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A theory of the EPR line shape of a magnetic impurity coupled to a lattice is presented that is
capable of treating both the “slow” and “fast” regimes. A self-consistent equation of motion for the
propagator of the jon motion is obtained under the assumption that the fluctuations of the lattice are:
not affected by the presence of the impurity. The equation is shown to correspond to the choice of the
lowest-order term in a renormalized perturbation theory for the “self-energy” operator of the system. A
diagrammatic representation of the perturbation theory is given which one may readily use to include
higher-order corrections. The lowest-order approximation is analogous to the mode-coupling, or
independent-mode approximation in extended systems, and is equivalent to the Kubo-Tomita
approximation in the “fast” regime. A solution of a model problem that exhibits the
motional-narrowing phenomenon is given. The theory may be generalized to arbitrary finite-dimensional

systems coupled to a bath.

I. INTRODUCTION

Recent EPR experiments! on Fe%-V, impurity
centers introduced into SrTiOg have been inter-
preted in such a way as to provide a measurement
of the width of the central peak in the spectral den-
sity of the soft optical mode of the lattice vibra-
tions at the structural phase transition.? The in-
terpretation is clouded by the lack of an adequate
theory to describe the measurements in the “slow”
regime, near the critical point. The Kubo-Tomita
theory of motional narrowing has been used for
this purpose, ® but is adequate only in the “fast”
regime, where the fluctuations of the lattice re-
sponsible for the observed EPR linewidth have a
characteristic frequency much greater than the ob-
served width. When the characteristic frequency
of the fluctuations becomes comparable to the line-
width that the fluctuations produce, the interaction
of the mode in question with the fluctuations
is strongly modified. The Kubo-Tomita theory
is based upon a second-order perturbation re-
sult, and as a consequence, uses in the calculation
of the linewidth, the unperturbed motion of the
mode, i.e., the motion of the mode in the absence
of the fluctuations. It cannot treat, therefore, the
modification of the interaction when the time
scales of the fluctuation and of the decay of the
mode become comparable, i.e., the “slow” re-
gime. A manifestation of this is the fact that the
Kubo-Tomita theory predicts a Gaussian line shape
in the “slow” regime, whatever the actual distri-
bution of the fluctuating fields. The purpose of
this note is to provide a calculable theory, .ade-
quate in both regimes. We will obtain a self-con-
sistent equation for the linewidth in the “slow”
regime that goes over into the Kubo-Tomita re-
sult in the “fast” regime.

l©

This equation is the result of taking the lowest-
order diagram in a diagrammatic expansion that
provides, in principle, a complete solution of the
problem and, in practice, a systematic way of
obtaining more accurate solutions. The lowest-
order solution is analogous to the independent-
mode approximation in extended systems.* We will
restrict the discussion to a magnetic impurity
coupled to a lattice, but the method may be applied
to any motional-narrowing problem. Similar
methods have also been used in the theory of turbu-
lence in plasmas.®

II. DERIVATION OF EQUATION OF MOTION

The system under consideration can be described
by the Hamiltonian

H=H; +Hp +H , (1)

where H; describes the magnetic impurity ion, H,
the lattice, and H,_; the interaction between the
two. We will assume that the interaction is so
weak in the region of the phase space of the lattice
modes that are important that we can neglect its
effect on the lattice. This assumption may be
questioned in the particular example we are con-
sidering since the Fe®'-V, complex does produce
local distortion of the lattice. However, the rela-
tive strong coupling to the short-wavelength lattice
modes implied should not affect the critical be-
havior, which depends upon the coupling to the
long-wavelength modes. We shall, in any case,
make this assumption.

