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%e pursue the qualitative features of ferroelectric phase transitions via a detailed ex~mirlation of a
simple model system, the Hamiltonian of which consists of a lattice of quartic anharmonic oscillators of
mass M interacting via a quadratic intercell interaction term. The intercell interaction term —assumed
to be long range in character —is treated in a molecular-field approximation. The eigenvalue and
eigenfunction spectrum of the resulting molecular-field Hamiltonian is obtained numerically exactly. This
permits us to construct the density matrix associated mth the lattice of coupled oscillators, and hence
calculate the related statistical properties for difFerent values of the intercell coupling g, the zero-point
parameter X:—h/y'M, and the temperature T. It is found that a secondwrder structural transition
occurs at some finite temperature T, if X)X,'(X), where the superscripts refer to the two cases where the
local particle potential possesses a single minimum (displacive) or a double minimum (order-disorder), re-

spectively. The functional dependence of X+(X) on X is qualitatively different from that of x (X);e.g. ,

x'(0) is finite, whereas x (0)= 0. A variational treatment of the molecular-field Hamiltonian employing a trial
density matrix of the displaced-Gaussian form yields the prediction that if a transition occurs it may be either
first or second order, depending on the values of the model parameters, as compared to the exact numerical
treatment, where the transition is always second order. The implications of the first-order transition are dis-

cussed, with the changeover from second- to first-order behavior being examined.

I. INTRODUCTION

Vfith an eye towards gaining a better understand-
ing of the qualitative features of ferroelectric
phase transitions, a number of simple models
have been examined in great detail recently. ' '
Particular emphasis has been placed on determin-
ing the applicability of certain self-consistent ap-
proximation schemes when applied to a theoretical
treatment of order-disorder and displacive transi-
tions. In two earlier works4'6 we examined a
prototype ferroelectric in which zero-point fluctua-
tions played the role of thermal fluctuations. The
primary concern there was ascertaining the range
of validity of various approximation schemes when
applied to a treatment of the molecular-field form
of the Hamiltonian. In the present work we treat
a system of coupled anharmonic oscillators at
finite temperature, with the zero-point fluctua-
tions entering as an additional parameter. This
is of considerable interest, since most previous
works have been classical in nature and have
neglected zero-point effects. ' "' Our only ap-
proximation here will be the application of a molec-
ular-field approximation to the intercell coupling
term, which is assumed to be long range in char-
Bcter. One of the main thrusts of the present
work will be directed toward an exact numerical
evaluation of the density matrix associated with
the prototype ferroelectxic within the context of

the molecular-field approximation, no classical
assumptions being made. The results of this cal-
culation will then provide us with a basis for dis-
cussing the range of validity of a variational treat-
ment of the molecular-field Hamiltonian.

The model Hamiltonians which were used pre-
viously by us4'6 as the analog of a prototype ferro-
electric have the form

, +4u', +4u', ——,
' Z' X(ff')u, u,',

where g, denotes the displacement of an ion in lat-
tice cell f. The Hamiltonians (1) have been scaled
such that only two parameters appear —an effec-
tive intercell coupling )t and a parameter A = S/V M
which is a measure of the zero-point fluctuations.
Here, M is some effective (scaled) mass associated
with each ion. If the sign of the quadratic term
in Eq. (1) is positive, each particle feels a local
anharmonic potential with a single minimum,
whereas if the quadratic term is negative, the local
potential is double-welled in character. In the
former case we refer to a "displacive" regime,
whereas in the latter case we refer to an "order-
disorder" regime. There is some ambiguity in
this definition, of course, since if the thermal
energy E~ T exceeds the depth of one of the minima
of the double-mell potential, then the order-dis-
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order situation goes over to a situation which is
displacive in character.

In the molecular-field treatment of the crystal
lattice, one approximates the density matrix p,
of the entire crystal by a product of single-par-
ticle density matrices localized at each lattice
site; i.e. ,

N

p,(f„f„... , f„)=g p(f„).

A minimization of the fxee energy of the cxystal
then yields an optimum form for the single-par-
ticle density matrix which is canonical in form,
1~ e, y

p(I)=e '"&/Tr(e ' &), P= (If-,T) ',

field approximation or MFA) can give rise to first-
order as mell as second-order transitions. If the
local potential in which a single particle moves has
double-mell character, then the MFA yields either
no tx'ansltion or a first;order transltlon How-
ever, if the local potential possesses single-mell
character only, we find that if X & )i, (X) the transi-
tion in the MFA is always first order, whereas
for ytt(P. ) & y & )f, (A) the transition is second order,
where 16 & y&(X) & ~ for 0 & P. & ~. The changeover
from second- to first-order character in the MFA
is discussed, together with other concluding re-
marks in Sec. IV.

II. NUMERKAL TREATMENT OF THE MOLECULAR-FIELD
HAMILTONIAN

2 d a 48) = —
g P. 3 +4u(+4u( —)f(u)u(

ding

X=-~' x(II') .

The average particle displacement (u) which
appears in (Sb) is evaluated using the density ma-
trix (Sa) and as such depends self-consistently on
the molecular-field Hamiltonian (3b). It should
be noted that when one evaluates the total energy
(or free energy) per particle of the lattice one
must be careful to include a term —,')t(u) in order
to avoid overcounting the interactions.

