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Spin-lattice relaxation among hyperfine levels of the cubic systems CaF,:Tm?*, CaF;Ho**, and
MgO:Er** is studied theoretically from zero to high magnetic fields. Relaxation-rate expressions are
derived employing a description of lattice dynamics in terms of normal modes of vibration transforming
as spherical harmonics. Full use is made of symmetry considerations in formulating the ion-lattice
interaction Hamiltonian and the computation of transition rates. Relaxation between ion levels not
derived from a time-conjugate pair of electronic states is discussed in detail, with particular attention to
the Raman process which may exhibit a complex temperature dependence in such cases. Relaxation
rates are calculated from a crystal-field model and isotropic-elastic-continuum lattice dynamics. The
systems CaF,:Tm’* and CaF,:Ho>* exhibit a small direct process, a T° Raman process, and an

e ~A/kT

resonance Raman process (CaF,:Ho** only). MgO:Er** exhibits a large direct process, a

complex Raman process with temperature dependence a sum of terms T"(n =S5,...,9), and the usual

e ~A/kT

resonance Raman process. Calculated results are found to be quite sensitive to the value of

<r?> employed. Reasonable agreement with the available experimental data is obtained.

I. INTRODUCTION

Relaxation of paramagnetic ions in diamagnetic
crystal hosts has been extensively studied by many
authors.! While qualitative features appear to be
understood, quantitative agreement of theory with
experiment awaits a deeper understanding of ion-
ligand interactions and dynamics of ionic crystal
lattices. Theoretical approaches in this area
might conveniently be divided into three broad cate-
gories. The phenomenological approach of Orbach?
and Scott and Jeffries,® in which static crystal-field
parameters are employed in approximating ion-
lattice interactions and contributions of all lattice
vibrational modes are approximated in a single ef-
fective-strain operator, has been reasonably suc-
cessful, particularly in describing relaxation of
rare-earth ions in low-symmetry environments.

In contrast, Van Vleck* and others® ® have chosen
to work within a well-defined simple model in
which ligands ave described as point charges and
lattice dynamics simulated by isotropic -elastic -
continuum mechanics. Aside from a physically
motivated assumption that relaxation involves pri-
marily long-wavelength vibrational modes, relaxa-
tion rates calculated within this model system are
obtained without mathematical approximation.
More recently, Stedman and Newman’ employed a
detailed model, in which experimentally deter-
mined interionic force constants were employed
together with a more sophisticated model of dy-
namic ion-ligand interactions.

The study of spin-lattice relaxation detailed in
this paper falls clearly into the second (well-de-
fined model system) category. Our primary ob-
jective is to place the results for a simple but ef-
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fective model into a form in which the physics of
the relaxation process is most obvious. We feel
that results cast in this form will be of greater
heuristic value for more detailed calculations and
will also serve as a reasonable description of the
phenomenon itself.

A particularly simple physical picture for re-
laxation processes can be formulated in terms of
a description of the lattice dynamics based on
“spherical waves,” i.e., normal modes transform-
ing as spherical harmonics. Such an approach
is especially well suited to the point-source nature
of relaxing ions in a nonmagnetic host lattice.® It .
will be shown that in a spherical wave formulation,
to an excellent approximation, only a few lattice
normal modes are coupled to the paramagnetic ion,
in contrast to conventional plane-wave formula-
tions, in which all lattice modes are involved.
Further, the spherical-wave approach eliminates
the tedious process of “averaging over all direc-
tions of polarization and propagation,”*5 while
providing rigorous and equivalent results. De-
velopment of this approach was motivated by our
previous observation® that the phenomenological
Hamiltonian of Orbach? and Scott and Jeffries® is a
scalar product of spherical tensor operators act-
ing on electron and lattice coordinates.

Recently, several authors®!%!! have stressed the
use of symmetry considerations to simplify spin-
lattice relaxation calculations, particularly in
minimizing the number of independent “dynamic
crystal-field parameters.” In the present study of
spin-lattice relaxation among hyperfine levels at
cubic sites, a group-theoretical approach is car-
ried out to its logical conclusion, employing lat-
tice-vibrational modes transforming as irreducible
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representations of the paramagnetic-ion-site sym-
metry group. Cubic-lattice modes are constructed
from a basic set of spherical modes in a manner
analogous to construction of ion crystal-field states
from a set of angular momentum eigenstates. Use
of such normal modes simplifies calculation of matrix
elements of the orbit-lattice interaction and pro-
vides a clearer physical picture of spin-lattice re-
laxation processes. The group-theoretical formu-
lation would appear to be an essential preliminary
to more sophisticated calculations, particularly in
treating such systems as S-state ions, for which
the most reliable knowledge of ion states is group
theoretical in form.

Calculated spin-lattice relaxation rates for hy-
perfine levels of the systems CaF,: Tm?,
CaFZ:Hoa*, and MgO : Er¥ from zero to very high
magnetic fields are presented. For clarity the
presentation is broken up into sections, each deal-
ing with one aspect of the calculation. Section II
describes construction of a lattice Hamiltonian in
terms of spherical waves and in terms of linear
combinations of spherical waves transforming as
rows of irreducible representations of the cubic
(0,) group. In Sec. III the most general ion-lattice
interaction possible at a cubic site is discussed
and general expressions for relaxation rates be-
tween ion states are derived using lattice-strain
matrix elements evaluated in the cubic basis of
Sec. II. In Sec. IV electronic and hyperfine states
of the systems studied are given. Section V pre-
sents a novel rederivation of Buisson and Borg’s®
ion-lattice Hamiltonian in a crystal-field model.
Section VI contains calculated relaxation rates and
compares them with available experimental data.
Attention is focussed on relaxation at zero external
field, a topic of concurrent experimental study.!?
Finally, Sec. VII assesses utility and limitations
of the method and indicates lines of future investi-
gation.

II. LATTICE DYNAMICS: SPHERICAL WAVES

Assuming the lattice may be described as an iso-
tropic elastic continuum (Debye model), the instan-
taneous configuration of the lattice is defined by a
displacement vector field g(f, ), which contains the
displacement of each mass element from its equi-
librium position . The potential energy density
for an elastic continuum is a quadratlc functmn of
components of the strain tensor & =V s(r f). Com-
ponents of T can be written as elements of three
irreducible tensorial sets'®

0,,,,,=2Vqs,,,_q(-r.‘)(1q1m—q|11nm>, (2.1)
q

in which =0,1,2; m=-=n,...,n; and

(jymy jama|jy jzjm) is a Clebsch-Gordan coefficient.

1t is helpful to introduce cogredient sets of unit
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spherical dyadics
Tnn=Lbetm-(lqglm=g|11nm), (2.2)
a
in which
e ==(1/V2)e, - (i/V2)e,, (2.3a)
€=, , (2.3b)
eq=(1/V2)e, -~ (i/V2)e,, (2.3c)

and ¢,,é,,¢, are unit vectors in the x,y,z directions.
The strain dyadic (or second-rank tensor) then is
expressible as

2 n
T =0 24 (=), W, (2.4)
n=0 m==n
For an isotropic elastic medium the potential
energy density is a linear combination of quadratic
functions of strain components, invariant under all
rotations, namely,

U,=2:(=1)0,,0,.,, (=0,1,2). (2.5)
»

Further, U, is associated with a rotation, not a
strain, and will not contribute to the elastic poten-
tial energy.!* Thus, only two independent elastic
constants appear in the potential-energy density.
For cubic rather than isotropic media, U, reduces
to the sum of two terms, corresponding to the I'g
and I'; representation of the group O; there are
three independent cubic elastic constants.!®

The Lagrangian density for an isotropic elastic
medium is conventionally written in the form!®

: T, (2.6a)
)s (2.6b)
(2.6¢)

In Egs. (2.6), p is the crystal density; S is the
symmetric part of T; called the pure strain dyadic;
T is the stress dyadic; and X and p are elastic con-
stants.

Applying the variational principle we obtain the
Lagrange-Euler equation

923 = -
P a7E= (A+2p)grad (div8) — p curl(curls) , (2.7)

which, after separation of space and time variables

ST, 1) =5(r) et , (2.8)

yields the equation

- pw?s(T) = (A +2p) grad [div3(F)] - u curl[curl 3(7)].
(2.9)
Solutions of Eq. (2.9) are the normal modes of the
system.
It is possible to form spherical waves by linear
combination of plane-wave solutions of Eq. (2.9).
Selecting boundary conditions which allow plane-
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wave solutions of Eq. (2.9) (cubical boundary), one
has a nonspherical system and encounters concep-
tual difficulties in the rigorous formation of spheri-
cal waves. A more direct approach obtains if uni-
form boundary conditions on the surface of a sphere
of radius R are agsumed. Dirichlet boundary con-
dition (R, 6, ¢) =0, originally used by Debye,!” are
therefore employed.

Solving Eq. (2.9) in spherical coordinates, yields
one longitudinal and two transverse families of so-
lutions

. n 1/2 . ) -
St am =(m> In-1 (;; r) Y, n-tm

+(_27;_+;1_1)1/z]_n’1(;)% 1-)?,. mims (2.10a)
By wm= B (ﬁ > Ym » (2.10b)
Sypm="— (%)1/2jn-1 (;a;_ ”') Vorim

+(§;%)1/2 j,,,l('-:’:r) Y, mims (2.100)

in which j, are spherical Bessel functions and ¥,,,,
are vector spherical harmonics!®

Yoim =2 Yip bmupllplm=p|Ilnm), (2.11)
4

and

vy = [(N+2u)/pV2, v =(u/p)"?

are, respectively, longitudinal and transverse
velocities of sound.

In Egs. (2.10) 2=1,2,... and m=-n,...,n are
the angular momentum quantum numbers associated
with elastic-wave motion. For the longitudinal
branch only, #=0 is also allowed and the S, solu-
tion has a particularly simple form
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§L00=.7'1[(w/v5)7]-Y—010 (2.12)

and satisfies the boundary condition S(R)=0 for
values of w such that

jl[(“’(t)‘u /vL)R]=0.

There is, thus, a set of longitudinal normal modes
of zero angular momentum

(2.13)

S1.00 = 0 i1[(WE /0.)7 1Ym0 - (2.14)
The normalization constant af, is given by

a5, ={3 R} 3[(wt, /v )RIF2, (2.15)
so that

49 [ r2ar 8o Broa =1 - (2.16)

The §,,, (for all ») satisfy the boundary condi-
tion for values of w such that

Jnl (wng/ v )R] =0 (2.17)
and a set of normal modes

8 nma = 0% 0 [(Wte/02) 7] Yrum » (2.18)
with normalization constants

e ={3 R% hl(wn /vr)RTY? (2.19)

is obtained. The index q distinguishes among the
allowed lattice frequencies; »n, m, and g together
play a role analogous to that of the wave vector.

Unfortunately, for »=1,2,..., the normal modes
B,nm and Sy, are mixed by the boundary condition.
It is then necessary to seek values of w such that
some linear combination of S ,, and Sy, satisfies
the boundary condition. Setting the normal and
transverse components of the displacement field
at the boundary equal to zero, normal modes are
derived of the form

3 5 eba 5 - (whe p);  (@ne - (waap); (wn
Slnm¢=aSan+banm=arllq Yo et m| Winat Up R ) jpy ?L_r +(n+1)]m-l o, R ) jnuy r

- 1
+ Yn nelm [[n(n + 1)]1/zjm1'(w"q R) jm»l

Ur

with normalization constant given by

1 _)1p8 .2 (.l)l .2 0)1
Ay =4 3R*(2n+1)|njk —"'l-v R)ji2, =R
L

Ur

+(n+1)j2 (%%R)jﬁ,l (90—;1"’-12)] }-m . (2.21)

Ur

(‘-‘;_iv ,-) - [nle+ 1)]1/2jn+1(%%R) Jnst (%i!_ T)] }’

(2.20)

The complete set of normalized solutions of (2.9)
consists of the modes 8,00y, Simmgs 204 Sy -
While it might seem that one of the original three
families of solutions has been lost, this is not the
case. The large majority of the §,,,,, With small
intensity near the boundary, are predominantly
either transverse or longitudinal, with a small ad-
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mixture of the other polarization.

It is now possible to construct lattice and orbit-
lattice Hamiltonians in terms of creation and an-
nihilation operations for normal modes Sy,,,,.
Therefore, we introduce the momentum density

oL
98,(T, 1)
P=0p8; (2.22)

pi(;’ t): (i=x) ¥, Z);
form the Hamiltonian density
=p2/2p+18:T ; (2.23)

and make a normal-mode analysis

2
ej,(kr)?,,m =(l+ l)uzkjm(k"’) E .i;j 1+ln m{
n=0

2
+ (l)uzkjt-l(k”)z; .?j 1-1n m{
n=0

in which

1 1=»n
1+1 j 1

IN AN ISOTROPIC ELASTIC... 3681
5(;! t)= E anMEXnmq(;)» (2.24a)

Xnmq
S@, 0= 20 SymmeSxnme(T) - (2. 24p)

Xnmq

In computing the stress and strain dyadics, it is
helpful to define dyadic spherical harmonics

Yjinm =2 Yip Uy mpllpnm=p|injm),  (2.25)
4

with the convenient orthogonality property
2r LA - -
fo dtpfo sin6de Y!’;m(ew): Y, 1omeme (69)
= 5,]:6”'6’"':6"",“ .