Define
U(t, tO) ____e+5(£r+£1_L+'I:L Nt=tg) O(t - to)o (2)
where £0=(1/7)[H, 0], 6(¢)=1 if £>0, O otherwise,

and
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Tt 1) =Trr pP UL, 4g), pfi=eL/Trie® L. (3)

Tr’ denotes a trace over the lattice states only.
U is an operator in the space V consisting of all
bounded linear operators on the Hilbert space of
the system. We denote by V,V;® V; where V;
and V, are the spaces of linear operators on the
ion and lattice Hilbert space, respectively. U is
an operator on V,, since the trace in (3) is over
the states of the lattice only. If the spin of the
ion is of magnitude S, then U is a (2S +1)®-dimen-
sional operator. A convenient basis in the space
of linear operators is provided by the states | X™)
where the operators (on the Hilbert space of the
spins) associated with the states (in V;) are de-
fined by

*i X™ "=
ms==n

An innerproduct on V; can be defined by

(A|B)=TrA'B. (5)

-8 +25*+1/1)S'T", n=0,...,2S.

)

This innerproduct is appropriate for the EPR prob-
lem when the temperature is sufficiently high that
BH;<1. The theory is readily generalized to in-
clude the effect of finite temperatures.? We find

<Xnm an’m'> =8 pnt Omm* Com 5 (6)
where

'c B (25 +1+n)!(n!)?2n!
m= (2n+1)12S-n)!-m)!(n+m)!/2S+1 °
(7)

so that the states |A,,)=C;%/?|X,,) are an ortho-
normal basis. The EPR line shape is determined
by (S*1T(t, t,)1S*), but we will of necessity derive
an equation of motion for the complete matrix as-
sociated with T.

U satisfies

9 .
gU(t, b)) =L+ Ly p + £ U, 1) =8 = 1) . ®
8
On taking the trace over p$', which we denote by either
a bar over the averaged quantities, or angular
brackets ( ), and observing that Trp3*£,U=0, we
obtain

9 — e =
—a'i—U(t, ty) = i(L,+ £, 1)U, 1)

— (L, U= AU, t) =6t —tg) , 9)
where the operator A indicates that the average is
taken over every operator to the right. We have
also, by subtracting (9) from (8),
8—2(I—A)U—z‘£, I=A)U =il - AL, (I - AU

—iL I-AU=-i08; ;U , (10)

where
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ALy = °BI-L ":GI-L .

Integrating (10) and substituting in (9), we obtain

7 Tlt, to) - i(L;+ £ UE, ty)
t
+ <A£,_Lj U't, t')A£,_L>TJ(t', L) dt’
to

=5(t=1y) , (11)
where

> U't, ty) —i[L;+ U~A)L, L (T-A)+L£L]U'(t, ty)

=6(t-ty) - (12)

Equation (11) is an exact expression.

If the coupling term were negligible in (12), we
could obtain a solution of the form U’(¢, %))
=U,(t, to) UL (2, to) with U,(t, t,) =eS1*t0 and U, (¢, t,)
=¢*CLlt=t0) | 1f in addition, the coupling term were
of the form H, ;=0,%;, i.e., the spin system is
coupled to a single lattice field, the left-hand side
of Eq. (11) could be written (¢, =¢, - (d.))

—a%ﬁ(t, ty) = i(L;+ £, 1)U, ty)
t -~ -~
+J' K(t, T, t)( @, (D (") dt’ 13)
to

where

K, t"T(t', ty) = [0;, e -0, T, t,)]] .

If (&,(t)®,(¢")) decays rapidly compared to U,
the upper limit may be replaced by infinity in the
integrals and the result is equivalent to the Kubo-
Tomita theory. This is the “fast” regime. In the
“slow” regime, the effect of the operator £, is
reduced and the coupling terms become important.
The simplest generalization of (13) that includes
the effect of the modification of the ion spectral
density due to its interaction with the lattice is ob-
tained by making the approximation

U'(t, t) TR, t)UL(L, t,) . (14)
This results in a closed, self-consistent equation
for U:

7 Tt 1)) = i(&,+ )T, 1)

<A£,_ f T, 1)U, (¢, t')As,_>U(t', t)dt'