In Sec. II me discuss the numerical evaluation
of the matrix elements of the molecular-field
density matrix (3a) for various values of the pa-
rameters X and A. Of particular note is the fact
that a transition in the system of coupled oscil-
lators from a state with (u) =0 to a state with (u)
v 0 will occur only if g& g(X), where the super-
scripts refer to the sign of the quadratic term in
(Sb). If this criterion is fulfilled, the transition
is second order abvays. It should be noted that
the dependence of )t'().) on X is markedly different
t'rom that of X (X) on A. Indeed, we will find that
0& y (X) & ~ for 0 & x& ~, whereas g'(X) approaches
the finite value 8 as ~- O.

Having determined the diagonal matrix elements
of the density matrix (3a), the temperature depen-
dence of the order parameter (u) is determined
for a relatively wide range of values of the param-
eters g and A in both the order-disorder and dis-
placive regimes. The temperature dependence
of (u) obtained from the exact numerical treatment
of (Sb) is then compared to the behavior of {u)
obtained from a variational treatment in mhich the
density matrix (Sa) is approximated by a displaced-
Gaussian form. As is by nom mell known this
latter approximation (sometimes called the mean-

Assuming that it is energetically favox'aMe for
the system of coupled oscillators to undergo a
transition to a statistical state in mhich the ther-
mal average of u is nonzero, then within the mo-
leculax-field approximation this average displace-
ment (u) will be determined self-consistently from
the expression

&u& = Tr(e '"~u)!Tr(e '~t) (4)

In order to carry out the evaluation of (u) as a
function of temperature for different values of the
parameters X and y, me begin by determining the
eigenfunctions and eigenvalues of the Hamiltonian

as functions of an externally applied field I'; i.e. ,
me solve

a~„'(E)= Z„'(E)y„'(E) .
A Hamiltonian matrix is constructed by expanding
g„'(E) in a complete set of optimized harmonic-
oscillator states'0 y'; i. e. ,

g(E) =5 C'„.(E)y'. . (7)

The matrices ttg„' (E)tt were numerically diagon-
alized, yielding g'„(E) and E„'(E)as functions of E.

From a knowledge of the eigenfunctions and
eigenvalues of (5) as a function of field E, the aver-
age displacement as a function of fieM may be
evaluated from

(u) =5 (y'„(E)
i ui t) „'(E))e ~"'~

For a given g, X, and T, the self-consistent {u)
then x'esults fx'om the requirement that

&u)~=EX '

fox' some value of E
Obviously, the criterion that a transition oeeur
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FIG. 1. A,-dependence of the critical 4:oupling con-
stant X~ associated with the exact treatment of H'.

at all is simply that there must be a nonzero value
of (u) at T= 0. This translates to the require-
ment that for given g and X,

(10)

The relation (10) determines the critical values

}t,'(A) below which no transition will occur for the
displacive or order-disorder case, respectively.
If, however, g&X,'(X), then a classical second-
ordertransitionwill occur at some finite tempera-
ture T„itwh (u) ~ (T, —T)' in the transition re
gion.

In Figs. 1 and 2 we plot the behavior of X', (X)
and }t,(X) as functions of X. It will be noticed that
g(A)-8 as A-0 (classical limit), a feature which
follows directly from the Hamiltonian H', if one
negiects the kinetic- energy term. Furthermore,
g,'(A) is a monotonically increasing function of X

for all A, exhibiting positive curvature.
The behavior of }t,(A), illustrated in Fig. 2, is

qualitatively different. From the limiting value

}t,(0) = 0, X,(A) increases extremely rapidly and,
in contrast to the behavior exhibited by }t',(X) in
Fig. 1, displays negative curvature over the en-
tire range of X. Of course, we might expect )t'(X)
and ~(A) to asymptotically approach each other
in magnitude for large A, since it is in this large-
A. regime that the order-disorder limit exhibits
displacive features.

In Figs. 3(a)-3(c), 4, 7, and 8 we exhibit the
temperature dependence of the order parameter
(u) as obtained from the exact numerical treat-
ment of the molecular-field Hamiltonians for
various values of g and A. Figures 3(a)-3(c) and
4 refer to the case where the local potential has
double-well character, whereas Figs. 7 and 8 are
associated with the purely displacive situation,
where the local potential possesses single-well

IOQ.Q—

IQ.O—

I.O—

0.1—

O.OI—

O.OOI

O. l 1.0 10.0 100.0

FIG. 2. A.-dependence of the critical coupling con-
stant y~ associated with the exact treatment of H .

character only. Also plotted in Figs. 3(a)-3(c),
4, 7, and 8 are the results of a variational treat-
ment of the molecular-field Hamiltonians, a
treatment which will be discussed in Secs. III
and IV.

We have considered two values of the zero-
point parameter A: A =0.2 and X=1.0. For the
order-disorder situation where the particle moves
in a local double well the value of A=0. 2 yields a
ground-state wave function which corresponds to
the extreme localization of the particle at the
position of one of the minima of the double-well
potential. " When A. = 1.0, the zero-point energy of
the particle greatly exceeds the depth of one of
the potential minima and the behavior of the sys-
tem becomes displacive in character, because
the particle distribution is peaked near u = 0 rather
than u=+ I/W. The values of X,(A) which cor-
respond to the values X= 0.2 and X= 1.0 are 0.007
and 2. 640, respectively. If X = 0 (extreme clas-
sical limit), the molecular-field approximation
would predict a second-order transition for any
value of X in the double-well case (i. e. , }t,(0) = 0),
with (u) approaching a saturation value of
(}(+8)'~ /4 for T=0. It is clear from Figs. 3(a)-
3(c) and 4 that the actual saturation value of (u)
decreases from the value (}i+8)'~'/4 as the zero-
point energy increases. This latter effect is to
be expected, since the inclusion of zero-point ef-
fects tends to localize the particle distribution at
a point nearer the origin. It is interesting to
note that for transitions occurring in the extreme
order-disorder regime, the transition is so
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abrupt that it is almost first order in character.
Clearly, this latter feature has its origin in the
fact that the saturation value of (u) approaches the
finite value of 1/W as X-O, whereas the transi-
tion temperature can be made infinitesimally small
by decreasing sufficiently the value of X.