The stresses and strains associated with the vari-
ous normal modes can now be computed using

} (_ 1)l+j+1(2n+ 1)1/2

(2.26)

1 1n T+j+1 1/2
11 l}( 1" en+ V2,

J1 Je ]:12
Js J Jes

Substituting normal-mode expansions (2.24) into the Hamiltonian density (2. 23) and integrating over the

has its usual meaning as a 6 — j symbol.

volume of the sphere, the lattice Hamiltonian becomes

1 %
= E %[anmqunrnq"'(pwfq)stnmqs;nmq]= Z
Xnmq Xn

This last form, in particular, reflects the spheri-
cal harmonic nature of the normal modes. It is of
course necessary to exclude modes of angular fre-
quency greater than a limiting frequency for each
branch w} 4., SO that the total number of vibra-
tional modes is equal to 3N, where N is the num-
ber of unit cells in the crystal. The Hamiltonian
(2.27) is easily placed in second-quantized form,
with annihilation and creation operators, respec-
tively,

Oxnmq = (thwfq p)-uz[anmq - (_ l)mipwqux n=-m q] ’
(2. 28)
hj

Axnmg = (Zh'wfq p)-l/Z[(_ I)MPX n-mqt ipwqu){nmq] ’

3= 20 Rl (@ pmaxnme + ) - (2.29)

Xnmq
Linear combinations of “spherical” normal
modes of the same total angular momentum n, may
now be constructed to transform as rows of the ir-
reducible representations of the cubic group. The
transformation coefficients (I m‘ IT aB), introduced
in constructing scalar cubic harmonics

(;:)m [pXrl qux n-mgq +(pw’,f¢)zsx nmeSX n-m.;] . (2_ 2'7)
[
Y(ITaB) =2 {Im|IT ap)Y,,, , (2. 30)

are most simply employed. Thus Y(II'aB) trans-
forms as the pth row of the irreducible represen-
tation I and a (suppressed when not needed) dis-
tinguishes different combinations of the same I
and B. It proves most convenient to use real
transformation coefficients.! Cubic normal modes
are constructed from spherical modes by the fol-
lowing linear transformation:

By nrase =2 nm|nTaB) Sypmg - (2.31)
m

Cubic normal coordinates can likewise be written

Sanaaq=E<"mlnraﬁ>anm , (2.32)
m

so that the total displacement 3(T, #) takes the

“cubic” form

-S.(F, t) = Z; Sx nras q(t)gx nTaB q(;) B (2. 33)

X nTaBaq

To preserve, as far as possible, similarity be-
tween cubic and spherical harmonics, the notation
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Y*(ITap)=cra Y(1 Tap), (2.34) through the relative displacement

analogous to OR, - 6R,=R}- Vs(0) +4RYR}: V¥s(0).  (3.3)
Yi.=(-1)"Y,_., (2. 35) Most spin-lattice relaxation processes at low tem-

will be employed, thus defining the row B and the
sign factor cr,. Annihilation and creation opera-
tors for cubic modes then become, respectively,

X nraBq ™ (Zh’wffq p)V¥( Pxnrasq— icrspwqux nTaBa)s
) (2.36a)
a} raBe= (2;iw§¢ p) Uz(Cr'BPx nraBet ipw]rqux nTa8a)s
(2. 36b)
and the lattice Hamiltonian has the form

Hyae= 20 T (@ prasolynrasa+d) . (2.37)

XnTaBaq
A novel method for forming lattice modes trans-
forming as rows of the irreducible representations
of the cubic group from a set of plane waves is
given in an appendix, as an instructive comple-
ment to the spherical-mode approach.

III. ION-LATTICE INTERACTION AND RELAXATION
MECHANISMS

The Hamiltonian for the combined ion-lattice
system is a sum of three terms

Jc=3clon+sclatt+gcll ’ (3'1)

in which the first two terms are the Hamiltonians
for ion and lattice, respectively, while the third
is the ion-lattice interaction. In systems discussed
here the ion occupies a lattice site of O, symme-
try, assumed to be the origin of the coordinate sys-
tem. Inthe absence of external fields, € will
transform totally symmetrically in 0,. 3C,, can be
expressed in terms of a series of products of lat-
tice operators and ion operators. For the moment
no assumptions as to the nature of the interaction
are made, save that it is dependent on the relative
coordinates of the ions embedded in the lattice.
Recall that the instantaneous configuration of

the lattice is given, in a continuum model, by the
displacement vector field §(;, f). Thus, the para-
magnetic ion, whose equilibrium position in the
lattice is R)=0, will at time ¢ be located at RJ
+6R,(1)=0+s@, H. Similarly, any other ion in the
lattice, with equilibrium position ﬁ‘,’, will at time
t be located at R, +6R, () =R?+3(R?, /). The dis-
placement 6R ;» 18 represented in a Taylor series
as

5R, =8(R?) =35(0)+ R?- V3(0)

+3RIRY: VVS©0)+--- . (3.2)

Lattice vibrations affect the paramagnetic ion by
changing the position of the ion with respect to its
neighbors. Thus the displacement field S(t, f) will
appear in the ion-lattice interaction Hamiltonian

peratures primarily involve phonons of low energy
which are associated with normal modes for which
v/w is much greater than interionic distances.
Thus 3¢, may be restricted to the first term in
Eq. (3.3),

R, - 6Ry=R?- 0 (0) . (3.4)
Almost all previous calculations have employed
the assumption (3. 4) which is designated the long-
wavelength approximation. Extension of the follow-
ing techniques to higher-order terms in (3. 3) will
be seen to be quite straightforward.

To obtain a “cubic” ion lattice interaction, it is
simplest to form linear combinations of strain
tensor components at the paramagnetic ion site
(R9=0), transforming as rows of the irreducible
representation of the cubic group

oy(nT'B) =>"?(n m|nl"ﬁ)o,,,,,(6) . (3.5)
Using Eq. (2.4), one can write

0,(0Ty,) = = (1/V3)(o,, +0,, +0,,) ,

0o(1T 1) = 5(0,, = Oy + 10,y = 0,,) 5

0o(1T40) = (i/V D)0y, = 0,s),

0ol Ty, 1) = 3(0,, = 0, + 10, — 10,,),

04(2T'5,8) = (1/V8)(20,, = 0, = 0,,), (3.6)

0,(2Tg,€) = (1/V2)(0,, = 0y,),

04(2 T5, 1) = 3(0,, + 0,y = G0, —d0,,),
04(2T5,0) = (i/V2)(0,, +0,,),

0o(2 5, = 1) = 3(0,, + 0,y + 30, +10,,) .

All strain components are evaluated at the origin,
_ft8=5. Note that the index » is superfluous here
(and will be dropped) since T, g are sufficient to
specify any of the 0.

The exact form of the ion operators that will
appear in 3¢, depends on the ion-ligand interaction.
Without assuming any model for this interaction at
present, but requiring 3C,, to transform as I';,, the
ion-lattice Hamiltonian in the long-wavelength ap-
proximation must be of the form

3, =PEB crp V(T B)oo(TH), (3.7)
in which V(I'g) is an ion operator transforming as
the Ath row of the irreducible representation I'.

To take full advantage of these symmetry proper-
ties, 0y(I'8) must be expressed in terms of normal
coordinates (2.32). For a spherical-wave expan-
sion,
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T =2 SX"’MGEX'W(E)’ (3.8) and a nearly transverse part Sy,,, With
Xnma Pyam=R/vpT . (3.16)
and employing (2. 26), and the fact that
) Using Eq. (3.10) to evaluate normalization con-
71(0) =60, (3.9) stants, the following normal modes, significant in

one can show that only S;09, Syame, and 8y5p Will
make a nonzero contribution to Eq. (3.8). To ob-
tain restricted density-of-states functions for

these modes, it is sufficient to realize that (except
for a negligible number) these low-angular-momen-
tum modes have little intensity near the boundary
and the Bessel functions appearing in the normal
modes (2.14), (2.18), and (2.20) can be approxi-
mated with the asymptotic form

Gn(x)—=(1/%) cos[x = im(n +1)]. (3.10)

X ®

The number p; gg,{w) of normal modes of the
form S o, satisfying the boundary condition, with
an angular frequency w’gq in an interval dw about w
can be expressed as

anoq(w)=R/UL1T . (3-11)

Similarly, considering the modes S, ,,, and em-
ploying the asymptotic formula (3.10),

Py 1mg(w) =R/vpm . (3.12)

In applying the asymptotic formula to the boundary
conditions for s,,,, modes (2.20), two cases arise.
Equation (3. 10) indicates that when j,,,(x) =0, then
approximately j,.,(x)=0. Within this approxima-
tion,

jml [(wlh /vT )R] =0
and Eq. (2.20) yields a normalized mode

- 18 .2 wl -1/2
S [ 1033321

A T i (L
X[“/stmJl(v 7 ) +VE Yagmds 0. 7))
! f3 13)

On the other hand, if
jm-l. [(wléa /vL )R] =0 ’

the mode
. - -1/2
S12me = [ER Jz("v';u R

1 1
X [\/{?21»:]'1 (%al") +\['§?zsmjs(%ag' 7’)]
L L
(3.14)

is obtained. But Eq. (3.13) is precisely of the
form Sy,,, while Eq. (3.14) is the form 5 ,, .
Therefore, $,,, “decomposes” into a nearly longi-
tudinal part S ,,, with

Pram=R/vyT (3.15)

the ion-lattice interaction, can be written:

P 1/2 7
- w 2 fw =
Spo0qe ™ —;)n:_(ﬁ) h ('1'}:‘17') Yoi0» (3.17a)
. oM [2\2 oM N\
sumf’%f(ﬁ) 7 (‘5:"'7’) Yiim» (3.17b)

. L /9\1l/2[ f9\1/2 ( L )__
_Wa (2 2 . (wag
Sz 2mq v, R> [(5> N Vg 7)Yoim

(3.17¢)

(3.17d)

2 1/2. wN -
(%) J=<'Ji‘”) Tan .

From these, cubic modes are simply constructed
in the usual manner. Specifically,

L 1/2 L

- wy [ 2 . [ wq =

S =—| = —7)Y
LT1e¢" oy (R) h(”z, ) 010 »

u 1/2 M
- wy (2 L fw

s =7 =9 | = =9
MT 480~ L op (R) .71(1)T 7’)

Xz(lm‘ 1 FQB>?11M ’

(3.18a)

(3.18b)

. Wk /2 \172
s”s’h:;;_(ﬁ) 23(2m|2Ty,B)

2\12 /oF \ .
(g) J1(j:: 7)szm

_(3.180)

1/2 L
. w -
) Jx(“"‘v 7’) Yoim
L
(3.184)

- wN 2 1/2
S”"s:ﬂ«:f; ﬁ) §<2m|2r,,,s>

3 1/2_ wN -
X[‘(g) 11(1}_;‘7’)Y21m
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+

(3.18e)

2 1/2. wN -
('5‘) Js(‘i") st»;] ’

wN 2 /2
Byrgse _L(k.) Z"}(Zm‘Zl"s‘B)
3 1/2' N -

X [' (g) 11(%;"‘") Yoim
2)1/2 <w§' )__ ]
+\z is\= 7 ) Yogm| -
(5 Js oy 23

For conciseness, the angular-momentum index »n
has been dropped. Introducing creation and anni-
hilation operators (2. 36) the strain components
(3.6) may then be written

. 7 1/2
onTu) =~ (5o )

)3/2

(3.18f)

XE (wq ~—(alr, - rl'q), (3.19a)

. n 1/2
e~ {7157
38/2
E (w,) (aLr“aq - Crksaurksq),
(3.19b)
. h— 1/2
90(Ts B) = = ’(121rpR )

2 1/2( L)S/z

1/z(wN)3/z
'(g) ‘T—(aﬂrstaq Crstadnr&jq)];
(3.19c¢)

1/2
oo(TsB) = - "(mp =)

1/2 (wL)sla
X2 [( ) “g'E—vL (af r5Ba~ Or s0L rsdd

3\1/2 (,Ny3/2
-(3) _’T—(wvg (aLr's,aq = Crg s rsjq)] .
(3.194)

Matrix elements of the o,(I'8) will appear in
transition-rate expressions in the forms

|<NXFEQ|UO(FE)[NXI‘EQ—1>i2’
|<era¢|00(r}§)|eraq+1>lz,
|<era¢|00(rﬁ)‘eraq"1>|z,

I(eriq,%(rﬁ)leriq*'lﬂz ,

9

which are actually independent of 8, and (abbre-
viating)

cx,r) m
|<le"q'oﬂ(r)lNXl"a_1>‘a= ( D)

127TpR (wx) NXI'q )

(3.20a)
' (erq|00(r)‘ er'q + 1>| 2

- cxr) =
127pR

(@) *WNgr+1), (3. 20b)
with C(L,Ty,)= C(M,T)=1, C(L,Ty,)=C(L,Ts,)=%,
and C(N,T',) = C(N,T;5,)=%.

