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Coherent-potential approximation for the lattice vibrations of mixed diatomic systems
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We generalize the coherent-potential approximation {CPA) for the lattice dynamics of mass-disordered
systems to the case of mixed diatomic crystals. Specific results are obtained for a one-dimensional
model. We prove that for mass defects on only one sublattice the CPA self-energy is nonzero only on
that sublattice. We compare the configuration-averaged density of states calculated by the CPA with

computer experiments on several mixed diatomic chains. We compare the CPA dielectric susceptibility
for the one-dimensional model with the experimental optical properties of several interesting III-V,
II-VI, and I-VII mixed crystals. With some qualifications we conclude that the CPA in one-dimension
can explain the switching from one-mode- to two-mode-type behavior observed in some III-V mixed

systems and unexplained by previous theories. Finally, we present a one-dimensional CPA phase
diagram for the transition from one optic band to two optic bands in the density of states.

I. INTRODUCTlON

The infrared spectra of mixed diatomic crystals
of the form A.B&,C, have been the subject of a
great deal of experimental and theoretical work.
A recent review has been given by Chang and
Mitra. ' Typically the observed infrared- or Ra-
man-active modes in the mixed crystals have been
categorized according to two classes, one-mode
or amalgamation type and two-mode or persistent
type. In one-mode systems the infrared-active
band varies continuously with composition from the
characteristic frequencies of one end member to
frequencies of the other, with the strength of the
band remaining approximately constant. Examples
of this type of mixed crystal are K, Qa,Cl,
Rbz Q,CI, Tl, ,K,Cl, Cd&, Zn, S, and ZnTe&, Se,.
In the two-mode type, two bands of frequencies,
close to those of the individual diatomic compo-
nents, persist in the mixed crystal. The strength
of each band grows from zero to the maximum as
the concentration of the corresponding constituent
is increased. Examples of this kind are Rb, ,K,I,
Znse, ,s„and Ga, glgs.

Some mixed crystals, however, appear to switch
from one-mode to two-mode behavior as the com-
position is changed. These are III-V systems,
In, ,Ga, Sb, In, ,Ga, As, Gasb~ As„and Insb, Qs, .
For example, In„,oa, Sb is one-rhode for c & 0.7;
for smaller c it is two-mode. '

There have been numerous attempts to provide a
theoretical criterion for predicting one- or two-
mode behavior. These too have been reviewed by
Chang and Mitra. Qf these we note just several.
In the modified-random-element-isodisplacement
(MREI) model it is assumed that all anion-cation
pairs of the crystal vibrate in phase, as in the k = 0
optic mode of a perfect diatomic crystal. This
leads to a criterion for two-mode behavior depen-
ding only on the masses of the constituents,

-j. -1~c'A~+Ma ~

This theory is further discussed in Sec. V.
A second criterion is that of I ucovsky, Brodsky,

and Burstein. 4 These authors first propose a
method whereby local-mode formation in three-
dimensional systems may be predicted from a one-
dimensional model. They then argue that a mixed
system should show two-mode behavior if a local
mode exists in the limit of small concentration of
the light constituent. This theory is discussed
further in Sec. IVB.

The recent theoretical criteria for one-mode-
two-mode behavior are based upon the nature of the
systems in the limit of vanishing concentration of
one or more constituents. Therefore, none of
these theories is concentration dependent. By con-
sidering both high- and low-concentration limits
one might find a criterion for systems which switch
from one-mode to two-mode types. ' However,
such a theory will not be able to predict the con-
centration at which the transition occurs.

In this paper we present a theory for a mixed
diatomic system, which is valid at all composi-
tions. Because this disordered-system problem
cannot be solved exactly, we employ a self-consis-
tent-field approach which has been called the co-
herent-potential approximation (CPA). The CPA
was developed by Taylore and by Sovenv for disor-
dered binary alloys. Among its many virtues the
CPA is able to predict transitions from single-
band to split-band behavior in disordered systems.
It is then natural to try to apply this method to the
problem of mixed diatomic systems. In order to
study the systematics of the CPA for mixed dia-
tomic systems we chose a simple model, a one-
dimensional chain with mass defects on one of two
sublattices. This one-dimensional model includes
the most important features of the three-dimen-
sional system and has often been used to discuss
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the optical properties of real systems. Vfe note
that Taylor has very recently applied the CPA to
three-dimensional calculations of the susceptibility
for several mixed alkali halides. Such calcula-
tions involve considerably more numerical effort
than do our one-dimensional calculations, for
which we can find analytic expressions for the per-
fect Green's functions.

In Sec. II we present the one-dimensional model
and introduce the Green's functions for a perfect
diatomic chain. In Sec. ID we first apply the
Green's functions to review the single-defect prob-
lem, which corresponds to the low-concentration
limit of the CPA. %'e then develop the CPA for
a mixed diatomic system. In particular, we show
in the Appendix that for mass defects on only one
sublattice the self-energy is nonzero only on that
sublattice. %e further develop the expressions
for the configuration-averaged density of states
and dielectric susceptibility. In Sec. III we first
compare the CPA theory for the density of states
with the spectra of mixed diatomic chains pro-
duced by computer experiment. %e next compare
the CPA susceptibility with the experimental op-
tical properties of III-V, II-VI, and I-VII mixed
crystals. In Sec. V we present concentration-de-
pendent phase boundaries delimiting the regimes
of one-band and two-band behavior for the CPA
density of states for the mixed diatomic chain.

mal modes of branch j (j being acoustic or optic)
and wave vector k.

M' u =—v =Z o' (k)e""r
jA

where R, is the position of the /th unit cell and

x, (k)o', (k) = Q A, A(k)oA'(k)
O~H, L

Here A (k) is the dynamical matrix and xi(k)
[=—m&(k)] is the eigenvalue, the square of the angu-
lar frequency. The dispersion relation is given
by

x, (k) =-.'X, +-.' [X,'-4XAX,

x sin2 —,
' ka]~ ~2

where the maximum frequency X~ and acoustic and

optic zone-boundary frequencies, X~ and Xo, are
shown in Fig. 1. For the acoustic branch (j =A)
the minus sign applies, for the optic branch (j = 0)
the plus sign applies, and for any k, X„(k)+Xo(k}
=Xz.