The primary effect of increasing the magnitude
of the zero-point fluctuations in the purely dis-
placive cases (single-minimum potential) illustrated
in Figs. 7 and 8 is to increase g(X) as well as to
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FIG. 4. Same as Fig. 3, but with X fixed at the value
1.0 while g assumes the values 4. 0 and S.0.

increase the second-order transition temperature
T, (for fixed X). The critical values of g(A) cor-
responding to the values A. =0.2 and A=1. 0 are
9.509 and 13.972, respectively. In contrast to
the order-disorder situation, however, the satu-
ration value of the order parameter (u) continually
approaches zero as y- 8. For a= 0 (classical
limit) the saturation value of (u) is (g —8) /4,
with this value being decreased with the inclusion
of zero-point fluctuations. It is clear that the
abrupt, almost first-order, transition which the
order-disorder situation exhibits at low tempera-
tures will not manifest itself in the purely dis-
placive situation, since, for fixed A. , the satura-
tion value of (u) continually approaches zero as
T, approaches zero.

For the numerical calculations reported in this
section a 200@200 matrix was diagonalized to
obtain the first 50 eigenvalues and eigenfunctions
of the Hamiltonians (5). These lowest 50 eigen-
functions and eigenvalues were then used in the
construction of (u)~ using Eq. (8).
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FIG. 3. (a)-(c) Temperature dependence of the order
parameter as predicted by the exact and MFA treatments
of the molecular-field Hamiltonian H . The parameter &

is fixed at the value 0.2 while the intercell coupling g
assumes the values 0. 05, 1.0, 5.0, and 10.0, respec-
tively. Both the order parameter and the temperature
are expressed in the reduced units discussed in the text.

III. VARIATIONAL TREATMENT OF THE MOLECULAR-
FIELD HAMILTONIANS

A natural approach to the treatment of the
Hamiltonians (1) within the context of the molecular-
field approximation is to introduce a ty'ial form
for the single-particle density matrix 3(a) and then
determiL'e the optimum density matrix of this form
through the application of a variational principle.
Recently, the terminology mean-field approxima-
tton (MFA) has appeared in the literature, refer-
ring to a variational treatment of the molecular-
field approximation in which one assumes a dis-
placed-Gaussian form for the trial single-particle
density matrix. In this section we wish to examine
the content of this approximation in some detail
and, in particular, compare our results with the
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resuLts of the exact numerical treatment of the
molecular-field Hamiltonians discussed in Sec.
IV.

%e begin by assuming that the trial single-
particle density matrix is to be constructed from
a trial Hamiltonian harmonic in form: i.e. ,

p{f)=e "4/Tr{e '"~),

&u& =0,
0 = x [a 8+486],

and a displaced solution with

&s&'= -1» [~ 8+48&- X]

0 =I [a 8+4&h+48&u& ] .

(1Va)

(17b)

2
2

2a, =--,x, +, a {u, -& u))
dg) 2X

(i2)

and the frequency A and the relative displacement
(u) are to be treated as variational parameters.
The free energy per particle may be constructed

—, "n.())L,(...).,
I

1

=f()+ 4((u+ (u) )&(&+4&(u+ (u&)') ()

—4' . (f'&(n + &n&)'&.- -,' &n)r(E' r(n n '), (
{14)

where the subscript zero refers to a statistical
average using the density matrix p{l) with &u& = 0.
Also,

f0= —P 'ln Tr(e ~)) .
H we define a-=(u'&, and note that for h»mo»c
averages &s )»= 3&gal )(), then (14) takes the form

f'=f +()46+ 4(u &+12rP+244&u&

+4&m&'- (1/2X')~f1'- —,
'

&u&'X . (iS)

f'= —Tr np()) pr' ~ (f')nup(l)I, ((8)
N

where the form of p{l}is taken from (11). This
expression can be immediately rewritten as

f'= —4 'ln Tr(r i)+ TrIp(l) 'n4,' ~ 4n, — () n,2a
E()=&u)[+ 8+486+16(u& —X] . (18)

Differentiating both sides of (18) with respect to
E&&and setting &u& =0, we obtain

6&u& = [a 8+486- x] = I
0 (s&~0 0 -Px

Thus, if the divergence of the static susceptibility
is to be associated with a long-wavelength phonon
becoming soft, then the quantity 0 —X»X= &d~()

should be identified with the soft mode. That this
is indeed the case is derived independently in
Appendix A via a dynamic-linear-response analy-
sis»

Equations (isb), (17a), and (17b) must be solved
self-consistently for the quantities 6, 0, and
(u&. For convenience, we rewrite the equations
in terms of v =

&d() /X, so that for the disordered
state (&u& =0) we have

The frequency 0 which appears in Eqs. (17a) and
(17b) is not the usual "soft-mode" frequency; i.e. ,
0 does not vanish at the transition temperature
if the transition is second order, nor does it vanish
at the supercooling point if the transition is first
order. In order to properly identify the long-
wavelength "soft" collective mode associated
with the system of interacting oscillators, we cal-
culate the static susceptibility of the system. If
we apply an external field E0 to our system of
oscillators, this has the effect of adding a term
—E()&u) to (15). Thus, the minimization of (1&a)
yields the equation