A. Relaxation in a multilevel system with degenerate levels

Spin-lattice relaxation rates will be presented
in a form suitable for calculation of the time evo-
lution of a system which has many levels of non-
negligible population. Assuming the lattice re-
mains in a thermal-equilibrium state, ion transi-
tion rates between two states |i) and |;) will obey
the thermodynamic relationship

Wi s/ Wy = e ByEP/T (3.21)

Thus, the transition rate between the two states
may be concisely expressed in a symmetric direc-
tion-corrected rate

TU = W“j e(Ej-E‘)/ZId‘ . (3- 22)

The hyperfine systems to be studied are charac-
terized by a set of degenerate energy levels at
zero field, whose degeneracy is removed by an
external magnetic field. In the zero-field situa-
tion, with degenerate levels present, the quantity
of more direct experimental interest is the level-
to-level transition rate

W,.
win=0 Wes (3.23)
icr &r
i€t

where k and [ are energy levels, |i) and |j) are
states within these levels, and g, is the degenera-
cy of level k. The population P, of the kth energy
level obeys the kinetic equation

Z)( Wi P+ Wi P, (3.24)
which may be cast into matrix form
ap lev
E wierp | (3.25)

in which P is a vector with components P, and W“'
is the level-to-level trasition-rate matrix given
by

WaT=wiS (R#D),

lov___Z) Wlev . (3.26)
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W itself is not symmetric and it is more conve-
nient to work with the scaled symmetric (reduced-
transition rate) matrix

V;Vlev: ywlﬂg-l . (3. 27)
U is a diagonal matrix with
Upe=(1/Vg,) e B Bret) /20 (3.28)

in which E,,, is any convenient reference energy.
The symmetric matrix element W is the analog,
for a system with degenerate levels, of the state-
to-state symmetrized rate T¥. Computed values
of W‘" will thus be given for the zero-field case
and values of T% (T) for systems at nonzero field.
Given W'*", the time evolutlon of P may be obtained
as described earlier.?

For a two-level nondegenerate system there will
be only a single rate 7'% and one might prefer to
speak of the conventional relaxation time defined
by the relationship

1/T,=2T'cosh[(E, - E,)/2kT]~2T'?  (3.29)
as long as |E, - E; | < ET.

In Sec. I B-MID, general rate formulas for the
various relaxation mechanisms will be given in
terms of T, which can be simply related to Wi* in
the zero-field degenerate situation by the above
formalism.

B. Direct process

Consider first the rate at which paramagnetic
ions undergo a transition from state |j) to a lower-
lying state |i) accompanied by emission of a single
phonon in the mode 8y rs o With energy conservation
(direct process). Using the Golden Rule of time-
dependent perturbation theory this rate can be
written

W1-4=(2"/7i)|<ijraq|5Cn|ierBq"'1>|2
x6(E; - E; = hw})
= @n/m)| (i v(rp)| )| ®
X | (N g o 0o(TB)| Ny g o + 1) 2
X5(E; - E; - hwX) . (3.30)

To obtain an expression for the total rate at which
the ion transition occurs, this expression is
summed over all normal modes of the lattice. Us-
ing the restricted density of states [Eqs. (3.11),
(3.12), (3.15), and (3.16)] the conversion

E-—-fdw,

for each branch is possible. If it is further
assumed that all the lattice normal modes are at
their thermal equilibrium population, so that

N= (e BB/ _ 1)1

it follows that
(Eg=E¢)/RT

1 (E;-E\’e
6mph \ & e BB/

<D QLD T\ vra o] . (.31
X 8

Xr

W dir ect _

In general the V(I'y,) term is deleted as it does not
contribute to the relaxation. Note that (3.31) is
equivalent to the result of Van Vleck®® obtained by
“averaging over all polarizations and directions of
propagation” for plane wave phonons.

The transition rate (3. 30) corresponds to a
symmetrized rate

1 E; -E; -E;
121rph’( 7 )cosech( 25T )

x5 CED 5 Gl vrg) ]2, (3.32)
xr Ux [

ij =
Tdh‘ect -

which becomes, in the limit | E; - E;|/kT<]1,

_kT(E; -
6mpr*

T direct =

Ey)’ e C‘mz 1G] viralal?

(3.33)
displaying a characteristic linear dependence on
temperature.

C. Raman process

The direct process is the dominant relaxation
mechanism at low temperature in the familiar high-
field situation but at about 2K multiphonon pro-
cesses typically dominate. In order to account for
observed temperature dependences, second-order
perturbation theory is invoked, allowing two-pho-
non proceeses for which the difference in phonon
energies equals the separation of the energy levels
involved. The second-order operator can be rep-
resented as

Vs = ZJ—CE*E'{%C“ (3.34)
in which the summation runs over all intermediate
states of the combined ion-lattice system. Since
the separation in energy of initial and final states
is usually quite small, the possibility of creating
or destroying two phonons in a transition may be
neglected. For a general transition of the form

|3, Nx, 148109 Nipraszas’
-4, Nxymsra =1 Nepraspant 1, (3.35)

the transition rate can be written
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_2r)sy ((J, Ny s, q ! V(T,8))0o(Ty 81 1, Ny 18,0, = 1)
I E; - E, +hw}}
- (4, Ny Tp8 IV(rzﬁz)oo(rE)ltN +1)
. PAYLIXEY 2M2 ) "X oT9B0ay
x(t, NXzf'sz¢2| V(rzﬁz)oo(rzﬁz)l & Ny,ry850,+1 )+ E,-E, - h’wfzz
_ 2
X(t, Ny, 1,8y o | V(T1B)06(T18)) | 4y Niy 1y 8y00 = 1 )) , 8(Ey = Ey + Ryl = hwy2)
_ ((J | V(T 8y) 1 ) (8 V(Fgﬁa)ll> (! v(rgsz)|t><t| V(F161)|1>)
h’ : E,-E, +h'w«1 E;-E, - hw’2
x| (Ny 1801 | oo(T18) | Nxyrysya —1 2| <Nxzraszqa’ 0o(T285)| Ny,ry850, 1 26(E, - B, + Byt = w2
(3.36
Summing over all possible final states, the above becomes )
WRaman_ 27 > f“’)rfu‘ax d “’fnix
r XX, Ux, M 0

Xg;r |(NX1I‘1 qlloﬂ(rl)lNX1l‘1q1 —1>’ 2 | <NXgl‘zqg|UO(r2)|NXzI‘gqg+1>| 2
12

x 22

B182

E((jIV(I‘Jﬁ)I 1) (| V(T,8,) 4)
t E; - E; + hiw,

<]| V(T,8,) | t>(t| V(T3 By) 1)
E - ”wa

)l G(E!—Ei+h'w1—h'w2) . (3. 37)

The transition rate depends critically on the ion excited states |#) and their energies. We postpone dis-
cussion of resonant processes characterized by a vanishing denominator in (3. 34) or (3. 36) and consider
presently nonresonant processes. Energy terms appearing in (3. 37) are characteristically of three dif-
ferent orders of magnitude with hyperfine and Zeeman energies <« thermal energies < crystal-field ener-
gies. The major contribution to Raman relaxation is attributed to phonons of energy 7w = kT so that hyper-
fine-energy terms in (3. 37) may be neglected in comparison with #Zw. The somewhat simpler form

(Bj-E4)/28 c(xI,) C(x, fiw
yRepaa_ € ¥ cr) __a_a_f w® cosech? 2= dw
2887%0% sy, rr, %, 2kT
<3 E((jl V(LB 1) (L V(To8,) 1), (4 1 VIE,8,) 1)t V(T B)) i>)|2 (3.38)
ByBp | ¢ =4, +hw AR |

is obtained, in which
A;=E, - E,

and the integration with respect to w has been extended to infinity with negligible error.

In many typical systems the paramagnetic ion possesses a number of Zeeman or hyperfine states, with
energies much smaller than 27T separated from the first set of excited states by an energy much larger
than 27. In such a case the sum over intermediate states ¢ in (3. 38) may be separated into a sum over low-
lying states #;, with energies <« 27T and a set of excited states #, with energies > kT. Neglecting A, with
respect to 7w in (3. 38), one obtains

THoman=TH+ T+ TH+TH+ TH, (3.39)
with
1 c(x,I,) C(X.
T = 5gg,.7 1 2 L) CXT) 35 ) v (8, Tabs) - (3.40)
TP~ XxyX5 T Ty vx1 vxz B182

In Eq. (3.40) the lattice integral I, is given by



|

® N- fiw
- N-1 2
Iy L w” " cosech (ZkT) dw ,

or explicitly®
Lo 6t (Q 5
"5 \% )

while the ion terms VN(T1I31, T',B,) are given by

Vs(TyBy, TpBs) = h'2
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BT\ 6418 /BT
Ie=49'7.'7(—;‘l_—) s L’:T(—

3687

(3.41)

_ BT \® _zssn"(kT)”
—20328(ﬁ), L==—\%) >

).

<Awnmﬂm<ﬂwn&m><Awnthqunmhﬂf

Ve(T'1By, T2Be) = ‘%—? [Gl VT8 66| VT8 6) = Gl VT8, 1) {t,| V(T18)| )]
1

" ((jl V(18! 8) (4| VIT,8,)14)

th th

V(T 8y, TaBs) =

, {1 VAT8,) 1) Kty | VIT8y) 1) )
A‘n

2 ((jl V(T,8y) 1 40 { by | VI(T58,) 13)

t

tp h

+(le(l";_ﬁz)H,,)(t,,IV(I‘IEI)Ii)) 2

?

A‘h

V(T By, TaBp) =20 E(<J| V(T8 14, 4,1 V(T'58,) 13 <] l V(raﬁz)xﬂ( t V(T By) 14) )

A‘h

’ A .
th th

Vo(T1 8y, ToBe) = 12 ?(('IV(I‘ )ItA>(t|V(FB)|i -
h

th

In the usual case studied in high-field paramag-
netic resonance, |3) and |j) are conjugate elec-
tronic states under time reversal, and the ion ma-
trix elements have the property

Glvrag) | ) (t| vTysy)| )
== (G| (T, 8| 8) (2| V(To8,)| 8D (3.42a)

if the electronic angular momentum is half-odd-
integral, and

() V(Ta8p) | 1) (2] w(Ty8y) | 8
=G| VT8 ) (E | V(Ta8,) 1) (3. 42b)

if the electronic angular momentum is integral.
[Since V(I'g) affects only the electronic coordinates,
the same identities (3.42) apply when |7) and |j)
are direct products of electronic time conjugate
states with the same nuclear state; the electronic
angular momentum thus determines whether (3. 42a)
or (3.42b) applies.] Equation (3. 42a) gives rise to
the familiar Van Vleck cancellation. Since the
energy separation of |#) and |¢) (if any) is negli-
gible compared to thermal energies, the Raman
rates (3. 38) and (3. 39) simplify considerably if

i) and |j) are conjugate states.

> ((jl V(I‘IE,)Itz,',Ht,',l V(T'28y) 15)

(;lv(rasz)|t,,><t |V(I"1[31)|z>)
A,,

(§1 V(T,8,) 1 4,) (8, V(I‘,E,)li)) 2
A

th

For a system of half-odd-integral angular mo-
mentum (Kramers system), Raman relaxation be-
tween conjugate states displays a characteristic
T® temperature dependence® (if a second low-ly-
ing Kramers doublet exists) together with a 7° de-
pendence.? In this case, the simplified forms

i 27 E > cxry) C(Xa 2)
TR5 135 aﬁa ﬁ H
p X1Xp T'1T2 ’5:1 vx2
i 2
x 2|0 <j]V(rlpl)lt,>(t,|V(r232)|i)| ,
BiBa| ¢y,
(3.43)
522 9
T, - 321°n (_IQ) D c(x,r,) c(xsar‘a)
135p 4 X)Xz Til'2 vxi vxa
x 2 z}{[(]' V(r131)|th
Blﬂ

X{ t,| V(T282)| )] (3.44)

are obtained.

For a system of integral angular momentum,
Raman relaxation between conjugate states dis-
plays a characteristic 77 temperature dependence.




