functions I'P(f) which are defined in Sec. II by Eq.
(9), we start from Eq. (33) of Ref. 6:

&s', (f)s', (0)) =-', s(s+1) e 'i"C,(f),
g g

(A3)

abc
dq, e 'g '«e ~g

(2v)'

dq„dq„C, t, (A4)

where g, b, and c are the lattice parameters of the
crystal. Then, the cutoff function y, (t), which is
defined by Eq. (20) of Sec. V, is evaluated as

y f(f) = - ' = exp[- (1+n')(f/fa)"']I,(t
I'((f)

3/2" f'g 3/3
&&f0

~

— fo ~'I —,(As)'
&&o

'
&~0

where I', (f) represents the correlation function for
an "ideal" Heisenberg chain [Eq. (21) of Sec. Vj.
In Eq. (A5) notations are the same as in Ref. 6:
I~ is the zeroth-order Bessel function of imaginary
argument; the characteristic time t~ and the pa-
rameter ~ are given by

2~a
&.'=Ivi(*+~H"'(, .~ gq &I

where D is the linear diffusion coefficient. The
function 4, (f) is given by Eq. (30) of Ref. 6, where
E~ represents Heisenberg Hamiltonian with only
nearest-neighbor couplings for an orthorhombic
lattice. To calculate the correlation function I' f(t),
we use Eqs. (A2) and (A3) as follows:

I';(f) = &so(f)s g(0) &/&(&g)'&

The authors are greatly indebted to M. Plaindoux
for the computation of the correlation functions. (g )Us (As)

APPENDIX A: CALCULUS OF THE CUTOFF FREQUENCY
FROM THE HENNESSY, McKLKEE AND RICHARDS

DERIVATION

The first description of the "cutoff" effect due
to small interchain interactions was presented by
Hennessy, McElwee, and Riehardse in a study of
the line shape of the electronic paramagnetic reso-
nance in nearly one-dimensional systems. The
method of these authors consisted in evaluating the
contribution of small interchain interactions E~ on
the wave-vector-dependent time correlation func-
tion &s,*,(t)s', (0) &, where

u'=~2/~x ~

where Jo is the exchange integral between nearest
neighbors in the chain, and J~ and Jz the exchange
integrals in two directions perpendicular to the
chain axis. For the cutoff function (A5), the char-
acteristic frequency may be evaluated by setting

yu( -1)

so that, for different values of ~ and for spin —,
'

and D = Ws(ZO/k) c~ (Ref. 2) the resulting ~, are
given in Table III.
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In Ref. 6, to get Eq. (AS), a "decoupling" is
proposed which is justified by short-time argu-
ments. It would be valid only for small values of

q, such as Dq ~ «(d, . In order to avoid this diffi-
culty, we performed a different derivation, which
is presented in Appendix B.
APPENDIX B: CALCULUS OF THE CUTOFF FREQUENCY

In a linear system of spins coupled by Heisen-
berg interactions E„ the two-spin correlation
function f';(t) is expected to display a diffusive
behavior,

(Bl)

The problem is to describe this function at time
t of the order of &,', &, being the cutoff frequency
that we assume to be much smaller than (e, = J0/h.
For this time, I';(t} is slowly decreasing in t '/0

as shown by Eq. (Bl). The description of the de-
viation from the linear diffusive behavior may be
obtained directly by expanding the operator s;'(t)
as a function of the perturbation E,. We define an
interaction representation whereby

ss(t) eetstt/tl st( )te tstt /](

The equation of motion for s0(t) is

for (J0/h)t» l.
Different causes can drastically change the linear

diffusive behavior. First we consider the influ-
ence of small interchain interactions E/ on l, (t):

r;(t) =(s',(t)s', (0))/((;)'),

—„,s', (t) =—[E,(- t), s', (t)] .

After integration, we get

~ t
s 0(t) = s'+ — dr [E (-~), s', (~)] .

0
(B4)

where

(g) —~&(~c+&1)t /& s e ~ (Ec+Ey) t /0s«& —e S0e

By successive iterations of Eq. (B4) and by using
the transformation (BS), the following perturbation
expansion is obtained:

t T

s'(t)=s'(r)+ — S e'* ' "(Ie (-e]s', ]e'*" ' ——,e'*"" /trr(r'(t t-e)(E (-e')s]r]]e '**' "
0 0 0 (B5)

The first term (of zeroth order) is the operator s, (t), which has a time dependence strictly given by the
intrachain Hamiltonian E, . The terms of higher order come from the perturbation Et. By setting up (B5)
in Eq. (B2) we get

t t
I f(t) =It(t) —~ dr dT (e' t" ' ' "[E/, s0(T)]e 'st ' " /" [s';(-t+r'), E/]}/((s 0) ) s.

0 0
(B6)

TABLE III. Cutoff frequency u~ as a function of the
quantity (Jg/K)(Jg/Jp) ~ for different ratios n = Jf/J2,
according to the derivation of Hennessy, McElwee,
and Richards (Ref. 6).