=6(t—1). (15)

The significance of Eq. (14) can be more readily
seen by introducing an explicit representation for
the operators on V in terms of which we can obtain
a diagrammatic interpretation of Eq. (15). Let us
choose a basis in V; for which £,+£,_; is diagonal,
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the elements of which we will denote by 1), and
which are associated with operators O;. In this
basis let ¢ | T, t,)1j)=V,,(t,¢,). The operator
AL, ; can be represented by

(@, —(®1))A; =0 | AL L]7)
=Tr0;[0;, 0,)(@,-(®.)) (16)
and Eq. (15) can be written

9 - -
= Vst to) =8,V (2, o)

at
4 -~ - —
+ f Kt t' (P@)B () Viylt', 1y dt’
to
=6(t-ty), (17)
where
Ki(t, 1) = 8,V ) Ay (18)
and
(£, +8p)|i)=£]8) . (19)

Once the matrix A, the eigenvalues £; and the func-
tion (&, (£)®,(¢)) are given, Eq. (17) may be readily
solved by numerical integration.

To obtain a diagrammatic expansion with which
to interpret this result, consider rewriting Eq. (12)
in the interaction representation, and iterating it
to obtain a solution. We would have then

U'(t, 1)) = ¢ *E1 E 18 k) (1+ftA£’(t’)dt'
to
t g"
+f’d f:o ALIENALI N dt dt"” ++++), (20)

where
ALt = e"("’:"EI-L*’:L)(t'-eO) U-A4)
XAL, (I - A)e!CrEpf) -t (21)

Ignoring for the moment the projection operator
I-A, we can associate with each of the factors

A£L in the perturbation expansion the vertex shown
in Fig. 1(a), As long as we do not admit the ef-
fects of the interaction on the lattice dynamics,
this is the only vertex we neéd consider. The con-

(a) é :

i j

~ Adijl<p>)

Y

(b)

it k t 1 f'miyj

FIG. 1.
expression.

(a) Vertex diagram and associated analytic
(b) Fourth-order contribution to ALUAL.
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FIG. 2. All possible fourth-order contributions to
(ALU AL). Wavy lines joining two points represent
(5(t1) d} (ty)._ Wavy lines joining four points represent
(B(t) B (ty) D(t3) & t9)c.

tribution from the second-order term in Eq. (20)
to [ALU'(¢, £)AL];; can then be represented dia-
grammatically as shown in Fig. 1(b) where the
horizontal lines linking the vertices represent the
propagator e!(®1*£1-1)(t-t0)  Note that the diagram
is still an operator in V,, corresponding to the
factor $(0)& (¢~ ¢")&(t- ") &(¢—4,). When the aver-
age is taken in order to calculate (ALU'(t, {,)AL),
the diagrams that can be obtained will be as shown
in Figs. 2(a)-2(d). The wavy lines in Figs. 2(a)
-2(c) linking vertices ¢, and #, are equal to ($,(¢)
X &,(1,)), and arise from the part of the average

of the four-spin operators that can be factored.
Figure 2(d) arises from the cumulant of the aver-
age of the four-spin operators, and indicates that,
in general, the response of the ionic system in the
slow motion regime cannot be determined from
knowledge of (3,(¢,)®,(,)) alone, but depends on
higher-order correlation functions as well. The
exception to this statement is the case in which
the higher-order correlations vanish; i.e., the
field variables have Gaussian statistics for all
times.