3688 E. R. BERNSTEIN AND D. R. FRANCESCHETTI

In this case (3. 39) simplifies to

3 7
Y - 8r (_@Z) 2R C(Xlsl",) C(Xzsf‘g)
1897 R xx,rr, Y Ve

1 2

> ,);{[mv(r,sl)lt,.>

B182

x| V(rarfxz)li>]/A,}|z . (3. 45)

For a transition between states not conjugate
under time reversal all terms in (3. 39) will in
general be nonzero and a complicated temperature
dependence results. It is shown in Sec. V that ma-
trix elements between hyperfine levels derived
from a Kramers doublet actually satisfy the iden-
tity (3.42a) owing to the assumption that V(I'g)
acts only on the electronic coordinates. Relaxa-
tion in such a system is therefore characterized
by a T° dependence. It is also shown that Raman
relaxation among hyperfine states derived from a
I'g quartet Kramers electronic level involves in
general 7% through T° terms.

D. Resonant-Raman ( Orbach) process

To complete discussion of relaxation processes
associated with the two-phonon Hamiltonian (3. 34),
it is necessary to consider what occurs when the
lattice possesses normal modes such that

ﬁw=E*—E! ’

for which the first energy denominator in Eq.
(3.36) vanishes. Following Orbach? the term 3T,
is added to that denominator, such that I'; is the
linewidth of the excited state |¢) given by
- 3 (E~Ep) | kT
r,=2 -1—(}2—‘———“9 ) -

TE-EJTRF _ 1
x 6mp\ & e BT 1

2
x 2 C(—Xg.:l || vrp) &)™ . (3.46)
xrs Ux
k runs over all lower-lying ion states.?® The res-
onant-Raman (Orbach) contribution to the direc-
tion-corrected rate is then

1 (A )" cosech®(A,/2%T)
T £¢) cosech(A,/2kT)
T6rmen = T2a7257% 2\ 7 T,
c(x,Iy) C(X,Ty)
x5 T SEricn)
XyXp IyTy X, x,

x 2 €] v(ry8)| 8)
8485

x(t|V(TB)| )2 . (3.47)

If, as is usually the case, almost the entire line-
width of |#) may be attributed to states |k) with
nearly the same energy as 1j), we obtain the far
simpler form

|

1 A\
a5 D)
B
xrs Ux

x E C(Xslrl) C(Xsal"a)
X1Xp 4T n Ure

x 25 [{3| v(ry8) | )
B1Bp

x(¢| V(T,8,)|4)]% . (3.48)

In the region A, > kt, we have the characteristic
e™2¢/*T temperature dependence.

While the direct and Raman processes charac-
teristically involve low-energy long-wavelength
phonons, the Orbach process usually involves high-
energy short-wavelength lattice modes and does not
fit well with the long-wavelength approximation and
the continuum model in general. It is therefore
expected that resonant-Raman relaxation rates will
be somewhat less reliable than those for the direct
and Raman processes, yet we feel that these rates
too will be of considerable qualitative and heuristic
value.

IV. ELECTRONIC AND HYPERFINE LEVELS

The ground and first-excited levels of the ions
Tm?*, Ho?*, and Er* and their energy separation
are given in Table I. As is usually the case for
lanthanide ions, the spin-orbit interaction &(7)L S
is much larger than the crystal field 3., so that J,
the total electronic angular momentum, is approxi-
mately a good quantum number, even in a non-
spherical crystal environment. At a cubic site the
crystal-field Hamiltonian takes on a particularly
simple form

oy =APNI NI BIITY[O3(I) +504(I)] |
+AOI Ny 17)[0%J) - 2104()] . (4.1)

O and (JN X | J) are the conventional operator
equivalents and proportionality factors tabulated by
Abragam and Bleaney. 2?

The quantities A,(r*) and 44(7®) are typically ob-
tained from experimentally derived spectroscopic
data. A, and A4 could be calculated from some

TABLE I. Ground and first-excited levels of the free
ions Tm?, Ho®*, Er®.

Ground First excited Separation
Ion Configuration level level (cm*™')
'I‘n;" 43 2F,, 2Fy 9000
Ho** 41 Tisp Tiare 5500°
Er’* 4" ‘Iisp2 ‘Iisy 6500°

*Reference 25,
bReference 33.

°Reference 23, p. 284,
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TABLE II. Crystal-field and free-ion parameters for
the systems studied (see Sec. IV).

Parameter CaF,:'®Tm?**  CaF,:!®Ho* MgO : '¥"Er
A 0% (em) 180 295 442
A (r) (em™) -34.7 ~28.9 16.8
@ (&%) 0.204 0.214 0.187
o AY 0.336 0.524 0.178
% (3% 0.787 0.845 0.279
gs 1.151 -1.182 1.2
@(MHz) - 367,125 779.7 —-87.0
I 3 b 7

Calculations for the direct process in SrF,: Tm?*,
discussed briefly in Sec. IV A, assume identical values
for (#™. Dynamical crystal-field parameters were cal-
culated from a point-charge model for the SrF, lattice
and hyperfine admixtures of excited states were com-
puted using the observed energy of the I'y electronic lev-
el (Ref. 31).

model (i.e., point charges) and (7% and (r®) viewed
as phenomenological parameters or alternatively
ab initio (Hartree-Fock?*) values of (#*) and (%)
might be employed and A, and A viewed as param-
eters. In constructing an ion-lattice Hamiltonian,
the electron-nucleus separation expectation values
(r?), ("), and (+®) are also required. The ion-
lattice Hamiltonian will be derived from a point-
charge model since insufficient experimental data
are available for direct determination of all “dy-
namic-crystal-field” parameters. For internal
consistency phenomenological values of {(#*) and
(%) must then be employed. Since {r2) is not ob-
tainable from spectroscopic measurements, how-
ever, the Hartree-Fock value of this parameter
must be chosen. Tables II and III contain param-
eters used in this calculation. The energy levels
of a Kramers ion at a cubic site are split into site
states transforming as irreducible representations
g, T'; (doublets), and I'y (quartet) of the cubic
double group O*. The lowest electronic levels of
the systems chosen for study, CaF,: Tm?*,
CaF,:Ho*, and MgO: Er* are I'y, T';, and T,
respectively. Wave functions and energy levels of
the ground and lower-excited electronic levels of
the systems are given in Table IV.

Within a manifold of constant J the Zeeman and
hyperfine interactions for the free ion have the
form

3C,=g,u.,l-{.' 3+(1-f- 3+g:,uNl-‘I" f+3(3“.d , (4.2)
where the quadrupole term is of the form
Hauaa=Pouaa{[37% - T (7 + 1)][31F - 1T + 1)]
+3 [+ T L + 1 1,)
+ (. + . T, +1,1,)]
+3(JEI2 421} .

Zeeman and hyperfine parameters for the systems

studied are also included in Table II.

For a I'y or T'; doublet, the lowest hyperfine
multiplet can be characterized by the spin Hamil -
tonian

5C3=guaﬁ'§+AY' §+g,,u,,ﬁ"f, (4.3)
with the fictitious spin S=% and
g/gr=Ala=G19.12)/G|5.12) . (4.4)

The quadrupole term has no effect on an electronic
doublet in a cubic environment but will not vanish
in a I'y quartet state. Spin-Hamiltonian param-
eters for the Kramers doublet systems studied are
given in Table III.

At zero external field the spin Hamiltonian com-
mutes with the effective total angular momentum

operators
F=8+1, F,=5,+I,, (4.5)

and the energy eigenstates are of the form

I+M +l 1/2 -
|F1MF>=|[+%,MF>=<T:‘TE) |2, Mg - 3)

_ 1y\1/2 -
() b

with energy E(I +3)=3AI, and

with energy E(I - )= - 3A(I+1). Kets on the right-
hand side are in the form Im m;). With a magnetic
field imposed in the z direction the states become
|1+%, Mpyy=a(H, Mg) |3, Mp - 5) +[1 - a®(H, Mp)]"/?

X | - %, MF + %> ’
|1-3,Mpy=[1-aH, Mp)]"/?| 2, Mg - 2) - a(H, M)

XI—%,MF-«-%) ,

where

a(Hy MF)

i} ( 2% (M) 1
"\ W¥(H) + 4P (M) - p sgn(A) u*(H) + 4TF(MF)]‘”) ’

TABLE III. Spin-Hamiltonian parameters, Eq. (4.3),
for the Kramers-doublet systems CaF, : Tm?* and
CaF,:Ho®, (See Sec. VI for MgO : Er’*.)

Parameter CaF,: '®Tm? CaF, : 1%Ho*
g 3.452 5.911
A (MHz) ~1101.4 -3921.3
2 0.756 48




3690 E. R. BERNSTEIN AND D. R. FRANCESCHETTI 9

TABLE IV. Crystal-field splitting and calculated wave functions for (a) Tm?*
(@f¥2F ) in CaF, (Ref, 25), (b) Ho* (4f*'%I;5/,) in CaF, (Ref. 33), and Er’

(a1 41,.,,) in MgO (Ref. 10).

E (cm™) Wave functions
(a)
588 ITg+3) =+ VT/VI2) 1 £3) + W5/VI2) 15 4)
ITgxD=317H+H3 12D
595:8 | Lyady= VTVID) 1#L) - WEIVTD) | 2B
0 IT;25)=+3/T12H+31+3
(b)
ITg+8)=0.4122 1+ 1) +0,7547 | + §)+ 0. 3358 |¥3) + 0, 3844 tx‘-})
33.5

ITg4)=—0.1836 |+ 3)— 0.6389 | +3)+0.2631 1 1)+0,6992 171

30.1 IT,+3)=+("77/8/3) ld:‘-.rs)i(w/G_5/8\/3) 1+ 131+ HH+ ¢I1/8V3) l;%)

0 ITged)=2 (/7/8/3) 1+ D) s WTB 12 H 2 T #1) + (/T5/8/3) | 71
(c)
IT{ +8)=0.1644 | +1)+0.3995 |+ $) —0.4643 | % §)+0.7731 | ¥ )
140 I +4)=~0.6084 |+ %)~ 0.2400 1 £2)+0.7534 | ¥ 1) +0. 0677 | 7 )
110 ITy28)=2 (V77/8V3) |+ )2 V85/8VD) [+ D)= 4131 5 H + (/T1/8V3) I=4)
IT§D+£8)=0.9549 |1+ ) - 0.2309 | +8)+0.1845 | %3)+0. 0270 | # 1)
0

IT{D+$)=0.7613 1+ 2) - 0.4456 | + 3) +0. 4698 1¥1)+0. 0331 l;i?ﬁ)

pH)=(grp=EukiyH +AM g,
n(Mpg) = 3A[I+ Mp + 2)I = Mp +2)]V 2,
sgn(4)=4/4] ,
and the corresponding energies are
E(I+3, Mg)=~%A +g, ity HMy
+sgn(A)s{A2(I+3)2 + (ghs - &akin)°H?
+2(8ug ‘gnﬂN)HAMF]”z .

We postpone discussion of the Zeeman and hy-
perfine interactions in the I'y quartet, which are
considerably more complicated than those in a
doublet until Sec. IX, at which time MgO: Er®* I',
ground multiplet is considered in some detail.

V. DYNAMIC CRYSTAL-FIELD INTERACTION

In order to calculate spin-lattice relaxation rates
for specific ions, an explicit form for the ion-lat-
tice Hamiltonian (3.7) must be derived. It is nec-
essary to choose a concrete model for this inter-
action and in what follows a point-charge crystal-
field model is presumed valid. The method em-
ployed to obtain such an ¥, is presented below in
outline form. The derivation and results are basi-
cally equivalent to those of Buisson and Borg.?
However, the present method employs vector and
tensor methods to circumvent explicit evaluation of
derivatives with respect to strain tensor compo-
nents, resulting in a more straightforward ap-

proach.

The electrostatic potential energy of an electron
belonging to a paramagnetic ion, whose instanta-
neous position is ﬁo (the electron is at ﬁo +T) is rep-
resented as

_ 4meQr’
V(F)_ ”Zrig(21+1)l i~ ol *
XY*(ITap;6,0,) Y(Tap;69) . (5.1)

6;, ¢;are polar angles of the vector ﬁ,-ﬁo. Ex-
panding V(¥) about the lattice equilibrium cggfigll-
ration, in which the paramagnetic ion is at R)=0
and the jth point charge is at R} yields
4neQ 7’

vir)=- PR LIRG !

®=- G DI

X Y*(ITap; 6393 Y(ITap; 6¢)

ireQ; (o8&, - o8y

_j”-,,p 2l +1

- Y*(Tago )) ,
(Vig.m T:r}-,—f—"— N

( FrR 1R, - Rl ™ (ﬁ?-ig)r Y@ Tap;6¢)
+ oo . (5.2)

Here the first term is the usual static crystal-field
interaction, while the remaining terms constitute
the dynamic crystal-field interaction which is re-
sponsible for spin-lattice relaxation. In accord
with the previous discussion we set 3, equal to the
second term in (5.2), which in the long-wavelength
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approximation (3. 4), becomes

¥ 2meQize. 30)

ll erdlzz +1

Y*(l ra,e-e,ga,))

(3.
( (nrRO)W

x7r' Y(ITap; 60).