Using the evaluations

f()= P 'ln(2 sinh —,
' PD}

~ = (X'/2fl) cot —,
' Pfl,

(1Sa)

(1sb)

& = 4'» [~'+ x+ 8],

,~f » coth[» XP(&4& + X) ]2[(d +XJ

and for the ordered state (&u)» 0)

(20b)

we may minimize f' with respect to &u& and O.
The result is

6 = r() [- z &4) + x+ 8], (2ia)

6 u)
= 0 = &u) [+ 8+ 48m + 16(u& —X], (i&a)

Qf
4 j. 2 5d

DA
=0= +4+244+24(u& — » 0

(1&b)
Equations (1&a) and (1&b) yield two solutions: an
undisplaced solution with

coth[ —'Xp{&4& +X) ] .2[~ +X]
(21b)

In Fig. 5 we illustrate the graphical solution of
these two sets of equations. Subsections III A
and III 8 will be devoted to a discussion of the
order-disorder and displacive situations, respec-
tively. Particular emphasis mill be placed on
three points: (i) the criterion for a transition to
occur at all, (ii) the order of the transition if it
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FIG. 5. Graphical solution of the MFA equations
(10a}-(21b). The points a and b are the limiting values
of d (T& 0) and 4(T=O) as w2 0, respectively. At point
c 4(T) assumes the value Pt, coth(I}X~12/2T)j/(2X~~2), while
at the point b 4(0) has the value X/(2X~~~). A solution
with a vanishing mode

frequency

{d can occur only at the
point e, where A(T) assumes the value (X+8)/48 for the
order-disorder and displacive situations, respectively.
If the transition is first order, the temperature at which
the point e is reached is the supercooling temperature,
whereas if the transition is second order this tempera-
ture is the transition temperature.

occurs, and (iii) the criterion for the supercooling
temperature to be positive in the case where the
transition is first order.

A. Order-disorder case: local double-minimum potential

{—(g~j2+ X+8)
2(&v + X)' 48 (22a}

1
4{(u'+X)"' 96 '

Eliminating &o from (22a) and (22b) yields a crit-
ical value y, (X) defined as

}t,(~) = (24&)"'-1," . (23)

lf for a given value of X, X & y, (a), then no ordered

En Sec. I we found that for the system of coupled
oscillators moving in local double-minimum po-
tentials, a classical second-order transition oc-
curs if g& X,(A). We wish now to establish the
analogous criterion for the variational approxima-
tion. From Eqs. (21a) and (21b) and Fig. 5 we
may establish a necessary criterion for an ordered
solution to exist at 7=0. We require that 6(T=O)
=- X/ [2(&a + g)'~ ~] be tangent to the straight line
b = (- ~ j2+ X+ 8)/48. Thus, we obtain the two
equations

solution is possible at T= 0 within the context of
the variational treatment. For 1=1, }{,(X)
=2. 987, which compares with the value 2. 640
obtained from the exact numerical treatment of
the molecular-field Hamiltonian H . %e might
also note that for X & 24( P)'I = 0. 5132, an ordered
solution is always possible at T=0.

%e now demonstrate that for the order-disorder
situation the MFA yields only first-order transi-
tions. From Fig. 5 we see that a necessary
criterion for the transition to be second order
is that the curve of 6 vs ~ must at some temper-
ature intersect the ordinate at the point p. Fur-
thermore, the slope db, /d{2 ) must exceed the
slope of the lower dashed straight line at this point.
These two requirements lead to the two conditions

&x"'~ ~
2X~q ~ coth

I
= +4a {}i+8)2g j (24a)

XX~~ ~
A.

~
& A.g~~~ t 1coth + coth

i
—1

(25}

The second term in the parentheses of Eq. (25) is
always greater than zero. The first term may
be rewritten, using Eq. (24a), as

4X 24& 96Xala 24
(}{+8)= (X+8}&8

Hence, the inequality (25) is always violated and
the transition is necessarily first order. Having
established this fact concerning the character of
the transition, it is now of interest to inquire
into what conditions must be met in order that the
supereooling temperature associated with the
first-order transition be positive. By the super-
cooling temperature T„we of course mean the
temperature at which the disordered solution be-
comes unstable —this is represented by the point
c in Fig. 5 . %'e had mentioned previously that
if the transition is first order, then T is deter-

d(
—I) 2[

—&+ ]llz o
2T [+ +X] 88'

(24b)
If the transition were second order, the tempera-
ture determined from (24a) would be the second-
order transition temperature, whereas for first-
order transitions the temperature so determined
is the supercooling temperature. %e now wish
to demonstrate that (24a) and (24b) cannot be
simultaneously satisfied and hence the predicted
transition, if it occurs at all, is first order.
Evaluating the derivative in (24b) yields the in-
equality
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mined from the relation (24a). It follows im-
mediately, then, that a necessary condition for
T„ to be positive is

&& kX"'(X+8) ~ (26)

For A=1, we must have X&4 and for A=0. 2 we
require y &0.332 in order that T„&0.

For a given value of the coupling g, we may
distinguish two critical values of the zero-point
parameter. First, from Eq. (26) we define

h=kX" (ii+8) (27)

TABLE I. Values of T~~, T~, and T~ for various val-
ues of X and X within the context of the MFA treatment of
the Hamiltonian .

T„, T„and T,„for the MFA treatments illustrated
in Figs. 3(a)-3(c) and 4.

B. Displacive case: local single-minimum potential

It might be anticipated that the MFA treatment
of the Hamiltonian 3C' would yield quantitatively
better results than the same treatment of K, the
reason being that an optimized-Gaussian density
matrix provides a better representation of the
true single-particle density matrix if the local po-
tential is an anharmonic single-well potential
rather than a potential which is double well in
character. This is indeed the case as we shall
see.