Injfactdiagram 2(a) would not exist because of
the projection operator I - A, that we temporarily
ignored. These serve to eliminate all diagrams
that have the structure shown in Fig. 3. The dia-
gram for ((ALU’'(¢, ,)AL),;) is, quite generally,
of the form shown in Fig. 4(a), where the shaded
box contains all possible diagrams with an arbitrary
number of vertices that do not reduce to an inter-
mediate state without any field lines present. The

b/ N /N

FIG. 3. Diagram eliminated by projection operator
I-A in the definition of U’.
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approximation we have used in the “fast” regime,
that corresponds to the Kubo-Tomita theory is
shown in Fig. 4(b). If we represent U,,(¢, ;) by

a thick line, then the approximations we have used
for the entire range of rates for the fluctuation of
the fields is shown in Fig. 4(c). It should be evi-
dent that this is indeed the simplest generalization
of Fig. 4(b) to include the effects of the interaction
on the ions in the intermediate states. It is anal-
ogous to the mode-coupling approximation in ex-
tended systems.* We note that some of the effect
of the ion on the lattice fluctuations can be ac-
counted for by renormalizing the wavy line, but

as we expect these effects to be small, and as it
increases greatly the computational difficulty to
do this, we will not attempt this in the present
work.

III. SOLUTION OF MODEL PROBLEM

As an example that can be solved by the method
outlined above, we will consider the simple case
of a spin-1 system in a magnetic field, interacting
with the lattice through a term D(S*)2®, and we will
assume that the correlation function of the field
decays exponentially with a time constant (y) we
will allow to vary. We assume (&) =0 and (%) =1.
The Hamiltonian is

3¢=— HS* + D(S*)?® + H;, . (22)

There are nine operators needed to span V;, and
£, is already diagonal in the basis generated in (6)
with

L1 | Xom) = = HIS®, X | = = HM | X, (23)
The interaction matrix is

_ DTrX [(S%)% Xpome ]
<Anm l A"BIAII'M') = C}'{'Z Cﬁ{: éL

8 [ TUu(®) Tp)
ot Uy () Typalt) 0 -H

~-H 0\/[T,,@t) Ty,

Uy (t) Uss(t)

Note that the symmetry of the equation is such that
U, = Uy, and U,,=U,,, so that (25) may be written

t
% T(t) - i, T(H) + f DP e Tt — YT at’
0

=56(¢) . (26)
Defining U,(t) =e~*£r*T(¢), we have

a_(;t[(t) +J’Dze-m-:')-(7’(t_t')T/,(t’) dt'=5(1) .
0 (27)

it te |
(a)

- x
— —
)

N @

(c)

FIG. 4. (a) Diagramatic representation of ((ALU’(¢, ¢))
x4L);p. (b) Lowest-order perturbation result for
{ALU’(t, t) AL)yy). Equivalent to the Kubo-Tomita
theory in the fast limit. (c) Lowest-order self-consistent
approximation. Diagram represents (ALU(t, ;) AL)y,.

Since we are interested only in the (4,,,,| U(?)
X |A,;,,;) matrix element, Tr[S(£)S*(0)]/3S(S+1),
we do not need to calculate the entire matrix. In
fact, the interaction couples only |4,,,,) and |4,,,,)
so that we need only consider a 2X2 matrix equa-
tion.

The only nonvanishing matrix elements of ALin
this subspace are

<Al,+l‘ A"GlAz,d) = <A2,¢1 | A£‘IA1,+1) =D(QL - <¢L> ) .

(24)
Equation (17) is then explicitly
tDze-m-z') Upalt = 1) Tyt = t\[Tyy(t") Typ(t" at’
Typlt=t") Tyt =t \Tp () Tpolt
=6(t). (25)

It is evident that TU,(f) remains a diagonal matrix
for all £. In the limit that D?/y <y, the fast re-
gime,

T = -D2¢/y (1 0)
U,(t)=e 01)

which is the Kubo-Tomita result. The EPR line
shape, which is just the real part of the Fourier
transform of T,(#), is a Lorentzian. In the opposite
limit, ¥?< D?, the equation can be solved by La-
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FIG. 5. Solution of self-consistent equations for a
simple model: I(w)=R,(Up)1(w)=[§ cos(w+H)tTrS(t)
x$*(0)]dt/3S5(S+1).

place transforming and replacing the _factor _
e~"*t") by unity. The result for Re(T;)y; =Re(T)),,
is

_ -—w 1 (1)4 1/4
Re(Upy(w) = ET: A +'2—D' (Br+ 16)

X coa(—;— tan! —:u-;—z) . (28)

In Fig. 5 we show the spectral density Eq. (28)
(EPR line shape). The half-width at half-maximum
}is 1.08D. Comparing this with the halfwidth in

the fast regime, we see that the crossover will oc-
cur when y=~D, as expected.!

