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Temperature dependence of the NMR free induction decay in metais

Jerome I. Kaplan~t
Battelle Institute, Columbus, Ohio 49201

%'. A. B. Evans
University of Kent at Canterbury, Canterbury, England

(Received 21 January 1974}

A procedure is given for calculating the temperature dependence of the nuclear-spin free-induction

decay in a metal. It is sho~ that interplay between the dipole-dipole interaction and the spin-lattice

interaction must be taken into account. A numerical calculation is made for Al.

CALCULATIONS

Applying the %angness-Bloch and Redfield pro-
cedure for obtaining the density-matrix equation of
nuclear spins in a metal, one obtains the result
that in operator form

p= m '[II,-p] -Z-Z[[p- p', I, ], I-,. ], (1)2'
where p is the equilibrium distribution function,

T& is the nuclear relaxation time for a single spin,

g» is a sum over all lattice sites,
~&I» =I»"+ »I», I » I 0 2 I = =I"———I"

and

H=HE, ~+H~ d+H f . (2)

The dipole-dipole term H~~ includes any additional
interaction such as the Ruderman-Kittel terms.
The temperature dependence of T, for simple met-
als is known to be of the form

7'» =»»(7'K) ', (&)

where T„ is temperature in degrees Kelvin.
The usual Bloch-type relaxation form is ob-

tained from E»l. (1) when one evaluates

&I') = Tr p„, I'

INIODUCTION

In this note we will discuss the coupling between
the magnetic dipole-dipole interaction and the spin-
lattice interaction as evidenced in the temperature
dependence of the nuclear-resonance free-induction
decay' in a metal. To do this, the density-matrix
equation which the nuclear-spin system in a metal
obeys will first be exhibited; next we will discuss
the linewidth as seen in a cw experiment for a two-
spin system obeying the aforementioned density-
matrix equation; and lastly we will calculate the
temperature-dependent free-induction decay for
nuclear spins in a metal. Comparison of our re-
sults will be made with the temperature dependence
of the free-induction decay which has been calcu-
lated ignoring the coupling between the dipole-di-
pole terms and the spin-lattice relaxation.

TrZ[[p —p'I ]I ]I'

=-T (&I')- &I'.»»))
1 (4

1

One often sees that if two relaxation processes
are nrem rekrted the width arising from both of
them can be expressed as

1 1 1
T T T (5)

2ef f 2y R3

The spin-lattice relaxation and the dipole-dipole
coupling are not of this nature. The spin-lattice
relaxation effectively motionally narrows the di-
pole-dipole interaction and thus at one and the same
time the spin-lattice relaxation reduces the dipole-
dipole broadening and creates its own uncertainty
broadening. To see this more quantitatively con-
sider the Hamiltonian for the two-spin system:

II='&o(I» +I2 )+&I» I2 +»d»(I» +I2 ) cos»»»t . (6)

The resonance condition using E»l. (1) can be calcu-
lated as

. A 1 1 3A
2T 2 2 2T» 2

assuming A/2» 1/2T, . The»luantity in square
brackets in E»l. (7) exhibits the reduction of the
pure (+ iA/2) dipole broadening as previously dis-
cussed.

The most accurately calculable property of NMR
is the free-induction decay. Several procedures
have been advanced to make this calculation, and
we have chosen the one which is most easily gen-
eralized to include effects arising from the spin-
lattice relaxation time.