(RE-RY

(5.3)
In order to separate the dynamic part of (5.3), i.e.,
@(®), from the static terms the conjugate dyadic,

Ll A
0'T=‘E’O'”e(é,
’

is introduced so that the tensor identity
X.B.C=AC:B7
may be employed, reducing (5.3) to the form
47reQ,[ (V
; IEI'aB 21 +1 (Rj RO) (ﬁ,—Ro)
Y*( I‘aB'GMJ))] LT
X —T—ti—'m— (0)
IR;=Rol (i"’-ﬁ")
xrtY(ITaB; 0¢) ,

K==

(5. 4)

where use has been made of the elementary properties
of limits to simplify the term in square brackets.
Summation over ions can be decomposed into a

~ summation over shells (s) of neighboring ions and
a summation over ions (j’) in each shell. Then,
expanding the term in square brackets in
terms of a complete set of cubic harmonics (func-
tions of the ion coordmates) taking the limit
®, - Ry)~ ®% -RY) =RY, Eq. (5.4) becomes

qu(;) = E 4ﬂeQ

23’1 a8 2l +1
l' IaIBl

rIBI Y(l'l"'a'ﬁ'; 93:(p9,)

<Y(l T'a’p’; 659 PR, )|R,.VR0 |

X W Y *(I Tap; GE(”' (Pﬁ?')>
16T @'Y Tap; 69) (5.5)

Since each shell of charges (in equilibrium configu-
ation) transforms into itself under the operations
of the cubic group, it follows that

st), Q.Y(W'Tr’a’s’; 6%¢%)

=Zs)nstY(l' Ty, 0,0)0(C",Ty,) ,

in which #n, is the number of ions in shell s and R,,
0., @, are the equilibrium coordinates of any one
ion in that shell. A further simplification results
if the dyadic operator

0= Es-V.fis

is employed. In term_s_ of cubic components (3. 6)
the scalar product O: ¢ 7 is then
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0:%7= Z ¢rs0(CRI™(CP) =ZB) ¢ s CLOTR)O(TP) -
T T
It is easy to show that
! ==
cr.4 1

and

= c"
12 Tse
Finally, making use of the further simplification
that

’ _pl!
cr —crs’—l

<Y(l’1"1,) |o(r’g"| ?1:{ Y*(1 I‘aﬁ>

vanishes unless I'’=T" and 8'=38, the first-order
ion-lattice interaction potential at a cubic site be-
comes

- 4men Q.
11 siTrad 2l+1
tl

><<Y(l'I‘1,) lows)| z5r Y*(ll"aﬂ)>

x0o(TB*Y(ITaB; 6¢) .

¥ cracr¥Y(U'Ty,; 0,0,

(5.8)

The total ion-lattice interaction is thus of the form

3, = l?ﬂﬁ V'(ITap) cps Y(I Tap; 69)oy(TB) (5.7)

and the coefficients, which are independent of the
index B, are given by

V(I Tap)= - 2 s 4“ CLY('Ty,; 6,057
S ’

><<Y(z'r1,)10(r6)l Elx:f Y*( I‘aﬂ» ,
s
(5.8)
The matrix element is easily evaluated:

<Y(l’1“u)|0(l“ﬁ)| ;ﬁ—r Y*(lram)

=2 {I'my |i’ T, Xnmy [nTB)X — my |l Tap)

mymg
mgl®
m*q
1%=m®+]
X (_ 1) 3 (ll my lll - mu |ll llilq)
X' m'"' L —my |[1"11my —gX1q 1my —q |11nm)

XV 3 IR, N Y 1Y 10 11V 1| (1/REDY )

(5.9)
The first three symbols on the right-hand side of
Eq. (5.9) are the transformation coefficient from
spherical harmonics to “cubic” harmonics.!® The
parameter »z appearing in the second symbol is 0
for '=T,,, 1for I'=I,, and 2 for I' =Ty, or I';,.
The following three symbols are Clebsch-Gordan
coefficients. The only nonzero reduced matrix
elements of concern are
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TABLE V. Dynamic crystal-field parameters V{l T'a)
[Eq. (5.11)] for CaF,: Tm?*, CaF,:Ho®, MgO:Er®.
V(2T) converges rather slowly as additional shells of
neighboring ions are considered. All ions within 12-
nearest-neighbor distances of the paramagnetic ion site
have been included.

CaF,: Tm?* CaF, : Ho* MgO : Er®*
cm-! cm” cm™!
V(2Ty,) 8922 9346 — 34100
Vv@rs,) —5948 - 6231 22730
V(4Ty,) —5633 - 8784 13660
V(4Ts,) 4281 6676 10600
V@r,,) 3563 5555 — 8640
V(T —8851 ~13800 -6519
V(6Ty,) 4947 5309 4071
V(6T3,) —~1532 - 1644 - 5339
V(6Ty,) 3238 3475 2665
V(6I'ga) 1478 1586 1216
V(6T'5,b) 368 395 3581
1

(Y IV I (L/REYY ) = = (20 + 1)(2 +1)1/2 W ,

<Yl+2 ” Rs ” Yh!.) = (l + Z)I/ZRs ’ (5- 10)

Y NRNY ) =-(I+1)M2R, .
In co.formity with convention and for ease of com-
putation ¥C,, is expressed

50y, = er)w V(ITa)C(ITaB; 69)oy(TP) , (5.11)

using Racah’s spherical harmonics
C(iTaB; 6¢)=[4n/(21 + 1)]Y(ITaB; 6¢) .

The ion-lattice coefficients V(I I'a) for the sys-
tems studied are presented in Table V.

VI. SPIN-LATTICE RELAXATION IN SPECIFIC SYSTEMS

It is probably appropriate to emphasize at this
point that we are working with a well-defined sim-
ple model, and calculations are primarily a test
of the utility of that model. A minimum of experi-
mental parameters are used; only those necessary
to differentiate one system from another. The cal-
culations employ experimental values of {7*) and
{7%) so as to maintain consistency in static and
dynamic crystal fields, and a computed®* value of
(#?%), since this parameter is not obtainable from
experiment for systems under consideration. The
lattice dynamics (phonon modes, density of states,
etc.) are entirely characterized in the present
model by the velocities of sound v, and vy .

A. CaF,:Tm?*
While the properties of divalent thulium in a

cubic environment have been studied by many in-
vestigators, understanding of this relatively sim-
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ple system is far from complete. The optical
spectrumof CaF,: Tm?* (4f*° -%F, /2 free-ion ground
term) was observed by Kiss?® who found that a 'y
doublet lies lowest with a I'y quartet at 555.8 cm™,
Based on Kiss’s data and a point-charge model,
Bleaney?® obtained effective values of {7*) and (7®)
considerably larger than those calculated by Free-
man and Watson® and predicted that the I'y doublet
would lie at 588 cm™. High-precision spin-Hamil-
tonian parameters have been provided by the elec-
tron-nuclear-double-resonance (ENDOR) experi-
ments of Bessent and Hayes. 2’

The system is characterized by a spin Hamil-
tonian (4. 3) with S=%, I=3. At zero magnetic
field, eigenstates for CaF,: Tm?* are then a triply
degenerate lower hyperfine level

[11y=]%4y |
[10)=a/VD) | L-Hy+a/vD) | =14 , 6.1)
Il"l):l_%—%) ’

transforming as I's in the cubic group and an ex-
cited hyperfine singlet

looy=(/VD) | i-5)-/vD) | -11) (6.2

at 1104.1 MHz, transforming as I';, The |1 11)
and |1 -1) states remain eigenstates at arbitrary
field while the remaining states correlate to

[10)g=-(A/2gusB) | S -%)+| -34)

) (6.3)

A '_I
2gu H '~ *°

Hyperfine levels at high field are given schemati-
cally in Fig. 1.

(M

[00)y=]3-4)+

1. Direct process

Considering first the direct-process equation
(3.32)

(j| mre) | iy=0

as expected, ® when | j) and | ¢) are zeroth-order
hyperfine states and V(I'8) acts only on the elec-
tron coordinates. However, Zeeman and hyper-
fine interactions do admix hyperfine levels derived
from excited electronic states into the ground mul-
tiplet. Since it is a consequence of group theory
that J does not connect I'; and Ty states, perturbed
hyperfine levels are of the form

| FMg)Yy=| FMg)y

¥ 5

mg==3/2 myp
y | Dgmgmy Y{Tgmgmy | 3¢5 | FMp )y
E(T) ’
(6.4)
where 3C; is given by Eq. (4.2). With hyperfine
states in this form, Eq. (3. 32) yields a nonvanish-
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FIG. 1. Schematic representation of hyperfine levels
of !¥Tm? in CaF, at high magnetic field. Downward
transition rates Wy, W,, Wy, W, refer to allowed, AMp
=0 “skew,” AMp=2 “skew,” and nuclear transitions,
respectively. See Eq. (6.17) and discussion.

ing direct process transition rate. 7¢/ has been
calculated for all possible transitions in this sys-
tem with an external magnetic field ranging from
0 to 10° G parallel to the crystal [100] axis. The
experimental sound velocities vz =7.36%x10°, v,
=3.34x10° cm/sec of the pure CaF, lattice were
employed. 2

At zero external field a state-to-state direction
corrected direct process rate

TH=5.68%10""T (sec™)

is obtained for transitions between | i) =100) and
any one of the degenerate states | j)=11Mg). It
is a direct consequence of the cubic group sym-
metries of the zero-field states (I',, I';) that only
the T'y, lattice modes are involved in the direct
process at zero field. The role of these “rotation-
al” lattice modes in spin lattice relaxation has un-
til recently!! been neglected by almost all authors.
The kinetic equation (3. 24) for the behavior of the
population of | 00) P, and the population of the triply
degenerate level | 1My )P, is thus

d [P, — 3T g8/2RT  pij ,=b/2kT Py
dat | P T3TH /2T _ i g/uT | p |

6= Ejggy — Epyy

(6.5)

The corresponding reduced transition-rate matrix
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ter — 37l g8/ 2%RT B ]
= ﬁTU - TI'! e-ﬁ/ZkT

has a single nonzero eigenvalue A= T (e
+3e%/2*T) The return of this system to thermal
equilibrium is characterized by an approximate
zero-field relaxation inverse time or rate

(6.6)

=6/ 2krT

1/T,=2.27x10°T (sec™) 6.7

Results at nonzero external field are expressed
in terms of the direction corrected relaxation rate
between nondegenerate levels

Tirect =(t8' +2+ 2 T (6.8)

in which #¥ is the contribution of the T, lattice
modes to the relaxation.

A convenient classification of relaxation rates at
high field is indicated in Fig. 1. In the high-field
limit the allowed EPR transitions | AMz | =1 be-
tween | 11)and | 10) and between | 00) and | 1 -1)
have a total symmetrized direct process transition
rate (related to W, in Fig. 1)

1 H\® H
y 1 (gusH g;t_ta__)
T‘”"“‘mph( 7 ) cosech ( 2kT
3 T 41 (E I grpe a1 Ty =) 1

[E(ra)]-2
><§ [(re-3|vrp)| -5y |2 . (6.9

xr Ux

Since ion-lattice relaxation within either pair of
these levels (| 11)—110) and 1 00)~— |1 -1),

see Fig. 1) occurs much faster than lattice-induced
transitions from either member of the pair to any
other level, return of the populations of these lev-
els to thermal equilibrium after a short saturating
pulse will be characterized by a single exponential
decay (relaxation time)

1/T,=5.6X10"VH'T (RT< gug H) (6.10)

EPR “skew” transitions with | AMg | =2 between
I11) and | 1 -1) and with | AMg | =0 between | 00)
and | 10) involve essentially a nuclear spin flip, so
that ion-lattice transition rates are smaller, owing
to the fact that 3¢;; does not affect the nuclear
states. In the high-field limit these transition
rates increase as H2T. Return of a population dis-
turbance to thermal equilibrium will generally oc-
cur in a multiexponential manner.

Nuclear transitions rates between | 00) and | 11)
and between | 10) and | 1 —1) are very small and
actually decrease with increasing field.

We present some calculated values for the ¢}/,
direct process Eq. (6.8), at intermediate fields in
Table VI. No transition is connected with all three
sets of lattice modes. The two allowed EPR tran-
sitions are coupled to I'y, and I's, modes, | AMj |
=2 skew transitions involve I'j, and I';, modes, the
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TABLE VI. Contributions tf,’ (sec™' K-!) of the T, lattice modes to the direct relaxation process
for, CaF, : Tm?*, The direction-corrected relaxation rate is given by T4 et = ¢4/ + i + )T, At
H=0; téoo),“m) =.l’é00)'“"')= 0, tjol)),“m)= 5.68X% 10-7 sec-l K-i.