The exact numerical treatment of the Hamiltonian
H' predicted a second-order transition if
1& y'(X) and no transition otherwise. In order to
determine whether the MFA treatment of 3C' yields
a second-order transition or not we proceed as
we did in the Sec. IG A. From the discussion
preceding Eqs. (24a) and (24b), together with Fig.
7, we see that the necessary criterion for the
transition to be second order is that the following
two relations be satisfied:

above which the supercooling temperature is nega-
tive. Second, we define from Eq. (23) the value

and

1/8

1/ z coth = zz (X —8)
2X

(30a)

&Z=h-(X+V)"' (28)

above which no ordered solution is possible.
Noting that A., & A&, we have three possible cases:
(i) A & A, & Xz, for which an ordered solution is
possible with T & 0; (ii) X, & A & Xz, for which an
ordered solution is possible, but T„&0; (iii)
A& & A~ & A, for which no ordered solution at all is
possible.

Finally, we consider the definition of the super-
heating temperature T,„, i.e. , the temperature
at which the ordered solution (if it exists) becomes
unstable. The superheating temperature is the
temperature at which one of the temperature-pa-
rametrized curves of Fig. 5 becomes tangent
to the lower dashed line. This requires the si-
multaneous satisfaction of

2I. ~ +xj2, . „. oe "
i

' ~ xP")=/;I-l ' ~ x ~ &i2T

and

r —~

(
—3) 2[

—z ]1/z 2T t +X] 96

(29b)
The simultaneous solution of (29a) and (29b) for
T,„can be carried out numerically. In Table I
we summarize the results of the calculation of

(30b)

Equations (24b) and (30b) are the same, whereas
(30a) is obtained from (24a) by replacing the
right-hand side of (24a) by (y- 8)j48. The in-
equality (25) must again be satisfied. However,
whereas the first term in the parentheses of Eq.
(25) was greater than $ for the order-disorder
case we now have that

&&%X"'(X-8). (31)

For fixed X, Eq. (31) determines a limiting value
yz(A) of the coupling strength such that if y& yz(X)
no transition will occur. The dashed plot in Fig.
6 displays the A dependence of gz(A) —the values
of Xz(A) corresponding to A=0. 2 and A=1. 0 are

~x"' '
3/ 3 coth I

= (y —8)
4X 2T ] 96X

and this last quantity may be either greater than
or less than $. Thus, we have the possibility
of either a first- or second-order transition oc-
curring. In order to determine whether a transi-
tion occurs at all, we require that the temperature
(T, or T„)determined from (30a) be positive.
Thus, since cothx&1 for x&0, we must have
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FIG. 6. &-dependence of the critical coupling con-
stants Xp and y& associated with the MFA treatment of
H+ If Xp P) &y &y& Q.), the transition predicted by the
MFA is second order.

9.553 and 14.338, respectively. In the classical
limit, A-0 and X()(X)- &. Assuming now that
g& Xo(P.) so T, or T„is positive, we may eliminate
the temperature from (30a) and (30b). This yields
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FIG. 8. Same as Fig. 7, but with X fixed at the value
1.0 and y assuming the values 16.0 and 24. 0 such that
X (1.0) &16.0&X (1.0) &24. 0.
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which must be satisfied if the transition is to be
second order.

E(luation (32) may be solved numerically, yield-
ing an upper critical value y, (X) above which the
transition is first order. Thus, we conclude
that for )i & yo(X) no transition is possible, whereas
for yo(X) & y& X, (X) the transition is second order.
If y exceeds the critical value y, (X) the transition
is always first order. A plot of )(,(X) vs X is given
by the solid plot in Fig. 6. It is to be noted that
in the classical limit (X-O), g~(X)-16. The cor-
responding values of y, (X) for X=0.2 and X=1.0
are 16.2 and 18.21, respectively. In Figs. 7 and
8 we illustrate the changeover from second- to
first-order character for two values of the zero
point parameter X. Table II summarizes the

values of T, T„and T,„associated with the MFA
cases treated in Figs. 7 and 8.

oo
0.0 0.2 0.4 0.6 0.8 1.0 I.2 1.4 1.6 1.8

TEMPERATURE

FIG. 7. Temperature dependence of the order param-
eter as predicted by the MFA treatment of H+. The pa-
rameter X is fixed at the value 0.2 while y assumes two
values 12.0 and 24. 0 such that Xp(0. 2) &12.0&)(((0.2)
&24. 0. These plots illustrate how the transition pre-
dicted by the MFA changes from second- to first-order
character as the coupling strength is increased beyond
the critical value g~(0. 2). Also plotted is the tempera-
ture dependence of the order parameter obtained from
the exact numerical treatment of H'. The reduced units
discussed in the text are used.

IV. DISCUSSION

In the previous sections we have treated the two
molecular-field Hamiltonians H' of our model
ferroelectric numerically exactly and also varia-
tionally. An important difference between this
treatment and previous treatments is that we do
not neglect zero-point fluctuations at finite tem-
perature; i.e. , no classical approximation is
made. A classical molecular- field treatment of
the order-disorder Hamiltonian X predicts that
a second-order transition occurs at some temper-
ature T, for any value of the coupling strength
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TABLE II. Character of the transition predicted by
the MFA treatment of w' for various values of & and X.