The density of states g(x), also shown in Fig. 1,
is

g(x) =Re(1/v) iX, -2x
~

II. DIATOMIC MODEL

Our model system is a harmonic linear chain
with nearest-neighbor atoms, separated by dis-
tance —,'a, connected by force constants f. Let u,
ae the displacement from equilibrium of the atom
of mass M, on the sublattice min the lth unit cell.
The equation of motion is

The density of states is symmetric about the cen-
ter of the gap at & X~ and is normalized,

J, g(x)dx=2 (8)

The orthonormalized eigenvectors are given by

2'"'re + ro- ~ ~&i'f a ~ &'S

g(x)
} 0 2,0 5.0

r X=X+X
T 6 4

where A is the appropriate force-constant matrix.
%e shall be concerned with Green's functions

which are basically the thermal average of the
commutator of displacement operators at different
times. ' GeneraBy,

2.0-

x - cU

—x(k)--- g(x)
X T/A"

G„.,(f) = —. e(f)
I 0-

x([„,„(ry f), „,.A(7'}]}

for any disordered system. Our approach is to
find a solution or an approximate solution for G
in terms of a perfect diatomic chain of alternating
masses, M„(heavy) and Ml, (light). The remain-
der of this section deals with the properties of
such a perfect diatomic chain.

For the perfect periodic chain we may write the
displacements in terms of the eigenvectors for nor-

00

FIG. 1. Dispersion relation x&{A;) {—) and the density
of states gQ) {—-) for the periodic alternating diatomic
chain with nearest-neighbor forces. For this example,
f=l, MH=2, and MI =1. The area under g(z) is equal
to 2.
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For the perfect diatomic chain the Green's func-
tion of Eq. (3) is called P. The Fourier trans-
form of the retarded P is given by

1
e(x}= l.xm —(M ~s) i~is

g o'~(k)o2/(0)

/I, x — x(/k) +iy

where label. s 1 and 2 on 0 stand for sublattices 1
and 2 with masses M& and M~, respectively. The
zone-boundary squared frequencies are X,—= 2f/M,
and X2-= 2f/M2 The. assignment of M, and M2 to
heavy and light atoms of the perfect chain is arbi-
trary.

fA~Rg-8 )2)xe 7 (10)

where X is the number of unit cells.
Using Eq. (S) and (6) and performing a, contour

integration, we find the diagonal parts of the
Greens's functions in real space,

(x) =
x-X 1

rr 11 M I/2( X )1/2 ( X )1/2 (» X )1/2 s

x-Xi M(
+rr 22(x} —

X M &lr rr(x)x-Xa M2
(12b)

x =P* xx ~'~'
1 2

2N M M [x — (fr}][ (rt, )]
(12c)

III. THEORY FOR A MIXED DIATOMIC CHAIN

In a mixed diatomic chain defects are substituted
for host atoms on one of the two sublattices; the
other sublattice is unchanged from the perfect
chain. %e adopt the notational convention that the
defective sublattice is sublattice No. 1. Therefore
the following convention for subscripts 0. apply.

If the defects are on the sublattice of heavy-host
atoms {P&1),

1 =H and Xr = 2f/MI=X„

2= L and X2 —=2f/M2=xo .
If the defects are on the sublattice of light-host

atoms (P&1),

1 =I and Xr= 2f/Mr=xo
(13b)

2=H and X2= 2f/M2=X„

If defects of mass M~ are substituted for a frac-

Each square root in Eq. (12a) must be evaluated in
the following way. If the argument of the square
root is positive then the positive square root is
taken. If the argument of the square root is nega-
tive then the positive imaginary root is taken. The
real and imaginary parts of the diagonal real-space
Green's functions, Eqs. (12a) and (12b), are plot-
ted, in Fig. 2, as part of the discussion of the sin-
gle-defect problem.
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FIG. 2. Real (—) and imaginary (---) parts of the di-
agonal real-space perfect diatomic-chain Green's func-
tion P&&J.I, {x) and P»&H(x) defined in Eq. (12). For this
calculation f= 1, M~ = 2, and Mz = 1 as for Fig. 1. The
dashed curve is the function (&xMH) for & = 0. 5. The
intersections of this curve with the real part of P&&HH

(circles) give the gap and local-mode frequencies when

a defect with mass equal to the mass of the light-host
atoms is substituted for a heavy atom.

tion c of the atoms on sublattice 1 the Green's
function for the defective chain is given by the ma-
trix equation'~

G(x) = P (x) + P(x) C(x) G(x),
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A. Single-defect theory

If there is only a single defect in the chain lo-
cated in cell /=0 on sublattice 1, the Dyson equation
(14) for the imperfect-chain Green's function in a
real-space representation becomes a 2x 2 matrix
equation which can be solved exactly,

6= P+ PTP

~f1'aB ~ loca l'o eg 8$ opt t

0011C0011)

Since the real part of &oo is zero inside the per-
fect-chain bands there are no resonance modes.
Infinitely sharp local modes and gap modes occur
at frequencies where the matrix T diverges. In
particular, if the defect is put onto a heavy-atom
(P &1) site the divergence occurs if

1-m~exaePooaa = 0;
if the defect is put onto a light-atom (P& 1) site the
divergence occurs if

1 —MJ ax ~e+ooJ ~ = 0 (20b)

Since e is positive (0& e & 1) if the defect has a
mass smaller than that of the atom which it re-
places, and since e is negative {—~ & e & 0) if the
defect is heavier than the atom it replaces, Fig. 2
for the real part of the perfect chain Green*s func-
tion illustrates the following well-known behav-
ior

(a) [p&1, e &0]. If the light-host atom is re-
placed by a lighter one, then a local mode forms
above X~.