H=100 G H=10'G

i j th th ! ¢4 td
111) 110) 0 3.94x10°  4,41x108 0 4,03 21.0
111) 11-1) 1.09x10" 0 5.71x10~"  1.09x10 0 5,71x10%
I11) 100) 0 1.58x10"7  6.02x10"7 0 8x10-12 1.53x106
j10) 11-1) 0 3.11x10°1% 1,55%x1077 0 1x10-! 1.44%x10%
110) 1 00) 3.27x10~7  6,78x10~7 3.27x10°  1.10x10%3 0
11-1) 100y 0 2.04x10"% 2,49x10%6 0 4,41 23.0

AMp =0 transition involves I's, and I'y; modes, and
high-field “nuclear” transitions involve I'y, and I';,
modes.

2. Raman process

The only other relaxation mechanism available
to the system under consideration is the Raman
process. While it is certain that matrix elements
of the effective perturbation (3. 34) between the ion
states | 7+3) and | —3+3) will exhibit the “Van
Vleck” cancellation (3. 42a), it is not readily ap-
parent whether (3. 42a) will hold for all pairs of

initial and final states at arbitrary field since elec-

tronic matrix elements which occur in the calcula-
tion are of the form

(i%l V(r151)| t><t| V(rzﬁz)lié’> ’

as well as the usual
(+z | WV(T'184) I t)(t| V(T',8,) ‘ F3)

It can be demonstrated however, that Eq. (3.42)
does, in general, apply to these calculations®**°
owing to the following identities, resulting from
time reversal symmetry:

CIRAESICAR AR

== | B |-t")(-3 W] -%) ,
SRARSCERAR

(=3 | V| =8")(=3"| V| -%) ,

in which | +3) and | +3') are pairs of Kramers
conjugate states and V;, V, are time-even opera-
tors. Thus Raman relaxation in this system dis-
plays a characteristic 7° dependence.

We have calculated the Raman relaxation rate
for all transitions from zero to high magnetic
fields. The zero-field transition | 00)— | 1Mg),

TOWF _1 93%x10""T® (sec™) (6.11a)
and
Wi'=3.34x10"T? (sec™) , (6.11b)

corresponding to a level-to-level relaxation time

given by 1/7,=7.7x10""T"® (sec™) so that Raman-
process relaxation becomes comparable with the
direct process below 2 K. In general, all lattice
vibrational modes are involved in Raman relaxa-
tion. Some calculated Raman reduced transition -
rates for nonzero magnetic field can be found in
Table VII. Change in Raman transition rates with
increasing field arise essentially from changes in
wavefunctions. At high fields relaxation rates for
allowed EPR transitions become field independent
and a relaxation rate

1/Ty=8.2x10""T? (sec™) (6.12)

for the Raman process is obtained. For skew and
nuclear transitions, relaxation rates exhibit a
H=T® dependence at large field.

3. Summary of calculations and comparison with experiment

The calculated relaxation behavior at zero field
is described by the relaxation rate

1/7y=(2.27Xx10°8T+7.7%10°"T ?) (sec™)
(6.13)
In the high-field limit relaxation of the allowed
EPR transitions is also governed by a relaxation
rate

1/7y=(5.6%10"Y¥H*T+8.2x10""T®) (sec™).
(6.14)

TABLE VII. Direction-corrected relaxation rates
T¥ for the Raman relaxation process in CaF, : Tm?*,
See Eq. (3.44). Entries are normalized with respect to
T, At H=0 T'00= 1D _plo0d=10)_7100-11-1) =7 g3, 10"T7?
-1
sec ',

~

TH/T® (sec1K®) TH/T® (sec™ K)

i j H=100 G H=10'G
I11) 110) 2.70x10°7 3.86%x10°7
|11) 11-1) 0 0
|11) 100) 1.15x107 5.00% 1011
110) 11-1) 1.15x 107 5. 00 x 101
| 10) | 00) 1.62x107 1.00x 1010
11-1) 100) 2.70x10"7 3.86x1077
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where H is in gauss and T in kelvin. Relaxation
at low field exhibits a multiexponential return to
equilibrium.

Huang® made the first measurement of spin-lat-
tice relaxation in this system, finding for the al-
lowed EPR transitions with H=2 kG along the crys-
tal [100] axis, a relaxation rate for 0.2-mole%
Tm? in CaF,,

1/T,=(13T+17.7%x10°T?) (sec™) (6.15)

In a subsequent study by Sabisky and Anderson®!
the magnetic field was varied over the range 1-12
kG. It was found that the direct process included
an anomalous component which was approximately
field independent. The true direct process, pro-
portional to H*7, was identified and was found to
contribute

1/7,=5.9%10%H*T (Hin G and TinK)  (6.16)

to the relaxation. In addition a Raman process, in
agreement with Huang, was found. Comparing
calculated results with experiment, the direct-
process result (6.10) and Raman process result
(6.13) are a factor of 10 larger than experiment
[Eq. (6.16)]. We feel these results to be reason-
ably satisfactory considering the simplicity of the
model employed.

Recently, this system together with SrF,: Tm?
was studied by Abragam et al.'! at H=27 kG and
very low temperature (7~0.6 K). Downward tran-
sition rates (W,, W,, W, in Fig. 1) at such low tem-
peratures (7T< hiw) are almost entirely due to
spontaneous emission of phonons and are therefore
nearly temperature independent. Contributions
B;, B,, B;of the I'y,, I'y,, I's, lattice modes may
be related to the spontaneous transition rates by'!

1
Wo =2 (By+ B5) = Wigor=11-13= Wianr-1100 »

A 2
Wf(m) (9Bs+ By) = Wiggr-110y , (6.17)

4 \2
Wy = (ZguaH> (3B + Bs) = Wiq13-11-1)

when 1 is parallel to the [100] axis. The experi-
mental values for B;, B, and B; together with cal-
culated values are presented in Table VIII. While
there is clearly quite good agreement for B; and
B, in both systems, calculated values of B; are
much greater than experimental ones. One is
struck as well by the difference in measured B;
values for CaF;, and SrF,. Calculated values of
Bg, B,, and B; prove quite sensitive to small vari-
ations in the parameter (r? ), somewhat less sen-
sitive to changes in (#*), and quite insensitive to
changes in (#%). A 10% increase or decrease of
(7?) from the Hartree-Fock value induced over
25% increase or decrease in the calculated B;. An
attempt to fit the three experimentally determined
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quantities in both CaF, and SrF, hosts to any set
of (%), (r*), (7®) has been unsuccessful, al-
though a far better estimate of the total relaxation
magnitude obtains with {#%) at about one-half the
Hartree-Fock value, indicating perhaps a signifi-
cant diamagnetic shielding contribution.'*%* We
hope that planned investigations of these systems
incorporating covalent effects and a realistic lat-
tice spectrum (including effects of the impurity
perturbation) will yield an explanation for the un-
usual character of the I's, contribution.

B. CaF, : Ho?*

The optical spectrum of CaF,:Ho* (47", *I;,,
ground free-ion state), first observed by Weakleim
and Kiss, * indicates that this system possesses a
lowest I'g doublet, with a low-lying I'; doublet at
30.1 cm™ and a Ty quartet at 33.5 cm™. Spin-
Hamiltonian parameters are provided by the para-
magnetic resonance experiments of Lewis and Sa-
bisky.3* The system is characterized by the spin
Hamiltonian (4. 3) with S=3, I=}. Most notable
for this system is the large value of the magnetic
hyperfine parameter A =-0.1307 cm™, implying
significant mixing of electronic states by the hy-
perfine interaction even at moderately high fields
(<10 kG).

Diagonalizing the spin Hamiltonian (4. 3) for
CaF, : Ho?* at zero field yields a ninefold degener-
ate lower hyperfine level

| 4, M) =[5 (4 + Mp)I2 | 3, Mp —3)
+B@-MM?| -1, Mp+ %), (6.18)
whose component states transform in the cubic

group O as I'; + '3+ 'y + I's and a sevenfold degen-
erate excited hyperfine level

| 3, Mg)=[5(4 - M2 | 3, Mp - 3)

—[3 @+ M2 | =5 Mp+ 3y (6.19)

at 15. 67 GHz whose component states transform

as I';+ ', +I's. The ninefold and sevenfold degen-
eracies are, however, an artifact of the spin-Ham-
iltonian formalism. Diagonalizing the Hamiltonian

5(H=0)=al - J (6. 20)

TABLE VIII. Contributions of the I'y,, T'y,, I's, lattice
modes to direct-process relaxation in the low-tempera-
ture high-field (~27 kG) region for CaF, : Tm?* and
SrF,: Tm?*, See Eq. (6.17).

CaF,: Tm* SrF, : Tm?
Expt. Calc. Expt. Calc.
B, (sec™!) 800 870 1800 1700
B, (sec™) 2300 2740 2000 3700
Bj (sec™) <100 14 300 6500 26 900
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for the entire J=%, I=} manifold removes the de-
generacies among the cubic components of the F=4
level (total splitting = 2.1 MHz) and the F=3 level
(total splitting =0.7 MHz). Experiment will re-
veal under which conditions (if any) these small
splittings are observable. For the present study
we assume that hyperfine linewidths are sufficient-
ly broad that the F=4 and F=3 levels may be
treated as degenerate. Comparison of the eigen-
states of (6. 20) with the zeroth- and first-order
eigenstates employed in the relaxation-rate calcu-
lations implies less than a 10% difference in calcu-
lated rates between the exact (6. 20) and perturba-
tion treatments. Hyperfine levels at zero field and
at H=2.4 kG are given in Fig. 2.

1. Direct process

Direct-process relaxation in this system is sub-
ject to the same general considerations as for
CaF,: Tm?. The direct process is permitted only
by Zeeman or hyperfine admixture of the I'g ex-
cited electronic states. Since the excited I' state
lies at 33.8 cm™, direct-process relaxation in
CaF,:Ho? is much larger than for CaF,: Tm?,

Direct-process relaxation at zero field is char-
acterized by the level-to-level reduced transition
rate

13 3)
—_— |32)
15} _— 130
—_—130)

13-1)

1o —_— 13-
13M)
13-3)

—— 14-9)

ENERGY (GHz)
o
T

s — 43
14Mp)

_— 142

-10} _— 14

140}

:4 1

—_— 14 2)

=151 —_— a3

—_— |4 a)

H=2.4 kG.

H=0

FIG. 2. Hyperfine energy levels of Ho®" in CaF, at
zero field and at H=2.4 kG. The transition indicated at
high field is that studied by Huang (Ref. 6).

Wi -14.7T sec™ (6.21)

where % and ! refer to the levels composed of

| 4Mp) states and of | 3My ) states, respectively.
Diagonalizing W '*" yields a relaxation rate for the
two-level zero-field system of

1/T,=33.27T sec™ (6.22)

Direct-process relaxation in CaF,: Ho?* at zero
field is thus expected to occur some 107 times
faster than in CaF,: Tm?*. This large difference
in relaxation rate is attributed to (i) the low-lying
excited I'y electronic level and (ii) the large hy-
perfine-coupling constant in the CaF,: Ho?* sys-
tem.

Results at a moderate value of external mag-
netic field (2.4 kG) are given in Table IX, ex-
pressed in terms of the contribution of the T';,,
Ty, and I's, lattice modes to the direction cor-
rected relaxation rate [Eq. (6.8)]. The largest
transition rates are associated with allowed EPR
transitions and attributed to I'y, and I';, modes.
Relatively large skew transition rates are attrib-
uted to the large magnetic hyperfine interaction in
this system.

2. Raman processes

Raman-process relaxation at zero field is char-
acterized by the level-to-level reduced transition
rate

Wiev=2.18x10"T? sec™ (6.23)

and a corresponding relaxation time is given by
1/Ty=4.19%10"*7T ® sec™ (6.24)

Owing to the large magnetic hyperfine-constant
Raman rates for the various allowed EPR transi-
tions are different in the usual “high-field” region.
Raman rates at a 2.4-kG external magnetic field
are included in Table IX. Raman relaxation is
clearly largest for the allowed EPR transitions.

In CaF,: Hoz", resonant Raman relaxation may
occur via either the I'; electronic level at 30.1
cm™ and the I'y level at 33.5 cm™. Resonant
Raman relaxation at zero field is characterized by

Wi=1.05%10° e*3-3/7 4 6. 77x10° e8-2/T (6. 25)
1/T,=2.11%10° ™53/ 7 1 1,36 x 10 ¢82/7 (6. 26)

Resonant Raman rates at 2.4 kG are also includ-
ed in Table IX and are seen to be greatest for the
allowed EPR transitions.

3. Summary and comparison with experiment

Relaxation behavior of CaF,: Ho?* at zero field
is described by a total inverse relaxation time

1/7,=33.2T+4.19%10*T%+2.11x10° ™33/ 7
+1.36x1010 g™8:2/T (6.27)
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TABLE IX. Relaxation processes in CaF,: Ho® at H=2.4 kG along a crystal [100] axis. The direct-process
direction-corrected relaxation rate is given by T ,.= (¢ +¢{/ +#)T. Raman rates are normalized with re-
spect to T® while resonance Raman rates are normalized with respect to e3/*T, Only the larger relaxation
rates, corresponding in general to allowed and “skew” EPR transitions are given. Results at zero external
field are given in the text, Eq. (6.27).