1
0.5

&0.3

(dip

1.7
1.25
1.11

(]() HJg/N) (Jg/Jp) ]

l.46
1.07
0.96

In this expression, we have skipped the first-order
term, which at this stage is not zero but which will
cancel exactly to zero after we have made the next
approximation. In the second term of (B6), the
high-temperature limit has been taken into account.

Now we consider that, for ~,t-l, the motion of
any operator s;(t) comes mainly from the compo-
nents s, (t) for small values of the wave vector q, .
The operator s, is defined in Appendix A by Fq.
(A2) and one has

g (t) etszt /]( s e tent /t(-
qg eg

—$t y dr etstt/l([E $ ~ ] e tent/t(-
0

t. P q

(B7)
For long time t and small values of q, , s,'(t)
evolves slowly In the limit q =0 we have ex-
actly

s(t~&(t) = s(,

because s«0& is proportional to the macroscopic
spin component S'=gt, s*; and [E, S']=0. In Eq.
(B7) we then keep only the static contribution and
in the second-order term of Eq. (B6) we make the
approximation to ignore the time dependence of the
operators $0(t) and s', (t}. The terms neglected are
corrections of higher order in the perturbation ex-
pansion. We note here that the same approxima-
tion is implicitly made in the derivation of Ref. 6.
Equation (B6) becomes
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(s&sc~/))[E s+]s'&zc~/ "[s~ E ])
((s())'&

The commutator [E/, so] is calculated for the
Heisenberg Hamiltonian

E,=ZZ&/s& s, .
fj

(88)

t
X dTt —T F T

0
(89)

The results of Tahir-Kheli and McFadden for
r&(7'), as they are explained in Sec. V, may be
used to perform the integration in Eq. (89). Ac-
cording to the condition

& e4r+" /c ~'0 ] 01o8

the integral in (89) is linearly dependent on time
and for the autocorrelation function (t = 0), it is
equal to z(JO/tt) 't, with z = 0. 54 as determined
numerically. We then write (89)

r;(t) / ~ (Z', + Z', )/tf' t

(Blo)
This result gives the cutoff function y&(t) defined
in Sec. V by Eq. (20). For (d,t 1, I'0(t} has the
form (81) and if we compare Eq. (810) with a de-
velopment of an exponential function

rs(t) s-&~,&)'/z (811)

As in Appendix A, we assume that E, couples only
nearest neighbors. The exchange integrals in two
directions perpendicular to the chain are J1 and J2.
Because of the interchain nature of EI, the four-
spin correlation functions which appear in the sec-
ond term of (86) can be changed into products of
two-spin correlation functions as I',(t) and this
gives

J J"i(()=('(()-'—,' ( ~ () ')) ')

(4~a l'/3

1/3
x (1+n')"' ~ —', (»5)

Jp

where c'= 0. 175 as determined numerically from
the integral in (89), with i = 1, equal to c'(Zo/tf) t.

Let us now examine the role of intrachain inter-
actions X,. The assumption of a diffusion process
requires that, in the chain, the total magnetic flux
be conserved. This property is expressed as fol-
lows:

N

Q ( &x(. /)) a &Ãg / ()(v-) 0dt &e 0 ~

fbi
(814)

This fundamental condition is satisfied by the com-
mutation rule

with n = Jz/J, . For s = z and D = v z(JO/R)c, we get
the values which are given in Table IV. These
values are greater than the results given in Ap-
pendix A and Table III. Therefore the present
derivation yields a more important cutoff effect.

Our calculation is basically a short-time ex-
pansion of the function yt(t) and, therefore, its
validity is limited to (dg& 1. However, it is rea-
sonable to assume that it predicts a correct evalu-
ation of &d,. If J&»Jz, Eq. (812) could give the
frequency transition from a linear diffusive be-
havior (t '/

) to a plane diffusive behavior (t '),
the three-dimensional cutoff taking place later. A

t ' evolution of I'&(t) would give rise again to a
divergence of the spectral density at zero frequen-
cy. Therefore, in the case J1»J& a different cal-
culation of the cutoff frequency must be performed.

The present derivation may be performers for
different correlation functions. The cutoff fre-
quency of the function I"0(t) is still evaluated by
(812). For the first cross-correlation function
I', (t), the characteristic frequency of the cutoff
function is

where the cutoff frequency is given by [S,3C,]=0 (n=z, +). (815)4'
1/3"("-')"'))(z )

TABLE IV. Cutoff frequency &, as a function of the
quantity g1/8') Qf/Jo) for different ratios e =J1/J2, ac-
cording to the present derivation.