(b) [P&1, «0]. If the light-host atom is re-
placed by a heavier one (which may be lighter or
heavier than the heavy-host atom), then a gap mode

where g is a diagonal matrix in real-space coor-
dinates with elements

Cg, u = (Mq —M0) x=Mj eqqx

if l is a defect cell,

C»» —-0 if l is a host cell,

C„a~ = 0 by definition

In addition to the parameter

e = eqq = 1 —Mq/Mq

we introduce

P= M(/M0

Before considering the theory valid for arbitrary
e, it is instructive to review the single-defect
problem. In the limit c = I/N, any valid theory for
arbitrary c must predict that physical quantities,
such as the density of states, tend to the result
predicted by the single-defect theory.

peels off from the bottom of the optic band to fre-
quency xg, X„~xc~ Xp.

{c) [P&1, e &0]. If the heavy-host atom is re-
placed by a lighter one (which may be lighter or
heavier than the light-host atom), then both gap and
local modes occur. The gap mode in this case
rises from the top of the acoustic band with de-
creasing defect mass.

(d) [P», «0]. If the heavy atom is replaced
by a heavier atom, then no gap or local modes oc-
cur.

This theory of the single-defect problem is ex-
act. For an arbitrary concentration of defects no
exact solution to Eq. (14), has ever been evalu-
ated; an approximate theory follows.

B. Coherent-potential approximation

For an arbitrary concentration of defects the
distinction between "defect" and "host" atoms is
arbitrary. In practice we shall define the defect
as the lighter of the two atoms which may occupy
sites on the defective (No. 1) sublattice. There-
fore we always have & &0. We find an approximate
solution for a configuration-averaged Green's func-
tion G by using a self-consistent-field approach in-
troduced by Taylor and by Soven, and usually
called the C. A. The essential nontrivial step in
the theory to follow is the generalization of Tay-
lor's self-consistent-field theory for lattice dynam-
ics to mixed diatomic systems.

This section is the most important part of the
paper and fortunately most of it is valid for sys-
terns of n dimensions. Although we retain the no-
tation of our one-dimensional problem the equations
can be generalized by treating such quantities as
Pf f g as n &n matrices. The proof in the Appendix,
which is a part of this section, however, is valid
for three-dimensional systems only if they are cu-
bic. In that case the site Green's functions and
self-energies are simply proportional to the 3&&3

unit matrix.
In the CPA, a self-energy ansatz is made for the

configuration-averaged Green's function,

G=P+PZG

where Z is the self-energy. Because of the con-
figuration average, G has the translational sym-
rnetry of the perfect lattice and is therefore diag-
onal in a k representation. In the single-cell ap-
proximation (analogous to the single-site approx-
imation for binary alloys) the 4 representation of
Zis independent of 0, and in real space the large
matrix Z must be given by

Z=go,

where 0, is everywhere zero except possibly with-
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—G»V1) 'V 1, (24)

in a 2n &&2m block in the unit cell l. The 4m~ ma-
trix elements of this block are independent of l.
For convenience we write

a~2=—(M~M2) 'K 2x

Similarly, the single-cell t matrix t& is possibly
nonzero only in the 2n ~2m block at cell 1,

~ eS ~ e1~81 11 ~ e1 81

the CPA equation becomes

(31)

Because of the single-cell approximation,
(k IZ„lk) is not a function of k or k but is only

Z„(x). However, because the defects are re-
stricted to a single sublattice, the defects do mix the

two branches of the phonon system and (kj l Zlk 'j')
is not diagonal on j, j . Also, because

where v& is given by

vl:—Mlfx —vg
-—Ml x (f —f)

if l is a defective cell,

~11F11( 11 «11} (c 11 11}

But from Eqs. (26) and (21)-(23),

F„=—Q {[M,P„{k)]' xf—„}"

(32}

if l is a host cell. (25)

The single-cell t matrix approximately repre-
sents the scattering of phonons in a reference lat-
tice, which is the configuration-averaged lattice.
Self-consistency therefore requires that the con-
figuration average of t, vanish. In terms of the
intracell Green's function,

Fas= (Mat%)'"-&ries ~

the self-consistency condition becomes a 2n x 2n

matrix equation. Within any cell, dropping the in-
dex /, we have

c[1+x(f —f)F] '
(Z —«)

-=' ' ZG11(k) (33)

We now specialize to one-dimensional systems.
Using Eq. (11) for P„(k), we find after some alge-
bra a, solvable CPA equation [we drop subscripts
(11) on «11 and «,1 for convenience]:

[x-x, —f {x-X2)1[x-Xl fx][-cf —f]
= (f —«)2 «2x(x —X2) (34)

a cubic equation in & to be solved numerically for
the complex function f(x).

Similarly we find an expression for a configura-
tion-averaged Green's function in terms of the per-
fect-chain Green's function

+(1 —c)[1+x«F] 'f =0

We may rewrite Eq. (27) as

(27)
G„„(x)= [(x —X,)j(2 —X,)]

~+l l 11(~} (35)
f —cf +xf F(g —f}= 0 (28}

The above matrix equation yields 4n~ scalar
equations, one for each element. In the Appendix
we prove that for defects only on sublattice 1 only
the (1, 1) element of f (and of a and Z} is nonzero.
The proof is valid for one-dimensional systems or
square two-dimensional systems or cubic three-
dimensional systems. Therefore the self-energy
equation (21) takes on a particularly simple form.
For the configuration-averaged Green's functions
G 2(k) we find

G„(k}=r(k)p„(k),

&»(+}= &»(&) + PS~5}&~~

&& a(k}P„(k),

where

2-=-,'X, + [(x--,'X, )'

—f x(x -X2)]'"

To find an analogous equation for 0» it is conve-
nient to rewrite Eq. (29b} as

6, (k) =P (k)+P„(kIP,,'(k)'
x [G„(k)—P„(k)]

x P„'(k)P„(k)

Using

cos2(-,' ka)--(} -(}= .'.'
X@XO

[x —x„(k)]'[x —x,(k}]'

C„(k)= ~(k)P„(k),

G21{k} P21{k}+P21{k}Zll

&& ~(k}P„(k),

&(k) = [1 —P„(k)Z„]-'

(29c)

(29d)

cos'(-', ka) =1 —x„(k)x (k)/{X„X )

we finally find

M~ 1
&~».(~}= &»»(~}+

M2 x —Xq
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x (z -xl)Pit u(z)

(x Xg)Pg~ «(x)] (4o)

The configuration-averaged Green's functions
C„u(x) and C«00(x) are useful for calculating phys-
ical properties which depend directly on the diag-
onal element of the displacement-displacement
correlation function. However, for this work we
are primarily interested in the density of states
and in the electric susceptibility.