0. 2 12.0
24. 0

1.0 16.0
24. 0

Character of
transition

second
first
second
first

8. 0

7.74

Tc

0.960
8. 1
2. 056
7. 84

8.2
8.2

7. 88

(u) =a'(X)(T, —T)"', (33)

where a'(2.) is some function of X. In order to
demonstrate that Eq. (33) holds, we refer to Eq.
(8) in the form

&u)~= 4'(F, Z, T), (34)

where @'(F,A, T) is an analytic function of F and
T. Expand (34) about F=0,

( )
dC (F~ A~ T) F+B(P., T)F2+ ~ ~ ~

1 0
(35)

X & 0. The inclusion of zero-point fluctuations,
however, prevents the particle from becoming
localized if the coupling strength is too small.
Thus, we found that for A. finite, no transition oc-
curred if y & }i,(P.) and a second-order transition
occurred otherwise. The behavior of X,(A) as a
function of X is summarized in Fig. 2. The strik-
ing feature of this plot is the extremely rapid in-
crease of, g, (A) for A small —thus, in the extreme
order-disorder limit the zero-point fluctuations
play an important role. For A. & 1.0, the particles
no longer "feel" the hump in the double-well po-
tential and we have effectively entered the dis-
placive regime. In this regime the effect of zero-
point fluctuations on X,(A) is less marked.

An analog of the displacive ferroelectric is pro-
vided by the model Hamiltonian B'. The exact
numerical treatment of this molecular-field
Hamiltonian indicated that a second-order transi-
tion would occur if the coupling strength X exceeded
some critical value )i', (X) which depended on the
magnitude of the zero-point fluctuations. In the
classical, A-0, limit X', approaches the value 8.
The behavior of X', as a function of A is summarized
in Fig. 1. The effect of zero-point fluctuations
on the magnitude of X,

' is not as marked as was the
effect on X,. This is to be expected, since the
particles are already localized in local single-
minimum potentials centered at u =0. Indeed,
from Fig. 1 we see that the increase of X', with A

is quite slow until A & 10.0.
The temperature dependence of the order pa-

rameter (u) predicted by the molecular-field treat-
ment of the model Hamiltonians 3C' in the region
near the second-order-transition point is

Only odd powers of F occur because @'(F,X, T)
and all even derivatives thereof vanish at E= 0.
The transition temperature T, is determined from
the relation

de'(F, X, T.)
X (38)

Thus, we expand the first term in (35}in powers
of (T T,), -obtaining

(u) = [}i + (T- T,)B(2., T,)+ ]F+A(P, , T,)F

and we have evaluated A(X, T) at T= T,. Inserting
now the self-consistent value (9) for F we have
that

}i '(u) = [}i '+ (T T,)B(X—, T,)](u)

+A(A, T) }i( )u'. (37)

Equation (37) yields two solutions:

and

(u) =0 (38a)

( )2 2 B(Xq Tc) (T —T)
A(X, T,)

(38b)

Equation (33) follows immediately from (38b).
In Ref. 6 we evaluated the true ground-state

wave function associated with the molecular-field
Hamiltonian H in the extreme order-disorder
limit. We examined how this ground-state wave
function evolved for various values of A in the
presence of a linear symmetry-breaking term.
The important point to note is that in the order-
disorder limit the particle distribution defined by
the molecular-field wave function is two peaked
in character, the two peaks being approximately
centered at the minima of the double-well potential.
Because of the presence of the linear symmetry-
breaking field the two peaks will have different
amplitudes, of course. When the molecular-
field wave function was compared with an optimized
variational function of Gaussian structure it was
found that the variational function, which was
single peaked in character, overestimated the
particle localization for uw 0 and severely under-
estimated the overlap near u = 0. The same quali-
tative conclusions hold at finite temperatures;
i.e. , the density matrix (11)yields a particle
distribution which exhibits only a single peak near
one of the minima of the local double well. In
contrast to this, the molecular-field density ma-
trix (3a) has a two peaked structure. Hence, the
var iational density matrix underestimates the
overlap of the particle distribution at u = 0. This
has important consequences which we now discuss.

Referring to Figs. 3(a}-3(c)and 4, and Table
I, we see that for X small the MFA treatment of
H is an extremely poor approximation in the
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transition region. Indeed, the MFA yields first-
oxder transitions only, whereas the exact molec-
ular-field treatment yields no transition or a
classical second-order transition if X & X,{X},re-
spectively. An extreme effect of the overlocal-
ization of the variational density matrix for u40
can be seen from Fig. 3(a). While the molecular-
field treatment predicts a transition at T= 0.02,
the first-order transition of the variational treat-
ment does not occur unitl T=0.40. Because the
variational density matrix is so localized for
A = 0.2, there is virtually no temperature depen-
dence to the oxder parametex at all up to the
first-order transition point —(u) essentially re-
mains at its saturation value at T = 0 until it be-
comes energetically favoxable to make a first-
order transition to a disordered state. Again,
because the variational density matrix is more
localized than the molecular- field distribution, the
saturation value of (u} at T = 0 predicted by the
variational treatment is larger than the molecular-
field value.

As we pointed out in the discussion following Eq.
(23), for X values &0. 5, a first-order transition
always occurs in the variational treatment —even
for g= 0. This is in direct contrast to the molec-
ular-field treatment, where y must exceed g, (X)
in order for a txansition to occur. However, it
is to be noted that for small enough A., the molec-
ular-field transition is almost first order in
character as can be seen from Figs. 3(a) and 3(b)
fox g=0. 05 and g= l. 0. This is because the satu-
ration value of (u) approaches a constant value as
g- y, (P.), whereas T, can be made to approach
zero as g- y, (X). In any case there seems to be
little connection between the molecular field T,
and T,(MFA), at least for small X and X. We
note that for y= 0.05, ~ = 0.2 the two predicted
transition temperatures differ by over an order
of magnitude.