The fact that we obtain a solution in the slow-
motion regime that is independent of the probability
distribution of the field, depending only on (&%), is
a limitation of our approximation. This is most
easily seen if the perturbation is taken to be 6HS*®,
with (#) =0 and ® time independent. (S*IT|S*) is
readily calculated and is

(s* |ﬁ(t)|S’) = f eiwoaﬂo)tp(q,)dq, s (29)

so that T,(#) is just the characteristic function of
the distribution of field values p(®). Our method
would yield a line shape as shown in Fig. 5, inde-
pendent of p(®). The difficulty lies in the neglect
of higher-order graphs in the approximate expres-
sion we have used for (ALU'AL). As has been
pointed out above, it is only by inclusion of graphs
such as Fig. 2(d) and similar ones in higher order
that the specific distribution p(®) has an effect.
Even if there are no graphs such as Fig. 2(d),
i.e., p(®) is Gaussian, it would be necessary to
include all the irreducible graphs of higher order
in (ALU’AL) in order to have a Gaussian for the
solution of Eq. (17). In particular, the approxi-
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mation we have used, when Eq. (17) is iterated
does not produce a term that corresponds to the
diagram in Fig. 3. The moments of the spectral
density are the coefficients in the expansion of
(S*1T;(#)1S*) in powers of ¢.® The omission of a
diagram such as Fig. 3 implies that the fourth mo-
ment of the solution will be incorrect. As long as
the coupling is linear in the field, it also implies
that the effective distribution p(®), i.e., the dis-
tribution that would actually lead to the solution
of (17) in the “slow” limit, if calculated exactly,
has an incorrect value for (#*). The equations
may be improved to include these terms by ap-
proximating (ALU’AL) by the sum of the expres-
sions corresponding to Figs. 4(c) and 6. The re-
sultant solution would then have the correct fourth
moments if p(®) were a Gaussian, and the solu-

tion analogous to Eq. (28) will have 3 as the ratio
of the fourth moment to the second-moment

squared, as is appropriate for a Gaussian, but
the higher moments will still not be those of a
Gaussian.

IV. CONCLUSION

Although the methods we have presented do not
provide a closed form solution of the motional -
narrowing problem in the slow limit, they do make
clear the essential difficulties and provide a sys-
tematic means of obtaining approximate solutions.
For the case of a general distribution of field val-
ues P(¢), the method yields a solution in terms of
an infinite set of graphs associated with cunmmulant
averages { ¢")., and there is no prospect of re-
ducing the problem to closed form. For a Gauss-
ian random process, the graphs have a rela-
tively simple structure, and are all functionals
only of (&(¢) ®(0)), so that it may prove pos-
sible to obtain a closed solution. This is certain-
ly possible when [H,_;, H;]=0. In any event, the
graphs have a sufficiently simple structure that
numerical solutions of the equations of motion with
a finite number of terms kept in the perturbation
expansion of the self-energy are feasible, and
lead to solutions with a corresponding number of
the moments correct. Since the lowest-order
graph already provides a description of the cross-

ik Im no j
t L tf J

FIG. 6. Next correction in renormalized perturba-
tion series to (ALU’ AL) in the case that (&(¢;) (¢,
x ®(¢3) ®(¢y))c, the cumulant average, is zero.
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over phenomenon between the slow and fast re-

gimes, we expect that the higher-order terms will

serve to increase the accuracy of the line shape,
but will not significantly alter the dependence of

the linewidth in the slow regime on the parameters

of the problem.
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