C. Physical properties

The density of vibrational states for any system
is given by

1 -1
g(x) = — g((o) = — — Im Tr &MG},„

24/ gN

Im K&M,.C ..(x)).„ (41)

1 hg(x) = ——1m[M, 000 00+ M, V~„

where G(x) is the retarded function, like P(x) in
Eg. (10). Also, ( ~ ),„means configuration aver-
age as does a bar over a single symbol. There-
fore, me need to calculate conditional configuration-
averaged Green's functions Cdoo and Co&, where
only those configurations with a defect (d) in the
cell / =0 are included in the averaging for @~0 „,
and only those configurations with a host atom (h)
in the cell /=0 are included in 000 (=0 —0 ).
Then

X(x) =Q q, q0G, 0(k =0, x) (4V)

Because the Green's functions in Eq. (46) are eval-
uated at k =0 it is a simple matter to use Eqs.
(2S) and (12) to calculate the real and imaginary
parts of the susceptibility. For the special case
of point-charge ions and charge neutrality,

Qg =Qg=- Q2

me find

q', 1+ P[I —g(x)]
x(x}=

M, x-X, -(x-X,)t(x)

{48)

(48)

calculation of y requires the calculation of con-
figuration averages which are conditional on both
the first and second sites of the Green's function
6'~, where i and j take on the values h and d for
host and defect atoms on sublattice 1. Then, in
terms of the Fourier-transformed conditionally
averaged Green's functions 0',0 (5),

x=q', c„(o)+ Z q,q,
t~h&d

~ [0,', {0)+C,*,(0)]

+ Z q)q, &Ij(0)
tgh0d

The calculation of y is considerably simplified if
both host and defect ions have the same charge.
In that case the ionic charge is associated unam-
biguously with the sublattice and only unconditional
configuration-averaged Green s functions are
needed to find

Because

+ M &Gooii] ~ (42)
In the limit c = 0 or e = 0 and in the limit c = 1,
where i = &, this expression reduces to the perfect-
chain susceptibility.

6 =P+PCC (48) IV. NUMERICAL RESULTS

using E|ls. (21}-(28)we find an expression similar
to Taylor's,

1
g(x) = ——Im [M0 600~

x(x) =&) '
~ Z &q,.q,.0G„.,(x)).„,

SS'aB
{45)

where Q, is the charge, or the Szigeti effective
charge, on the ion at (/, o.). Since effective charges
may differ for host and defect atoms, a proper

+ Mi {I ~11)~0011]

This expression, in terms of the unconditional con-
figuration averages and the self-energy, is used
to calculate the density of states in Sec. IV.

We also wish to calculate the dielectric suscep-
tibility,

x(x) -=x{&= o, ~'),

A. Density of states

In Figs. 3 and 4 me compare the CPA density
of states mith the spectra computed numerically by
Painter ' for 20000-atom chains. These comput-
er experiments are of the type introduced by
Dean. ~6 Although an averaged Green's-function
method cannot reproduce aQ the detailed features
of the computer experiment, the over-all agree-
ment is quite good. In Fig. 3, P = 0. 5, e = 0. 5,
e = 0. 5, substitution is made on the light sublattice
by still lighter atoms. The five band-edge posi-
tions are given exactly by the CPA and the
strengths of all three bands are also reproduced
quite mell. This density of states may be roughly
understood as the approximate superposition of
spectra for tmo ordered diatomic chains, the first
with masses M, =2, M~=4, so that X„=0.5, Xo= 1,
X~=1.5, and the second with masses M,'=1,
M&=4 so that X~=0 5 Xo=2, X~=2. 5. The suc-



COHERENT-POTENTIAL APPROXIMATION FOR THE LATTICE. . .

g(x) =5(x)+(1-c)fi(x-Xr)

+ c I) [x-Xr/(1 —e) ]

In Fig. 4, P=+~, &=0.5, c=0.5, light defects are
substituted onto the heavy sublattice. The spec-

I

2 5 I-

I
I
I

2.0-

~ ExpT. --- QpA

a=aI P= lg
I

c = /a j g (x) dx = 2

g(x)
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I~

I
I

if

I

I
I

0 I I I I

0 0,4 0,8
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I

l I l I I

2.0 2,4 2.8

FIG. 3. Density of states for the mixed diatomic chain
with P = Mg/M2 = 0. 5, & = 1 -MflMf 0 5, and c =- (con-
centration of defects) =G. 5. The histogram shows the
results of Painter's computer experiment for a 20000
atom chain. The dotted curve shows the prediction of
the single-cell CPA.

cess of the CPA can be understood by considering
the localization in space of the eigenstates of the
disordered system. ~~ At low frequencies, where
the CPA calculation coincides almost perfectly
with the computer experiment, the eigenstates are
extended, the true density of states is insensitive
to the details of the chain structure, and the CPA
mean-field calculation then is very good. More-
over for this case, where the bands are relatively
narrow compared to their separation, the eigen-
states in the two optic bands of the disordered sys-
tem are rather localized in space. Therefore, the
single-cell approximation, which neglects correla-
tion between scatterings in different unit cells be-
comes valid. Not surprisingly, the CPA spectrum
agrees better with the upper optic experimental
band, where the states are most localized, than
with the lower optic band. Our viewpoint here is
similar to that of Ref. 8, where it is shown that
the CPA for electrons is exact in the atomic limit.
Narrow bands of lattice vibrations, the "Einstein
limit, " occur in the limit M~ =~. It is not difficult
to show that in this limit the CPA for the vibration-
al density of states is exact. The self-energy can
be evaluated in closed form,

a(x) = c~(Xr —x)/[Xr —x+ ~ x(1 —c)],

trum is not well approximated by the overlap of
ordered diatomic spectra of chains with M, =2,
Ma = 1.5, so that X„=1, Xo = +~, X~ =+3, and with

M, =1, M~=1. 5, so that X~-sy X0=2, X~= ~,
though remnants of the band-edge singularities can
be seen in the spectrum. The large amount of
structure in the upper part of the experimental band
can be attributed to the vibrations of complexes of
atoms, triples, four-atom clusters and the like.
Although such details can be reproduced by a clus-
ter CPA, ' the single-cell CPA used here pro-
vides only a rough guide to the regions of appre-
ciable spectral weight.