&he supercooling temperature of the MFA may
be negative, zero, or positive depending on the
values of the model parameters. Figure 3(a),
which illustrates the extreme order-disorder
limit, presents a case where the effective super-
cooling temperature is negative. In Fig. 3(b) we
have increased the magnitude of the coupling g by
a factor of 20 and the supercooling temperature
becomes positive in accordance with Eg. (26).
In Fig. 4 we have increased the zero-point param-
eter A to the value 1.0 and have illustx"ated two
cases where T„is zero ox positive for values of
y=4 and 8, respectively.

It is clear that for small values of y and A. , the
extreme order-disorder case, the first-order
transition point of the MFA gives no hint as to
what the true transition temperature might be-
the two transition temperatures do not agree at

all. However, for larger g values such as ere have
1n Figs, 3(c) and 4 the first-order transition tem-
perature agrees reasonably weQ with the transi-
tion temperature associated with the molecular-
field second-ordex' transition.

In retrospect, the fact that the MFA px'ovides
a poor description of the order-disorder regime
was to be expected. Indeed, as me have seen,
the variational density matrix exhibits the incor-
rect symmetry in the oxdered state. The tx'ue

particle distribution immediately below the second-
order transition point is a nearly symmetric bvo-
peaked structure with non-negligible overlap at
u = 0. In contrast to this, the variational density
matrix is a single peaked-Gaussian structure
for al.l values of the displacement. It is thus to
be expected that the variational treatment @rill not
describe the transition region adequately. As the
temperature is lowered, the true distribution be-
comes more like a displaced-Gaussian structure.
Thus, near T=O and far from the transition the
variational treatment is expected to work best.
This expectation is borne out in Figs. 3(a)-3{c)
and 4, where we see that the temperatux'e depen-
dence of the order parameter as predicted by the
MFA is a reasonable facsimile of the molecular-
field temperature dependence far from the transi-
tion.

Befox'e proceeding to discuss the extreme dis-
placive limit, it is of interest to examine the
temperature dependence of the correlation func-
tion d. Remembering that 6 has an implicit as
well as explicit temperature dependence we evaluate
the temperature derivative using Eg. (15b). Thus,

dh 8 x 0 dA x g 0
dT sA 20 2T dT 4T 2T

(39)

Using Eg. (IVb), we may express dQ /dT in terms
of da/dT as

96g2
8T (AT

(40)

Insel ting (40) in (39) we obtain

da x', 0
+ csch

2
I+96K A

~
. (41)

8

There are two points to note: (i) As T-O, 0 re-
mains finite and csch (0/2T)- 0. Thus, (db, /dT)

0 as T 0, (n) From Fig, 5~ as T Tg„
sa/s(0 )- —I/(96X ). Thus, (da/dT)- ~ as
T- T,„. From Eq. (1Vb) we see that the tempera-
ture dex'ivative of the squared order parameter
is directly proportional to (d6/dT}; i.e. ,

d(N&'
3

d&
(42)

KENT (AT
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Thus, we see that

d(u)' 0, r-0
dT oy T Tih

a feature which is obvious in Figs. 3(a)-3(c) and
4.

Referring now to Figs. 6-8 and Table II we
find that with certain exceptions the MFA applied
to the purely displacive +ituation yields results
which agree reasonably well with the predictions
of the exact treatment of the molecular-field
Hamiltonian H'. This is to be expected, simply
on the basis that the variational density matrix
mirrors the exact distribution obtained from II'
more closely than that obtained from H . Thus,
the temperature dependence of (u), obtained within
the framework of the MFA, should be at least
quantitatively similar to the temperature depen-
dence predicted by the exact molecular-field
treatment. For the most part this is true —how-
ever, exceptions occur for large values of the
coupling strength g. %e saw in the discussion fol-
lowing Eq. (30b) that if, for fixed X, the coupling
exceeded y~(X) then the transition was first order,
in contrast to the classical second-order transi-
tion predicted by the molecular-field treatment.
Furthermore, for X & yo(X) no transition at all oc-
curred. Thus, the MFA in this situation yields
a second-order transition only if y, is restricted
to the interval )fo(X) & X «X,(X). In this region the
MFA yieMs qualitatively correct results for the
temperature dependence of gg, although the pre-
dicted transition temperature is always too low.
If the MFA transition is second order, then the
transition temperature T, is determined by Eq.
(30a). On the other hand, if the MFA transition
is first order, then Eq. (30a) determines the
supercooling temperature T .

One can easily produce an argument as to why
the T, (or T ) derived from the MFA is less then
the T, predicted by the exact molecular-field treat-
ment. In Ref. 6 we demonstrated that the "two-
level" approximation was a very satisfactory ap-
proximation in the molecular-field transition re-
gion. The finite temperature extension of the two-
level approximation yields the formula

(~;-e;)-'tanh " " =[3)ff(yo/u/y-, &/']-'
C

(44)
for the molecular-field transition temperature.
InEq. (44) eo* ei nd 4o 4iare the ground- and
first-excited-state energies and eigenfunctions,
respectively, of the Hamiltonian H [see Eq. (Sb)]
with (u) = 0. In the MFA the excitation energy
(e~ —~o) is ayyroximated by a variationally deter-
mined excitation energy. In general, this varia-
tional energy will exceed (e, —oo) and hence, from