We start by rewriting E»l. (1) as

P (~0++» +~2) P ~»(p PO)

where

I» p[ »I,Ip],

II2 =»»»2 ZI»
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H, = ZA)t I) It
f&j

Hq ——Q B)t I) ~ I~
j&g

(12)

(13) 0.5

Solving E(I. (3) with the initial condition (after 90
pulse) that

0.05
2

0.1 . 0.ts-.—, ,t5 8
Q3

one obtains

(I e ) (I )tIo fI~/or))t) po

@0 ~ g(L(+La 4L /Bpg)g
(2I+ I)» nT

x (I"costyot+0 sin(A)ot) . (15)

One next substitutes Eq. (15) into

Mx= Tr pI"

to obtain

M = ' TrI'e " ' o ' I' r'"I" (17)(2I+1) toT

The temperature-independent free-induction decay
is obtainedby setting T, =~ in E(I. (17}, and the

temperature-dependent free-induction decay using
the relaxation operator in the form

I"IG. 1. Plots of the &~ contributions to the free-in-
duction decay divided by —t/7'~ for (i) the correlated case
(continuous curve), and (ii) the uncorrelated case (dashed
curve). As seen from Eq. (27), the uncorrelated plot is
just the Bloch decay curve itself for infinite T~ evaluated
'in the approximation Bp(t)+BI(t). The plots are against
the dimensionless time variable tp 5/a3 (p3/'y 8 =1287
@sec approximately in aluminum).

E(luation (1V) is evaluated by expanding
exp[-t(I, +Io —tI.„/2T, )t] as a power series in Io
and L, using the relation that

e-5 (L~+L3-4L„/RT ~)g -f L&g -ILL g & ef L&g'

x[- t(Lo —tl.„/2T, )]e '~2' dt '+. . .

Substituting Eg. (19) into E(I. (17), defining

is obtained by setting L,„=2 in E(I. (1V). This lat-
ter form of the free-induction decay (FID) will be
called uncorrelated FID as opposed to the corre-
lated FID given in Eq. (1V) with I.„given in Eg. (13).

—tfo)o cos(2)ot
&( )(2I+1)"}'oT

and using E(ls. (9) and (13), one obtains

(20)

G(t) =TrI'e '")'I'e'")'-tTrI"e '")' [H (t ) I']dt e'""
0

f
Trl'e '")' -5 [I, (t'), [I; (t'), I*]]dt'e"2'+ ~ ~ ~,

l, e

,vrhere

'(21)

A(t) ele)g Ae-fe)) (22)

The first two terms in the right-hand side have been previously evaluated for spin- —, and generalized to
arbitrary spin I by Demco, Fornes, Parker, and Memory (N. B., there are minor errors in the published
formulas of both these authors). The result for the first two terms which we will call Bo(t) and B,(t) for the
general spin case is

sin[AI)t(I+ 2}1
) «&) (2I+1) sin ,'A,&t—
I, ~ . , tz„(t) sin[A„t(I+ —,')]

B (t) = A)) sin ggAf 2I I II (2I I)

(23)

(24)3 '„,, Fi&(t —t')F&, (t') sin{[A„(t—t'}+A»t'J(I+ —,')j
2 I(l ~ 1)(2I~ 1) t t tt (21~ 1) Bitt( [At (t —t')+At t]})'



3672 J. I. KAP LAN AND W. A. B. EVANS

where

sinlAq, t Icos[Agqt(I+ ~)]
a sine(~A, qt) sin (—,'A, ,t) (a5)

In the above formulas the interaction between the nuclear spins is taken to be solely dipolar in character.
With these definitions one evaluates Eq. (17) and obtains for the correlated FID

g ( ) ( ) ( )
(B,(t)

~ g sin())ggt)Fu( )((stan Aot)-
a T~ g (()g) sin[A)~t(I+ k)] (, 2'A)~&

(as)

The uncorrelated FID is

G„,(t) ~ [Bo(t) + B)(t)](1 —t/T~) +... (a7)

The T, contribution divided by (- t/T, ) to G, and

G„, is plotted in Fig. 1 for the case of an aluminum
polycrystal which is a fcc lattice of spin--, nuclei.
For a polycrystal one has to average the above ex-
pressions over all angles. In our work, because

of cubic symmetry, the angle average coincides
with

&2 ~~4
(~)=—J ~( I d(cos8) B(P, 8)

W Q caa4/ (1+Doe I)
(aa)

which is the average over the spherical triangle
joining the direction points (100), (110), and (111),
i.e. , one sixth of an octant.
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