8. Optical properties of mixed diatomic systems

As suggested in Sec. I, we are principally inter-
ested in the CPA solution of the mixed diatomic
chain as a means to determine the nature of the re-
flectivity bands of real mixed diatomic systems.
We find here that our theory can provide a satis-
factory explanation of one-mode-two-mode behav-
ior. However, the application of our one-dimen-
sional theory to three-dimensional systems re-
quires some qualification and some explanation.

The ref lectivity of rpal systems is given by
ff =

I (n —1)/(n+ 1)I, where n is the complex re-
fractive index, n = & . The complex dielectric
constant is given by & = 1+4m X, where y is the
electric susceptibility. We do not calculate the re-
flectivity with our one-dimensional model. How-
ever, we note that for real systems the peaks in R
are associated with peaks in Imp. At such a peak
the real part of y becomes negative and R becomes
large. In fact, the configuration-averaged long-
wavelength susceptibility of a disordered system
is mathematically of the damped form indicated by
Burstein, and Burstein's picture may be applied
literally to this case. Therefore we argue that the
ref lectivity of a real system shouM have one or
two peaks if Imp has one or two peaks, though the
peak in ref lectivity occurs at somewhat higher fre-
quencies than the peak in Imp. In cases of doubt,
Rex can be examined for the number of sign
changes.

Our next step is to argue that the variation of

X for a real system can be reliably determined
from a one-dimensional model. Because the pho-
ton-lattice interaction is proportional to the dot
product between photon polarization and atomic dis-
placement vectors, light sees only one component
of atomic displacements, namely, a A = 0 trans-
verse component. We are quite free to interpret
the displacements u, in the equation of motion,
Eq. (2), as transverse displacements. The as-
sumptions of our model for the electrodynamics of
polar crystals are not optimum; in particular no
allowance is made for the fact that different pure
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centration of defects is increased, the tendency
then is for the one-dimensional model to produce a
spurious band associated with a broadened local
mode. %e can identify such behavior by the meth-
od introduced by Lucovsky et al. 4 These authors
proposed that a real three-dimensional system
could be mimicked by a one-dimensional chain by
redefining the zone-boundary frequencies in terms
of the experimental longitudinal- and transverse-
optic-mode frequencies, X«and XTo,
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X2/X1 =.+1/~2 = f

(50a)

(50b)

FlG. 4. Density of states for the mixed diatomic chain
with p = M&/M2 =&, & = 1 -M~/M~ = 0, 5, and f.- = (concen-
tration of defects) = 0. 5. The histogram shows the re-
sults of Painter's computer experiment for a 20000-atom
chain. The dotted curve shows the prediction of the sin-
gle-cell C PA.

Requiring that a local mode lie above X« leads
to a critical-mass-change parameter

materials will have different values of a,/e and

therefore different ref lectivity bandwidths. Fur-
thermore, we do not use the appropriate Szigeti
effective charge to allow for differing polarizabil-
ities of the various atomic species, but instead we
consistently assume point charges and charge neu-
trality, Eq. (48). Still further, our model does
not consider the change in force constants between
atoms, though the experimental ref lectivity bands
of the ordered end members frequently reveal that
force-constant changes do occur and should be in-
cluded in a complete theory for the intermediate-
mixed systems. Nor do we consider anharmonic
broadening of the optically active modes.

The advantage gained by these assumptions is
that we are able to identify unambiguously the re-
sults of treating the disorder among the atomic
masses by the CPA. Since the mass disorder ap-
pears to be the most important single feature of
these mixed diatomic systems we expect our theory
to agree with experiment over all.

There is another difficulty in applying our one-
dimensional theory to three-dimensional systems.
Although the mathematical form of the one-dimen-
sional C(k = 0) is adequate to represent the three-
dimensional system, the resonant denominator &

in Eq. (30) is not a good approximation to the cor-
responding three-dimensionaL quantity. The effect
of the one-dimensional resonance can be seen in
the low-concentration limit or in the single-defect
problem. The graphs of P» in Fig. 2 show that a
solution of the resonance equation, Eq. (20), exists
for all & &0. By contrast, in three dimensions the
parameter & must exceed a critical positive value

&, in order for a local mode to form. As the con-

where y=X«/XLo(=e„/co for cubic systems). If
& & &, then Lucovsky, Brodsky, and Burstein (LBB)
expect that a local mode will form for small con-
centrations of a light defect and that the corre-
sponding mixed crystal will show two-mode behav-
ior.

To compensate for the spurious local modes of
the one-dimensional model we supplement our CPA
calculations with the criterion of LBB. Vfe expect
that our model will fail when & & &„ we expect our
model to hold good when e & a,. It will be seen that
this procedure does not always lead to a prediction
of two-mode behavior. Because &,=0 for y= 1, our
model is more successful for III-V and II-VI systems
for which &„=&0, than it is for I-VII systems, for
which y tends to be small.

In the following paragraphs we compare the CPA
theory for the dielectric susceptibility with the re-
sults of optical experiments on five selected mixed
III-V, II-VI, and I-VII crystals. %e also note the
one-mode-two-mode predictions of several recent
theories based on the low-cencentration limit. The
simplest such theory is the MREI model of Chang
and Mitra. A second criterion, which includes a
measure of the polarizabilities of the coastituents,
predicts that a system will show two-mode behav-
ior when the method of LBB4 predicts a local mode
for small c. A third criterion, which also includes
atomic polarizabilities, is that of Harada and
Narita (HN).

The mixed systems which we have chosen to dis-
cuss are ones for which recent experimental data
is available. They are also systems which are
controversial, for which the various criteria noted
above disagree with one another or with experi-
ment.
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FIG. 5. (---) experimental ref lectivity of Inq~GacSb
reported in Ref. 5. (—) CPA theory for Imp. The cal-
culated frequencies are scaled to the experimental peak
at c= l. 0 and therefore Imp is shifted to higher frequen-
cies. The absolute scale of the experimental ref lectivity
is arbitrary as is the zero of ref lectivity, but the rela-
tive scale between theory and experiment is the same
for all six concentrations.