Orbach Orbach
Direct Raman process process
process process AT;=30.1 cm™! ATg=33.5 cm
tgj t:" tgl TU/TS Ti!/e-A/kT T(!/e-A/hT
1) 15 (sec'K*!)  (sec'K™!)  (sec”!K"l)  (10- sec-!K?) (108 sec™!) (108 sec™!)
| 44) |33) 0 9.32 169. 04 11.88 10.26 66. 50
| 44) |32) 24, 38 0 7.71 0 0 0
143) 133) 71.41 0.41 0 0.97 0.53 3.42
143) |132) 0 6.73 97.16 17.87 9.73 63. 04
| 43) |31) 34.25 0 10.83 0 0 0
| 42) 133) 0 0.01 1.56 0.03 0.01 0.09
| 42) 132) 94.20 0.61 0 1.91 1.04 6.75
| 42) 131) 0 4,62 50.98 16.89 9.19 59. 56
| 42) 130) 34,01 0 10.76 0 0 0
[41) |32) 0 0.02 3.27 0.08 0.04 0.28
|41) 131) 87.10 0.64 0 2.83 1.54 9.98
| 41) 1 30) 0 2.96 23.59 15.90 8.60 56. 08
141) 13~1) 27.58 0 8.72 0 0 0
| 40) 132) 0.23 0 0.07 0 0 0
1 40) [31) 0 0.03 4,25 0.17 0.09 0.58
140) | 30) 65.13 0. 56 0 3.7 2.02 13.10
140) 13-1) 0 1.71 9.11 14.92 8.13 52,63
| 40) 13~2) 18.37 0 5.81 0 0 0
l4-1) |4-3) 0.12 0 0.03 0 0 0
[4-1) 131) 0.37 0 0.12 0 0 0
[4-1) 130) 0 0.03 4.14 0.28 0.02 1.00
14-1) 13~-1) 39.63 0.40 0.0 4.55 2.48 16. 04
14-1) 13-2) 0 0.84 2,67 13.99 7.62 49.35
14-1) 13~3) 9.28 0 2,94 0 0 0
14-2) |4~4) 2.44 0 0.77 0 0 0
|4-2) | 30) 0.43 0 0.14 0 0 0
4-2) 13~1) 0 0.03 3.03 0.43 0.23 1.51
14-2) 13-2) 18.25 0.22 0 5.28 2.88 18. 64
[4-2) 13-3) 0 0.30 0.53 13.28 7.23 46.83
14-3) 14-4) 0 0.03 0.12 15.87 8.64 55. 96
14-3) 13-1) 0.32 0 0.10 0 0 0
14-3) 13~2) 0 0.01 1.41 0.59 0.31 2,01
14-3) 13-3) 4.95 0. 07 0 5,71 3.11 20.16
[4-4) 13-2) 0.21 0 0.07 0 0 0
|4-4) [3~3) 0 0 0.18 3.49 1.90 12,29

Owing to the very large magnetic hyperfine inter-
action in this system, relaxation at moderate ex-
ternal fields (H<10 kG) occurs generally in a mul-
tiexponential manner.

Huang® measured the spin-lattice relaxation of
a sample of 0.02-mole% Ho?* in CaF, with an ex-
ternal magnetic field along the crystal [100] direc-
tion. The result of his pulse-saturation experi-
ment of the | 4 —4)~ | 4 - 3) transition (see Fig. 2)

was fit by the inverse relaxation time
1/T,=42T+8.0x10° ™™8/T (6. 28)

Table IX gives a large relaxation rate for the
|4-4)~|4-3) transition and indicates that reso-

nant Raman relaxation via the I'y electronic level
for this transition will occur with an approximately
single exponential decay characterized by

1/Ty=1.1x100 g8:2/T (6.29)

in rather good agreement with experiment. Raman
relaxation and resonant Raman relaxation via the

T'; electronic level are seen to be generally smaller
than the I'y resonant Raman relaxation, or at low
temperatures, the direct process. Direct-process
relaxation under the experimental conditions, is a
sum of exponential decays, owing to the large hy-
perfine constant for this system. Diagonalizing

the direct-process reduced transition-rate matrix
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and calculating the time evolution of the system
following a short saturating pulse applied to the

| 4-4)~14-3) transition reveals that the domi-
nant exponentials in the return of the system to
equilibrium are 3.67 and 4.57, about an order of
magnitude smaller than the measured direct-pro-
cess relaxation time.

C. MgO: Er3*

One of the few cases in which a I'y quartet elec-
tronic ground level occurs is the system MgO: Er3*.
The existence of two electronic Kramers doublets

E. R. BERNSTEIN AND D. R. FRANCESCHETTI

[

in the ground manifold provides a complex and
challenging system for spectroscopic and relaxa-
tion studies. Belorizky ef al.> have provided a
detailed EPR study of the hyperfine structure in
this system. From EPR results Descamps and
d’Aubigné®® have determined approximate crystal-
field parameters for the system, indicating the
existence of an excited I'; doublet at about 110 cm™
and 1an excited I'g quartet at approximately 140
cm™.

The spin Hamiltonian (S=3) for a I'y quartet is
quite complex:

5(33=gubaﬁ'§+uu5{§211,+ §3H,+ SSH,-£(S- ﬁ) [35(S + 1) - 1]}+AT- S

+U{S3L+S31 +§2I,-§(§- D[35(S + 1)—1]}+Bmi[315-1(1+ 1)][352-5(S +1)]
yey 6 q=1

The first and second terms in Eq. (6. 30) represent
the electronic Zeeman interaction, while the third
and fourth terms correspond to the magnetic hyper-
fine interaction. The remaining terms describe
the nuclear quadrupole interaction with the para-
magnetic electrons. Nuclear Zeeman and pseudo-
nuclear Zeeman terms for MgO : Er®* are small
and have been deleted from Eq. (6.30). A full
discussion of this spin Hamiltonian has been pro-
vided by Abragam and Bleaney.?® The parameters
of Belorisky et al.* will be employed in the follow-
ing calculations.

Since Uin Eq. (6.30) is much smaller than A for
the system, at zero field the quantity

F=8+T
is approximately a good quantum number. Zero-
field energy levels fall into groups of 5,7,9, and
11 states corresponding to F=2, 3,4, and 5, re-
spectively. There are 13 distinct energy levels at
zero field transforming as I')+ ', + 303+ 4Ty + 4T
in the cubic group. A convenient labeling scheme
for zero-field hyperfine states is provided by F
and the irreducible representation I'. Energy lev-
els at zero field are given in Table X.

Energy levels at a representative value of a
strong magnetic field H=1.4 kG along a crystal
[100] axis are depicted in Fig. 3. A direct-prod-
uct | Mg M;) notation is more appropriate for la-
beling the high-field states.

1. Direct process

Direct-process relaxation rates (3. 33) were
computed at zero field employing vy = 8.94x10°

cm/sec™ and vy =6.43x10° cm/sec™t.3” Unlike the

3n e a o=
+By DL+ 1) ($,8.+8.5) . (6.30)

[

preceding systems, with Kramers-doublet ground
states, in the present case

(j| mrey|iy#o0

when | j) and | {) are zeroth-order hyperfine
states.

The matrix element does not vanish because the
| +3) and | +1) electronic states both appear to
some extent in the hyperfine wave function. Rep-
resentative values of the direct process Wii" at
zero field are given in Table XI. From the sym-
metries of the levels involved, the lattice modes
contributing to the relaxation may be found.

Direct-process reduced transition rates for

TABLE X. Energy levels and state designations for
MgO :Er®* at zero field [see discussion following Eq.
(6.30)]. Uncertainty in energy levels is approximately
+30 MHz due to experimental uncertainty in spin-Hamil-
tonian parameters.

F r Energy (MHz)
2 Ty 2577
2 Ty 2569
3 T, 1703
3 T 1659
3 T, 1626
4 Ts 181
4 T, 113
4 r, 83
4 T, 37
5 iy - 2168
5 T; —2237
5 T, - 2434
5 Ty - 2463
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some allowed and skew EPR transitions at 1.4 kG
are given in Table XII. The largest rates corre-
spond to | £3 M;)~ | +3 M) transitions, owing to
the non-Kramers-conjugate nature of the electron-
ic states involved.

2. Raman process

Raman relaxation rates were calculated employ-
ing Eqs. (3.38)—(3.41). Since the ground multiplet
is derived from four electronic states and not a
simple Kramers pair, temperature dependences
from 7% to 7T° will in general occur. Semidiagonal
matrix elements of 3¢, , i.e., matrix elements of
the form

(MgN|30, | MgN£1) (6.31)

make a nonvanishing contribution to the TS and T®
terms and have been included in the calculation. *
It should be mentioned that in addition to the Ra-
man processes arising from second-order pertur-
bation theory the third term in the Taylor expan-
sion (5.2), namely,

4me@
—ZZ—-’— (GR, - éRo)(t‘)R, - GRO)
jire

-~
x (V(ij-ﬁo)v(ﬁ,-ﬁo)

Y*(l Tap; Gi(p!) . )
IR; -Rol™ )(RO_RO r'Y(ITap; 6, ¢) (6.32)

o)

gives rise to a similar Raman process in first-
order perturbation theory, significant only when
initial and final states are not simply derived from
a Kramers-conjugate pair. Contributions from
(6. 32) to the Raman relaxation have been neglected
in the present calculations, but should be included
in a more refined treatment of this system.

Representative values of the Raman process wieY
at zero field are expressed as a power series

Wi (Raman) = WY (R5)TS + WS"(R6)T®
+ WRTT" + Wi (R8)T®

+ WY (RY)T® (6.33)
and are included in Table XI. It becomes apparent
that zero-field transitions among the hyperfine
levels of this system might be divided into three
categories. For such transitions as (2I';)~ (5T';),
the relaxation resembles that of a Kramers dou-
blet, with small direct process and T5 and T° terms
dominant in Raman relaxation. For the (2I';)

- (4I',) and similar transitions, relaxation resem-
bles that of a time even (non-Kramers) doublet
with large direct process and a T" Raman process.
Lastly, for the (2I';)—=(3I';5) and many other transi-
tions, a moderate direct process and T® through
T® Raman process are observed. In all cases the
“cross terms” with 7% and T® dependences are
smaller than the T°, T7, and T° terms.
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Values of the Raman process T (= W-’};') for
some allowed and skew EPR transitions at 1.4 kG
are included in Table XII. The Van Vleck cancella
tion is readily apparent in the IMgM)—~| - MgM,)
transitions. The +3M,)~ |+3M,) display not only
a dominant 77 Raman relaxation but also 7° and T°
processes.

Relaxation rates for resonant Raman processes
via the T'; level at 110 cm™ and the T’y level at 140
cem™! are included in Table XI for zero field and
Table XII for H=1.4 kG. Resonant Raman relaxa-
tion is significant for almost all transitions at zero
field and for allowed EPR transitions (including
AMgz=2) at high field.

3. Summary and comparison with experiment

The direct relaxation process for MgO: Er®*
seen from Tables XI and XII to be dominant in the
low-temperature (T <10 K) region. Relaxation
among hyperfine levels is expected to be quite com-
plex, particularly at zero field. In general, a
multiexponential return to equilibrium is to be ex-
pected.

Relaxation among hyperfine levels in this sys-
tem has not yet been studied experimentally. The
calculated results for allowed EPR transitions

14~ 13/2-7/2)
T |372-5/2)
13 _  |3/2-3/2)
12k —_— |3/2-1/2)
—_— |3/2 1/2)
Nk —_—  |3/2 3/2)
ok —_— |32 5/2)
ok —_— 13272 \\/2-7/2)
11/2-5/2)
¥ /l 1/2-3/2)
5 ——-——"'_—/n/z-t/a)
—— 1172 1/72)
E 4 1172 372)
S— |1/2 572)
e 3 \l 172 7/2)
S r 172 7/72)
x - 1_ /l-vz 5/2)
W /H/Z 3/2)
oY H/s2 1/72)
-5k _.___\I'I/Z 1/2)
\ '|/2'3/2)
~ [FI72-5/2)
-9k |H/2-7/2)
372 7/2)
-10[ -3/2 5/2)
ik 372 3/2)
372 1/2)
-2 —_— 3r2-172)
13k _— 13/2-32)
—_—  |-3/2-5/2)
-14 —_—  |3/2-7/2)
FIG. 3. Hyperfine energy levels of !¥Er3* in MgO with

H=1.4 kG along a crystal [100] axis.
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might be compared with the experimental measure-
ments of Borg, Buisson, and Jacolin!® on MgO: Er*
with zero nuclear spin. Borg et al. found the di-
rect process to be dominant in the liquid-helium
range and obtained principal direct-process rates
within a factor of 4 of the analogous rates in our
calculation. Raman relaxation was not detected in
their experiment. Calculated Raman rates given
in this paper are more than an order of magnitude
larger than those calculated by Borg et al. This
disagreement is entirely attributed to the choice

of an unshielded value of {r2) in the present calcu-
lations. However, even the larger calculated val-
ues given here do not predict an observable Raman
process below 4.2 K.