Vfe wish to calculate the response of the average
particle displacement to some externally applied
time-dependent perturbation —g, 5E,(t)u, . The
response function so calculated, when Fourier
transformed in time and space, will exhibit reso-
nances —one of which can be identified as the
"soft" collective mode of the system of coupled
oscillators. Introducing the time-dependent fieM
—$,6E, (i)u, into the Hamiltonian (3b), the linear
response of the statistically averaged particle
displacement is given by

«u, &(f)= - If df'&[u, (f), na(f')]&, (A1)

where the ensemble average is taken using the
molecular-fluid density matrix (3), and 5H has
the form

i)a(t) =-Z )i(ff')u, e&u,&(f)-Z F, (f)u, .
We express the single-particle density matrix (Sa)
in the diagonal form

Eq. (44), the MFA T, must be lower. Here, we
have assumed that &Po) ul g,& is unaffected when
we replace the true wave functions by their varia-
tional counterparts. However, as was argued
in Ref. 6 (pp. 4994 and 4995) this is an excellent
approximation.

From Fig. 6 we see that the range of X values
for which the MFA yields a second-order transi-
tion becomes increasingly smaller as ~ becomes
large. In Figs. 7 and 8 we explicitly show the
changeover from second- to first-order character
for two values of the zero-point parameter A.. For
A= 0.2 a second-order transition requires that
9.55& g&16. 12, whereas for A. =1.0 we must
satisfy the inequality 14.34 & y & 18.21 in order
that the transition be second order. For A. values
greater than 1.0 the aQowed X interval becomes
rapidly smaller

In a recent work' Eisenriegler has shown (in
the classical limit) that the molecular-fieM ap-
proach provides a good description of the order-
disorder regime. If it is true that the molecular-
field solution mirrors the exact solution well in
this regime, then we have shown here that the
MFA yields a relatively poor description of order-
disorder transitions, although it provides a quali-
tatively reasonable description of displacive transi-
tions if the zero-point fluctuations are not too
large. Furthermore we have demonstrated what
effect these zero-point fluctuations have on the
characteristics of the transition in both displacive
and order-disorder regime and have found that
the effect of zero-point fluctuations can be ex-
tremely important in this latter regime.

APPENDIX
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where

f,'= e e"
t

and &' and p' are the energies and eigenfunctions
associated with (3b). Introducing a set of inter-
mediate states p', into the commutator in (Al)
and subsequently Fourier transforming all lattice
and time-dependent quantities, we obtain the fol-
lowing expression for the frequency- and wave-
vector-dependent response function:

ergies

=(a+~)Q, a=0, 1, 2, ...
The only nonzero matrix elements are

0 I ul 0 .Q = z [(n+ 1)/2Q]'I ' .

Thus y

(f, -f .) I &y, I ul y .) I

oa' (d —E'~ + E~s

=~ (f -f"i)l &@.Iul @"~)l'

20

(A5b)

(A6)

5&u,}(~) g (f'- f'. ) I Q&', lul p'. ) I

5F+(M} ~+~ (d —E~+ t~ ~

( ) ~ (f,'- f'. )I Q&'lul @'.)I'
0.0t' CO —6~ + 6~e

Introducing the expression (A6) for the matrix ele-
ments, we obtain

(As)

The energies associated with the collective modes
of the system are defined by the position of the
poles in the frequency space of the response func-
tion (A3). These poles are determined by the
solutions to the equation

oo

Z (e" "-e '")(n+1
20 o.p

00

(e '"-1)Z (a+1)e"20 ~p

~p

ep

a

(f,' f' )1&/' -lul Q' )I g( )co-E +g
(A4)

20

Thus,

(
1 a a

2

z+2 z «4 =&ada
dQ

(A5a)

determines a set of oscillator states &t) with en-

The solutions to (A4) can be represented graphical-
ly in a manner similar to that discussed in Ref.
6. However, here we are primarily interested
in evaluating the long-wavelength collective mode
of the system within the context of the MFA. Set-
ting q = 0 in Eq. (A4) determines the long-wave-
length modes associated with the exact numerical
treatment of the molecular-field Hamiltonians (3b).
In order to revert to the MFA, we interpret the
spectrum of energies &' and wave functions p'
as arising from the Hamiltonian (12). For sim-
plicity we consider the disordered phase ((u) = 0)
only. Thus,

(f.—f..) I Q. I ul 4 ..) I
'

Cfg + E~ ~ CO —0

and

5&up((e)
5E, ((u) (u'- 0'+ Z')t(q)

(AV)

This MFA response function exhibits resonances
at the frequencies + Q„where

fl,'= fl'- ~'X(q) . (A8)

In the long-wavelength limit, the squared frequency
defined by (A8) is proportional to the inverse of
the static susceptibility defined in Eq. (19), which
'is what we set out to prove.
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Starting with the Hamiltonian x~ g=&( -$&tcP/de +~ass&
+44s&) —Q&&ipse')s&s&, we introduce the scale changes
N,-[la I/(8@)]'"~, X-y"(la I/8)'"~ g -(la I/8)x
and K~ [e2/(64$)]x~. The reduced temperature to be
used in our later discussion is obtained by expressing
K&T in the energy units [ l c I /(64/) J.

~ See Bef. 6, p. 7, for a discussion of how these oscilla-
tor states are constructed.

See Fig. I, Bef. 6.
2Equation (44) is arrived at as follows. %e first diago-
nalize H~ of Eq. (5) in the 2x 2 subspace defined by the
ground and first excited states of &~(F=0). The new
ground and first excited states and energies are then
used to construct the density matrix (8). Reasons for
why this gives a good estimate of T~ are detailed in
Bef. 6.