In, ,Ga, Sb(P=0. 94, a=0. 39, &, =0.26). The
experimental ref lectivity reported by Brodsky
et a/. is shown in Fig. 5. The MREI model pre-
dicts one-mode behavior, but the criterion of LBB
predicts two-mode behavior. Brodsky et al. claim
that, as in the case of In, ,oa, As, the experimen-
tal results do not fall into either category, but they
call the system "two-mode" for c &0. V. The con-
centration of In must be increased to (I —c) = 0. 3
before there is any experimental indication of a
second peak. Moreover, the frequency of the upper
peak changes considerably with concentration.
Comparison with the CPA theory shows that the
theory is able to account for the anomalous behav-
ior observed. The lower peak appears when
c = 0. 7 in the experiment and when e = 0. 6 in the
CPA theory. At all concentrations the relative
strengths of the bands are given fairly well by the
theory. The goodness of agreement between theory
and experiment is disguised by the fact that there
is a 14% force-constant decrease proceeding from
GaSb to InSb, which is not taken into account in the
theory for diagonal disorder. If this effect is in-
cluded by a simple virtual crystal calculation then
the frequencies of experimental and theoretical
peaks nearly coincide. As c is decreased from
0.6 to 0.05, the lower theoretical peak moves up
significantly to higher frequencies and the upper
theoretical peak moves down considerably, in
agreement with the observed behavior of the re-
flectivity. Vhthout force-constant changes the up-
per peak frequency is shifted by about 5% over the
concentration range.
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FIG. 6. (—-) experimental ref lectivity of ln&~GacAs
reported in Ref. 2. (—) CPA theory for Imp. The cal-
culated frequencies are scaled to the experimental peak
at c = 1.0 and therefore Imp is shifted to higher frequen-
cies. The absolute scale of Imx is arbitrary but the rel-
ative scale between theory and experiment is the same
for all five concentrations. The ordinate values are
those of the experiment and the zero has been suppressed.
The value of lmy on the horizontal axis, however, is
zero.

In~, Ga, As (P=1.53, e=0. 39, e, =0.43). The
experimental ref lectivity reported by Lucovsky and
Chen' is shown in Fig. 6. The MREI and the cri-
terion of LBB both predict one-mode behavior.
Lucovsky and Chen note that, as in the case of
In, ,Ga, Sb, GaSb, +s„and InSb, Qs„ the experi-
mental results do not fall into either category, but
they call the system "two.-mode" for e & 0.8. The
experimental behavior observed is very similar to
that for In~,Gagb. Comparison with the CPA the-
ory shows that the theory is able to account for the
anomalous behavior observed. The lower peak ap-
pears when c = 0. 5 in the experiment and for some-
what smaller c in the theory. For e as low as
0. 25 the CPA theory produces two distinct peaks
separated by a small region where Imp = 0. At
e = 0. 25 and 0. 16 the relative strengths of the two
peaks are given fairly well by the theory. The
goodness of agreement between theory and experi-
ment is obscured by the fact that there is a 18.5%
force-constant decrease on going from GaAs to
InAs which is not included in the theory. If this
effect is included by a virtual-crystal calculation
then the frequencies of the experimental and theo-
retical peaks nearly coincide as shown in Table I ~
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TABLE I. Comparison of the frequencies of the peaks
in Imp from Fig. 6 for In&~Ga, As, as calculated by the
CPA theory, and the CPA adjusted by a 18.5% force-
constant change in a virtual-crystal sense, with the fre-
quencies of the experimental peaks observed in the re-
flee ti vity.

Upper peak Lower peak
e CPA CPA(adj) Expt. CPA CPA(ad j) Expt.

0. 84 277
0.47 273
0. 25 270
0„16 269

273 275
260 260
251 253 246
248 250 246

228
226

225
225
225

Cd, ,Zn, Te (P=0. 87, e=0. 42, &, =0.45). The
experimental ref lectivity reported by HN is shown
in Fig. V. The MREI model and the criterion of
LBB predict that the system should be one-mode
but the criterion of HN predicts two-mode behav-
ior. Harada and Narita claim that the experimen-
tal results show two-mode behavior, According to
the criterion of LBB, the local mode predicted by
the one-dimensional model at 170 cm ' should be
discarded. If we retain it we find that the CPA the-
ory gives a good qualitative account of the experi-
mental results. Experimentally the upper peak
frequency increases somewhat as c is increased,
while the l,ower peak frequency remains constant.
The CPA theory reproduces the shift of the upper
peak but also predicts that the lower peak should
decrease significantly as c increases, contrary to
experiment. In contrast to the comparison be-
tween theory and experiment for III-V systems the
discrepancies in peak positions cannot be under-
stood by a simple force-constant change.

Cd,.,Zn, S (P=3. 5, e=0.42, e, =0.7). The ex-
perimental ref lectivity reported by Lisitsa et d.
is shown in Fig. 8. The MREI model, and the cri-
teria of LBB ahd HN all agree that the system
should show one-mode behavior. It is claimed that
the experiments of Lisitsa et al. show one-mode
behavior, though only two mixed crystals, both
near 50-50 composition, were studied. The CPA
theory supports the contention that this system is
one-mode. The distinct local mode does not appear
in the one-dimensiona1. CPA theory except at rather
small concentrations. Because &, is very much
larger than &, this local mode can be discarded as
unphysical. The discrepancy between theory and
experiment in relative peak heights for c =0. 35
and c =0.45 might be attributed to the unphysical
local mode in the one-dimensional theory. Further-
more, the ref lectivities of the end members sug-
gest a rather enormous force-constant change, a
decrease of 25PO on going from ZnS to CdS, which
is not included in the theory.