If X, is only a Heisenberg Hamiltonian, such as

Ec 2J0~8$ Sf+1 ~

the correlation functions for any component of the
spin (n = z, +} may be described by a one-dimen-
sional diffusive behavior. This is the case for
I';(t) If 3C, is not. a perfect Heisenberg type and
has an extra Ising term

1
0. 5

&0.3

,[Vg/~) Vi/J, )' '] '

7.1
5.2
4. 7

t)E, = —2680K sos)„
i

(816)

(where z refers to a direction parallel to the chain}.
Eq. (815), with 3C, =E,+t)E„ is true for n =z but
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it is not for c(=+. Thus, the description of I",(t)
by means of a diffusion law (t '~ }remains valid.
It is no longer valid for I",(t). For dZO«ZO we can
again evaluate the deviation from the "ideal"
Heisenberg chain by considering 4E, as a pertur-
bation term. The derivation is the same and we
arrive at an equation like (810), which, for the
autocorrelation function, is

tween the external magnetic field H0 and the chain
direction, and rz is the distance between two spins
of the chain. In this case the cutoff frequency is
angularly dependent:

&P./3
p(4) Q $ 3 c s28 2

4~a '/' ey,' &3 '» ey.'

I'0{t)=1",(t) -+s{s+1)

X d~&-7- 0" 7, B&7
0

The nonsecular terms

d~) = —
& sine cos8 e"~Z ~' (s', sz+ s', sz)

f'D +0

where (t)0(4)((d) is the Fourier transform of yo '(t)
[Eq. (818}].

In a similar way, the intrachain dipolar inter-
actions lead to cutoff effects. The secular term

(to = g(l —2 cos e)Z g s(s)
Kf fj

(820)

has the same form as (816) and therefore it gives
a cutoff to I",(t). In Eq. (820), 8 is the angle be-

( (sgt/))s (s~t j 1) )
yo (+)

( + ( ))}2) (Bla)

is a four-spin correlation function, the spins s&

and s, 1 being located on the same chain. We note
here that such a term as the second one in Eq.
(817) appears in the Kubo-Tomita (KT) formalism
of the resonance line shape. ' In order to explain
the non-Lorentzian shape of the electronic-para-
magnetic-resonance (EPR) line in some one-di-
mensional Heisenberg systems, different au-
thors '@ have given the four-spin correlation func-
tion yo(()(t) a diffusive behavior, as the two-spin
correlation function I",(t) has. However, the KT
formalism, like the present derivation, is basical-
ly a short-time expansion, and for this reason it
can only be used to interpret pure-Lorentzian
shape. In Tanol, the EPR line shape is purely
Lorentzian to at least four linewidths for any direc-
tion of the magnetic field. Consequently, the func-
tion yo '(t) must be supposed to have an internal
cutoff which limits its evolution at times much
shorter than T2, the inverse of the linewidth.
Therefore, the usual approximations of the KT
description can be repeated, neglecting 7 compared
to t and replacing t by infinity in the integral of
Eq. (81V), which is still linearly dependent on time.
Then, as in the previous study, the cutoff function
is given by Eq. (Bll) and the cutoff frequency is

) a(a
38 S+J 2W 0 (d=(}

]

(tarn= ~ sin'e e~("Z, ' s', sj=3 ky2

~&X +V

give rise to cutoff effects on both I';(t) and I",(t).
The cutoff frequencies are now functions of the
electronic Larmor frequency, (u, =y SH0:

&4)
29 s s+ 1 2~ -~ y0~4' ro, sin28 cos28

2/3
+ —,'s(s+ l}2v ~ (t 0( '(2(0,}sin48

4' )'/3 Iy2. C3 '/' ey,' (822)

for the function I'0(t) and

J
c 3s s+~ 2w~ 0 (d& 81DHcos 8

) 2/3
+ Ss(s+1) ' y(4)(2(o,)sin'e, l

1/3 f' ay2 ~3 1/3 gy2

5= —,'s 8+12m —0 0(4) M=O I-Scos282

J
+ 29 s(s + l)2v gg). (t)0( )((d,) sin~8 cos 8

+4s(s+1} (t)0 (2(d,}sin 83 2''0 (4) . 4 hy2/c' tIy,
eJ0

(824)
Then combining (821), (822), and (824}we get

for the function 1 0(t).
By comparison with the EPR linewidth, we can

get a phenomenological evaluation of ~,. For this,
let us assume that only the intrachain dipolar inter-
action contributes to the linewidth rhH. (This is
not exactly true in Tanol where the anisotropy of
40 shows that the contribution of the interchain
dipolar interactions are not negligible. ) In this
approximation and because the EPR line shape is
Lorentzian, the linewidth is given in the KT for-
malism by the expression
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(B36)
This formula must be considered as an upper
bound of the cutoff frequency ur, . in I'o(t) due to all

the intrachain dipolar terms. In Tanol, the largest
value of the linewidth observed in a field HO=2000
Oe is hH = 3 Oe. ~ Therefore from (B24) we get

&o,/0 & 0. 026 K .
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