VII. DISCUSSION AND CRITIQUE

We have presented an analysis of spin-lattice re-
laxation among hyperfine levels of a paramagnetic
ion located at a site of cubic (0,) symmetry in a
diamagnetic host. Our approach has centered on a
formulation of lattice continuum dynamics in terms
of “spherical waves” and a thorough application of
symmetry considerations to all aspects of the prob-
lem.

We believe the spherical wave approach to be a
promising alternative to more traditional ap-
proaches, more amenable to the physical intuition,
and of great value in treating more realistic models
for the spin-lattice relaxation phenomenon. Rea-
sonable goals for spin-lattice relaxation theory at
the present time would certainly include (i) pro-
viding the investigator with a set of viable concepts
for understanding the phenomenon on a pictorial
level, and (ii) formulating a computational scheme
to obtain reliable predictions of relaxation be-
havior based on a few readily obtainable spectro-
scopic and elastic parameters. We believe the
spherical wave approach contributes substantially
to these goals.

Conceptually, the spherical wave approach al-
lows treatment of ion wave functions and lattice
modes on an equal fodting. Ion states and lattice
states transforming as irreducible representations
of the ion site symmetry group are formed in an
identical manner and the ion-lattice interaction,
which must transform as the totally symmetric
representation of the site group takes on a partic-
ularly simple form. Since only a few lattice modes
possess substantial intensity near the origin, the
ion is coupled to only a small number of lattice
modes. Use of spherical modes also facilitates
the visualization and mathematical analysis of the
acoustic radiation pattern of a relaxing ion.

Since phonons involved in spin-lattice relaxation
typically possess wavelengths extending over many
unit cells of the lattice, the use of a continuum
model is far more easily dealt with computationally

D. R. FRANCESCHETTI

Elements of the reduced transition-rate matrix W for MgO : Er®* at zero field separated into contributions from the direct, Raman,

TABLE XI.
and resonant-Raman processes.

of the entire 13 x13 matrix,

re given, as representative

5, .., 9) temperature dependences W

Only matrix elements for transitions from the (2T;) level a

Raman rates are separated into contributions with T"(

+Wiev(rg) T8+ Wier(R9) T°,

W (R5) TS+ Wi (R6) T¢+ W' (RT) T"

lev(Raman)

Resonant-Raman processes

Direct

140 cm*!
Wln/e-A/hT

A=

110 em™!

A=

Raman processes

process

l'v/e-A/kT

wkl

Wiev(r9)

W

(1078 sec!K-7)

lev(rs)

k1
(10-° sec-'K-9)

W

l

(FT)

k
(FT)

k1l

Y
(10~ sec!K)

Wiy (R8)

(101 sec ! K-8)

Lev(R7)

Wis'(rR6)

(10~12 gec! Kf)

Wi/ T
(sec'K™)

10° sec)

(10° sec)

4,181
3.507

11,369

4,252
1.815
3.698
4.108
1.369
1.871
2,775

0.543 11,474

0.096
5.939
0.755
0.150
0.538
6.045
1.232
5.938
0.003

—0.067
-0.014

0.463

@ry)
(3T,)
(3T5)
(4Ty)
(4T3)
@4r,)
(4Ty)

(2T3)

0.283
2.106
0.449
10.215

7.225
8.256
0.803
0.001
0.084

-1.118

0.213
1.054
3.260
-0.011
-0.731

0. 446
0.240
0.453
0.005
0. 024

4,944
8.932
3.707
15.617

0.125
3.675

0.229
25.362

—-7.740

3.498
7.274
3.059
0.606
1.165

1.815
0,458

2,388

2,752

—0.345

-0.120

1.515
0,712

(51"40) 0.190

(5T5)
(5T)

0.338

0.105
0.195

1,537
0.002
0.771

0,047

0.008
-0,018

0. 040
0. 041

0.019
0.295

0.063
0,343

-0,389

0.073

(5T;b)

|e©
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than any discrete model sufficiently detailed to ac-
count for the measured lattice spectrum. Thus, it
would seem that the use of continuum models in
routine spin-lattice relaxation calculations is rea-
sonable and the development of modified more real-
istic continuum models should be investigated.

Future investigations will approach the problem
of spin-lattice relaxation in anisotropic systems,
employing a lattice potential energy density func-
tion suited to the actual lattice symmetry. Lattice
vibrational modes might be constructed by pertur-
bation techniques from a basis set of spherical
modes. Only the coefficients of the (angular mo-
mentum) n=0, 1, 2 modes in the resulting pertur-
bation series need be determined, together with a
dispersion relation and density of states function
for the modes involved in spin-lattice relaxation.
The lattice dynamical problem cast in a spherical
mode basis set may lead to effective approximation
schemes for a more realistic model of relaxation
phenomenon.

Further work will also investigate the adaptation
of a continuum model to incorporate the mass and
force constant perturbations associated with the
impurity ion. The geometry of the point impurity
problem suggests that a spherical mode treatment
is appropriate and that the resulting perturbed
density of states will take on a particularly simple
form.

It has been shown that the spin-lattice relaxation
rate expressions are most simply derived when
lattice modes are chosen to transform as rows of
the irreducible representation of the paramagnetic
ion site group. Total relaxation rates have been
separated into contributions associated with lattice
modes of different symmetries, making possible a
more detailed comparison of theory with experi-
ment.

Relaxation rates have been calculated for hyper-
fine levels of the systems CaF,: Tm?, CaF,: Ho*,
and MgO: Er®, based on a point-charge dynamical
crystal-field model and isotropic elastic ¢ontinuum-
lattice dynamics. Symmetry considerations have
been employed to minimize the number of indepen-
dent coefficients in the ion-lattice interaction Ham-
iltonian.

The systems CaF,: Tm?* and CaF,: Ho?* with
Kramers-doublet electronic ground levels display
a small direct process and T° Raman process.

In order to treat relaxation between levels not de-
rived from a simple time reversed pair of elec-
tronic states, a completely general derivation of
the Raman relaxation rate is given with tempera-
ture dependence being a sum of terms T" (n=5, ...,
9). The more general analysis of the Raman pro-
cess is directly applicable to MgO: Er®* which has
a I'g quartet electronic ground level. The direct
process in MgO: Er® however, is shown to be

D. R. FRANCESCHETTI 9

much larger than in the electronic Kramers-dou-
blet system and to dominate relaxation below 10 K.

APPENDIX: LATTICE DYNAMICS|IN/A PLANE-WAVE
BASIS

It is of course possible to construct linear com-
binations of plane-wave normal modes transform-
ing as rows of the irreducible representations of
the cubic group. While two standard methods ex-
ist for such constructions, we have devised a novel
method for forming the appropriate linear combi-
nations which is particularly well suited to treat-
ment of the spin-lattice interaction in the long-
wavelength approximation (3.17).

Assuming that S(r) satisfies periodic boundary
conditions over a cube of side L, one obtains one
longitudinal and two transverse families of normal
mode solutions to (2.9). To illustrate the various
methods, the longitudinal solutions

S.p= &/L%) ™ F (A1)
are employed. Components of k are given by
ky=2mm/L, n;=0,%£1,..., (A2)

with k restricted to the first Brillouin zone. For
general K, S;¢is degenerate with 5,z when k and
k' are related by a site-group operation. The set
of wave vectors so related is conventionally desig-
nated £*. For the cubic group #* will contain 48
vectors. From the 48 associated normal modes
linear combinations may be formed® transforming
as [y, + Ty, + 203, + 30, + 305, + Ty + Ty, + 215, + 3Ty,
+3C;,.

Such linear combinations may be formed using
the projection operators*’

o = L DI @ Py (a3)

which when applied to $;3 generate linear combina-
tions of 5,3.(k’e £*) transforming as the pth row of
the jth irreducible representation of the cubic
group. In Eq. (A3), /; is the dimensionality of the
jth representation, T'Yy is the diagonal element of
the Bth row of the matrix representation I'*’? of the
group element R, and the sum runs over all the
symmetry elements of the group. Pg is an opera-
tion on functions of position defined by

Ppf(F)=f(R'T) . (A4)

There are, for the group O,, 20 projection opera-
tors @4 corresponding to all rows of the 10 repre-
sentations. Applying the 20 ®§}’ to §.¢ will thus
generate 20 different normal modes each transform-

-ing as a row of an irreducible representation of the

cubic group. To obtain the additional 28 indepen-
dent normal modes transforming as rows of the de-
generate representations, it is necessary to apply
@Y to a second and third plane-wave mode S5,
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S,g» associated with #*. Unfortunately, the normal
modes constructed from S;3.,, and Sy will not nec-
essarily be orthogonal to the mode of the same
symmetry constructed from §L;. The Gram-
Schmidt or other orthogonalization procedure must
then be used to complete the set of 48 independent
normal modes. Further, the two or three linear
combinations transforming as the same row of a
degenerate representation will in general all make
a nonzero contribution to the corresponding o(I'B)
[Eq. (3.86)].

The second standard method*® employed in form-
ing linear combinations of plane waves involves
the “cubic” harmonics Y(ITapB; 6¢) [Eq. (2.30)].

It can be verified that the function
Saxiras= 24, Y(ITap; 6507)s,3 (A5)
e
transforms as the Bth row of the irreducible repre-
sentation I'. This method presents difficulties
similar to that of the projection operators (A3).
To obtain the two or three normal modes corre-
sponding to a row of a degenerate representation,
cubic harmonics of different / or @ must be em-
ployed. The resulting functions are not necessarily
orthogonal and even the orthonormalized linear
combinations which must then be constructed will
all make nonvanishing contributions to oy(I'8).

The following new method is an application of
elementary Hilbert space theory to the normal
modes (Al). The set £(k*) of all linear combina-
tions of normal modes S;;, (K € ¥*) forms a Hilbert
space with the scalar product

> - L/2 L/2 rL/2 T -
(f£,8)=Jrj2 Loz Lr e % gdxdydz .

(A8)
Related to the nine cubic strain tensor compo-
nents 0o(I'8) [Eq. (3.6)] are a family of nine linear
transformations o,z from the Hilbert space £(k*) to
the set of complex numbers, such that op4f ) is the

contribution of the function f to the strain compo-

nent 0,(I'8). Thus,
Ho_ L(% 3 m)
ry ) == ﬁ(ax Toy "oz /e,

-~ i (8f, of
Ur4,o(f)= 73 (8—;‘ - ﬁ)&ﬁ ’

= 1 (8f ¥f
Ireeel) = 75 (ax - a_yl);:a ,

and so on. Each of the o, is a linear functional*!
on £(k*). According to the Reisz lemma, for each
linear functional 04, there is a unique function
ﬁrs belonging to £(k*) such that

ord) = Grp, ) (A8)

for all f in £(k*). It immediately follows that if &
is orthogonal to yr,,

(A7)
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Since the set of longitunal modes {5 L;;E €k}
forms an orthornormal basis for the Hilbert space
£(k*), the function ¥4 can be written as the sum of
projections onto these basis functions

Vre= 20 8125z, Vo - (A9)
kRERX
Employing Eq. (A8) the above expansion may be
written
§r5= ,,Z; -S.Lk'o}k-e(gz,i) . (A10)
ker*
From Egs. (A10), (A7), and (A1) the functions ?N
may be evaluated.

It follows from the transformation properties of
the ¥4 that

(re Yrew )=0,

unless I'=T" and B=p'. The ¥, are not normal-
ized with respect to Eq. (A6), however normalized
functions Sy,x s proportional to ¥, are quite easily
constructed:
ng*rf?rs/(;revim)l/z . (A11)
In forming linear combinations of the 48 normal
modes {S;z:k € k*} to transform as rows of the ir-
reducible representations of the group O, it is de-
sired to minimize the number of independent nor-
mal modes with nonvanishing cubic strain compo-
nents at the origin. Since it follows directly from
the Reisz lemma that any linear combination of
modes orthogonal to ng*re will make no contribu-
tion to the strain component UO(I‘B), if the trans-
formed set of normal modes is chosen to contain
the functions §,x rg only these nine functions will
possess nonvanishing strain. Actually only six
of the S, need be considered since oy(T',,, 8)=0
for longitudinal modes. Inserting (A1ll) in place of
f in Eq. (A8) it is seen that the nonzero strain
component associated with EL,,* rgis
0o(CB) = (Trs. Yro'/? . (A12)
An identical analysis may be applied to both
families of transverse normal modes associated
with &* resulting in a set of 96 transverse modes
of which only eight possess nonvanishing strain.
We have derived relaxation-rate expressions for
direct and Raman processes using the strains
(A12) and the restricted density of states
Pxwxrs=i5 L3/87° . (A13)
The results obtained are identical to those for the
spherical mode approach described in this paper.
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