Rb, ,K,I (P=1.07, e=0. 55, e, =0. 5). The imag-
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FIG. 7. {---)experimental ref lectivity of Cdf cZn, Te
reported in Ref. 19. All ordinate scales are the same.
(—) CPA theory for ImX. The calculated frequencies are
scaled to the experimental peak at e=1.0 and therefore
Imp is shifted to higher frequencies. The absolute or-
dinate scale for ImX is arbitrary but the relative scale
between theory and experiment is the scene for all five
concentrations.

inary part of the dielectric constant, determined
by a Kramers-Kronig analysis of a multiple-os-
cillator fit to the experimental ref lectivity reported
by Fertel and Perry, ' is shown in Fig. 9. The
MREI model, and the criteria of LBB and of HN

all agree that the system should exhibit two-mode
behavior. Fertel and Perry claim that the experi-
mental results show two-mode behavior. This
claim appears to be the only uncontested claim for
two-mode behavior in an alkali halide, although the
MREI model and the criterion of LBB predict that
Rb~, K,Br, RbBr~, Cl, and Rb, ,Na, I should also
be two-mode. The CPA theory supports the con-
tention that the system should exhibit two-mode be-
havior. At all large values of c the theory pro-
duces two well-separated peaks in Imx. The upper
peak is associated with the local mode at small val-
ues of c, which we retain as physical since & & &,.
The local mode is broadened and shifted to higher
frequencies as c is increased. This behavior
agrees with experiment though the experimental
shift is about 7k and the theoretical shift is 5 jo.
Recently Taylor' has performed a three-dimen-
sional CPA calculation for this system. His re-
sults also indicate two-mode behavior.
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V. DISCUSSION 1 I 1 1

c =0.05 c =0.25

g24

In this paper we have generalized the CPA for
the lattice dynamics of mass disordered systems
to the case of mixed diatomic systems. Specific
results were obtained in the case of one dimension.
Ne compared the CPA configuration-averaged den-
sity of states for several infinitely long mixed
chains with the density of states determined by
computer experiments on long chains. Ne also
compared the CPA dielectric susceptibility with the
ref lectivity and dielectric constant of mixed polar
crystals. %e believe that the CPA and the one-di-
mensional model can account for the experimental-
ly observed optical properties of these systems
over the entire concentration range. However, in
order to obtain improved agreement between theory
and experiment several other factors should be
taken into account. These factors include force-
constant changes, anharmonic line broadening, and
atomic polarizability. Furthermore, some means,
such as the criterion of Lucovsky et a/. ,

' must be
used to eliminate unphysical local modes some-
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times produced by the one-dimensional model. Al-
though the comparison of theory with experiment
is complicated by these effects, we find that the
CPA calculation can at least account for the one-
or two-mode nature of mixed diatomic systems and
for variations on one- and two-mode behavior.
However, this traditional classification depends on
a more or less subjective interpretation of the ex-
perimental results. A theory which can predict a
complete spectrum at any composition for compar-
ison with the observed spectrum is obviously more
satisfactory. Especially for those III-V systems
which appear to switch from one-mode to two-mode
behavior, the advantage of the CPA theory over all
previous theories should be clear. Because the
CPA can interpolate between single and split-band
behavior as a function of concentration and scat-
tering strength it is uniquely sucessful for these
systems. It seemed worthwhile to study this ef-
fect in more detail.

%e wish to study the nature of the optic vibra-
tional bands predicted by the single-cell CPA for
one-dimensional mixed diatomic systems. Be-
cause of the complicationsinvolved inpredicting re-
liable optical behavior we consider instead the den-
sity of states in the optic bands which is closely re-
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FIG. 10. CPA phase boundary between mixed diatomic
systems AB&~C~ with one optic band and two optic bands
in the density of states for three concentrations of the
light constituent. P =—M~/M2 =—Mz/M&, ~ = 1 -Mf/Mf —1

-M&/M&. The MHEI criterion is the curve on the right-
hand side.

lated to the imaginary part of the susceptibility.
We define a "two-band" system as one with a gap
in the density of states at optic-mode frequencies.
A "one-band" system is one in which there is no

gap in the density of states, apart from a possible
gap between acoustic and optic modes. Because
rapid variations, singularities, or damped singu-
larities in Rey occur at frequencies near the peaks
in Imx negative values of the real part of the di-
electric function occur near peaks in the density of
states. Therefore systems which are strongly one-
or two-band are expected to be one- or two-mode,
respectively. The distinction between the behavior
of the density of states and that of the optical prop-
erties becomes important only near transitions
from one to two-band behavior.

A phase diagram for three intermediate concen-
trations is shown in Fig. 10. Above the phase
boundary, one-band behavior occurs; below this
line two-band behavior occurs. As the concentra-
tion c of the light constituent is reduced, the phase
boundary rises towards the low-concentration limit,
in which on -band behavior never occurs because
of the necessary presence of local modes. We find
that for small concentrations and large & the phase
boundary becomes a broad one. The error bar for
c=0.25 and & =0. 5 includes values of P all of which
satisfy our criterion for the onset of a gap in the
density of states. The four mixed systems which
Lucovsky and Chen have claimed to change from
one to two mode as c is decreased all have a&0. 4
and fall between the phase boundaries for c = 0. 5
and c=0.2.

We have included the Chang-Mitra (MREI) cri-
terion for one- or two-mode behavior, p= a/(1 —e),
on Fig. 10. It is easy to see why the CPA phase

boundaries for all concentrations lie above the
MREI curve by starting with a two-crystal model
for AB~,C,. In terms of our former notation,
M„=Mgj M~=M) j Mg ——My. Since M~ &Mgj the top
of the optic band in AB will always be lower in fre-
quency than the top of the optic band in AC. For
M„& M~ & M~ the optic bands must overlap. For
M„&M~, and M„&M~, the top of the optic band in
AB occurs at 2f/(1/M„+ 1/Me) ' and the bottom of
the optic band in AC occurs at 2f/Mc for equal
force constants. The MREI condition for two-mode
behavior, Mc' & (1/M„+1/Ms), is then simply the re-
quirement that the optic modes of AB and AC not
overlap. This requirement is plausib1. e since the
Saxon-Hutner hypothesis insists that the mixed sys-
tem cannot have modes at frequencies outside the
bands of AB and AC. However, the CPA bands al-
so satisfy the Saxon-Hutner hypothesis, ' the CPA
bands are usually narrower than the bands allowed
by the theorem for the mixed system. Therefore
two bands calculated in the CPA do not overlap as
readily as the independent crystal model would sug-
gest. We expect, therefore, that the MREI model
would tend to predict one-mode behavior for sys-
tems which are actually two mode. Inspection of
a number of individual cases reveals that this is
the case.

To illustrate the use of our phase diagram we
compare theory and experiment for nine more
mixed crystals.

Rb, +,Cl (p=2. 41, e=0. 54, e, =0. 5). The re-
flectivity has been measured at c =0.25, 0. 5, and
0. 75. At c ==0. 25 and 0. 5 the experiments show
two peaks; at c = 0. V5 there is only 1 peak. Since
& and P place this system between the c=Q. 5 and
c =0. 75 phase boundaries, the CPA theory predicts
the behavior observed experimentally.

KBr, ,Cl, (p = 2. 05, e = 0. 56, e, = 0. 7). pe rtel
and Perry find one-mode behavior throughout the
concentration range. & and P suggest that this sys-
tem should be two-mode for c & 0. 5, but since
««, we must reject this prediction and expect
one-mode behavior for all c.

CdSe, p, (p=0. 7, e =0. 59, &, =0.45}. The re-
flectivity measured by Verleur and Barker shows
two-mode behavior for c=0.015, 0. 27, 0. 54, and
0. VV. Since & and P place this system firmly in the
two-mode region for all c, the CPA agrees with
experiment. Specific calculations show that the
theory accounts well for the movements of the peak
positions with c.

ZnSe~, S, (P=1.2, e =0.59, e, =0.41). The re-
flectivity reported by Chang and Mitra' shows two-
mode behavior for c=Q. 015, 0. 33, 0.6, and 0. 82.
The above remarks comparing theory and experi-
ment for CdSe, ,S, apply to this system as well.

GaSb, ,As, (P=l. f4, e=0. 38, e, =0.3}. The re-
flectivity measured by Lucovsky and Chen~ shows
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two peaks at c = 0. OV and 0. 11 and one peak at
v=0. 91 and 0.93. Since «and P place this system
just above the c = 0. 25 phase boundary, independent
CPA runs were made. The theory is found to agree
with the observed behavior of the ref lectivity.

I&Sb&,As, (p=1.06, «=0. 38, «, =0.29). The re-
flectivity shows two peaks for c = 0.2 and 0. 25 but
one peak for c =0.85. Since «and P place this sys-
tem between the c = 0.25 and c = 0. 5 phase bound-
aries, the CPA theory agrees with experiment.

GaAs, ,P, (P = l. 09, e = 0. 59, e, = 0.33). The re-
flectivity measured by Verleur and Barker shows
two-mode behavior for c=0.06, 0. 28, 0.56, 0.85,
and 0. 99. The above remarks comparing theory
and experiment for CdSe, P, apply to this system
as well.

InAs~, I', (P=0. 65, «=0. 59, «, =0. 3). The re-
flectivity reported by Chang and Mitra' shows two-
mode behavior for all c. Since «and P place this
system firmly in the two-mode region the CPA the-
ory agrees with experiment.

Ga, ,Al, As (P=0. 93, e=0.81, e, =0. 31). The
ref lectivity reported by Ilegems and Pearson~'
shows two-mode behavior for all c. Since «and P
place this system firmly in the two-mode region
the CPA theory agrees with experiment.
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APPENDIX

= —«ii&Fix«» (1, 2)

Proof. Rearranging Eq. (28) and taking the de-

Ne shall prove that for a mixed diatomic chain,
in which the defects are only on sublattice number

1, the CPA self-energy « is zero except for «j~.
Then clearly only the (1, 1) elements of o and of
Z will be nonzero. Equation (28} of the text leads
to four equations for the four matrix elements. Ne
shall label these equations (a, P}. For example,
Eq. (1, 2) is

(eggxE+ egpxF2g + eg2xEp2+ 1) egp

terminant of both sides, we find

cdet « =O=det«

xdet [1+xF(e —e)], (A1)

because only the (1, 1) element of e is nonzero.
In the limit of no defect, «gg = 0, we must have

« =0 to regain the perfect-chain Green's function.
In that case the last factor on the right-hand side
of Eq. (Al) equals 1. Since we require continuity

of our functions for small defect strength that fac-
tor cannot be zero as «&~ becomes finite. There-
fore to satisfy Eq. (Al), det e = 0 or

«11~» «12«21 (A2)

Substituting Eq. (A2) into the right-hand side of

Eq. (1, 2), we find

[xTr(eF) + 1]Z,p = 0

I et us first assume e,2+ 0. From Eq. (28),

xeE = (ce —e) (e —e)

(A3)

(A4)

x(«~~ —«qq) Fj.~ =1+x«2qF~2 (A5)

substituting from Eq. (1, 1) for the left-hand side
of Eq. (A5), we find ce„=0, which is not general-
ly true. Finally, therefore, we conclude,

«~2 = «» = «» = 0~ «a~ ~ 0

which completes the proof.

The inverse above exists if «»& 0. However, if

«» = 0, then either «~3 = 0 (contrary to hypothesis)
or else «»=Q. But if «»=«»=0, «z&~0 from Eq.
(1, 2) and from Eq. (1, 1) we find c =1, which is not

generally true. %e conclude, therefore, that for
«~&4 0 we have «2~4 0 and the inverse in Eq. (A4)
exists, except, perhaps, at isolated points which
are unimportant for our proof. But in order to
satisfy Eq. (A3) the trace of Eq. (A4) must equal
—1. Using Eq. (A2) we are able to simplify the
expression on the right-hand side of Eq. (A4) to
show that if e,zw 0 then Eq. (A3) is satisfied only
if c =0, which is not generally true. %'e conclude
therefore that «,z =0.

But if e,2=0, then from Eq. (A3) either e„=0or
Zzz=0. If e„=e,&=0 then from Eq. (1, 1) we find

c««=0, which is not generally true. %'e conclude
therefore that «&&4 0 and «»=0.

Let us suppose that «» = &22=0, «2g& 0. Then
from Eq. (2, 1),
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