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Effects of Fermi-surface anisotropy on cyclotron waves in metals
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We have shown that the spread in cyclotron frequencies of electrons on different orbits of a nonspherical

closed Fermi surface leads to a collisionless damping of cyclotron waves for a range of wave numbers that

depends on the geometry of the surface, and also to a shift, from the isotropic limit, in the onset of the

waves. Explicit calculation of the dispersion relation, in the long-wavelength limit and in the absence of
interactions, is performed for a metal whose Fermi surface has a small cubic distortion (as, for example, the

heavy alkali metals, Cs and Rb}. We find that Fermi-surface anisotropy produces effects similar in both

magnitude and quality to those caused by Fermi-liquid interactions in a metal with an essentially spherical

Fermi surface (as, for example, Na and K}.

I, INTRODUCTION

The recent application of the Landau-Silin' phe-
nomenological theory of Fermi liquids to conduc-
tion electrons in metals has resulted in a fruitful
confrontation between theory and experiment.
From the spin wavesa one can obtain from experi-
ment the first two Legendre coefficients of the
spin-dependent part of the Landau correlation
function for the alkali metals sodium and potas-
sium. More recently, it has been discovered that
electron correlations in g-anisotropic metals may
observably affect the conduction-electron-spin res-
onance which allows one to estimate a many-body
parameter B (similar to Bo for an isotropic sys-
tem) as weli as the rms spread in g values over
the Fermi surface for metals in which spin waves
have not yet been observed (e. g. , aluminum, cop-
per and silver). The above phenomena yield in-
formation about the electron-electron exchange in-
teraction in metals. There is yet another phenom-
ena which is sensitive to the direct electron-elec-
tron interaction in metals. These are the cyclo-
tron waves (aiso called high-frequency or magneto-
plasma waves) which propagate in the presence of
a static dc field H, (taken to be along the z axis)
oriented in the plane of the sample surface. For
simple metals these waves propagate in the vicin-
ity of the fundamental Azbel -Kaner cyclotron-res-
onance frequency and its harmonics so that td-n,
(n = 1, 2, . . . ), where u is the frequency of the ap-
plied rf field and u, = eHO/m c (m is the effective
mass) is the cyclotron frequency. Although the ex-
istence of these waves is well understood on the
basis of the free-electron theory it has been found
that in the long-wavelength limit qH «1 (H =- V~j~,
V~ is the Fermi velocity and q is the wave vector
of the rf field) electron correlations manifest them-
selves and modify the dispersion relations for these
waves. These results are valid for the simple
metals sodium and potassium whose Fermi sur-
faces are known from de Haas-van Alphen studies

to be very nearly spherical. ' For these metals it
is found that for the so-called "ordinary wave" in
the collisionless limit ~a=~ (w is a measure of the
mean time between electron-impurity collisions)
that the onset of the wave occurs at ~ = ~n, (1+A„,)
instead of at (d =a~, , as predicted by free electron
theory. Here the landau parameters (A„}are the

Legendre coefficients of the spin-independent part
of the Landau correlation function. These shifts
in the q-0 intercepts of the dispersion curves of-
fer the possibility of determining from experiment
the parameters {A„}for n )2.

It is of obvious interest to know to what extent
the above results for cyclotron waves are still val-
id if one allows for anisotropy of the Fermi sur-
face. Ideally one would like to have a theory which
takes into account both electron correlations and

anisotropy. In this paper we take a more modest
approach and neglect correlations altogether. Fur-
thermore, we restrict our calculations to the long-
wavelength limit qR«1, and we only consider elec-
tron trajectories which are closed in k space. The
results for cyclotron waves cited in the preceding
paragraph are valid for the bulk metal. %e also
concern ourselves only with the response of the
electrons in the bulk and ignore completely such
interesting questions as the coupling of the incident
rf fields to the metal surface and the intensity of
the transmitted (or reflected) fields. These ques-
tions can only be answered by a complete solution
of the boundary value problem.

Using Maxwell's equations and assuming a per-
turbing field of the form E = Eo e"""",we find

q x (q x E,) + (~/c)' 7 E, = 0, (1)

where we have introduced the dielectric tensor

Wag(qq (LI) Ho) = l5 ~8 + (4712/Q! )

xoaB(q& c0y Ho)

where a,~(q, ~, Ho) is the wave-vector-, frequency-,
and field-dependent conductivity tensor. For Eq.
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(1) to have a, nontrivial solution requires the van-
ishing of the determinant

&xx

e,„~„—(qc/(u)'

e,.—(qc/(u)'

where we have taken q II i. We have used the sym-
rnetry of the magnetoconductivity tensor to set q„,
= a„=c,„=e„=0. (This is correct if the x-y plane
is a reflection plane for the point group of the
crystal, as, for example, when the dc field is in a
(100) direction of a cubic crystal, and also when we
consider a polycrystalline sample with crystallite
size small compared to q ', so that o~ is under-
stood to be an average over crystalline orienta-
tions. ) Clea.rly, Eq. (3) has two solutions, each
of which corresponds to a possible mode of propa-
gation. The mode which is excited in an experiment
depends on the polarization of the applied rf field.
In this paper we will discuss the "ordinary wave"
which is a purely transverse wave whose disper-
sion relation is given by solutions of

(qc/~)' = 1 + (4((i/(g) v„(q, (u, 80) .
The experimental conditions under which cyclotron
waves are observed lead to a simplification of the
above equation. The term (4vi/~) o„-O(&u&/~)
-10' (for ~ -10" rad/sec) where m~

= (4vne /m*)'
is the plasma frequency. Therefore we can neglect
the first term in Eq. (4) which comes from the dis-
placement current in Maxwell's equations. Fur-
thermore, in the regime where cyclotron waves
are observed (qc/&o)'-10' so that solutions of (4)
are given to O(qc/&u~) -10 ' by the zeros of the con-
ductivity,

o„(q„m, H0) = 0 .

In Sec. II of this paper we consider a closed sin-
gle-sheet Fermi surface and show that a spread in
cyclotron frequencies over the Fermi surface leads
to a collisionless damping of cyclotron waves for a.

range of wave numbers corresponding to the spread
in frequencies. Mathematically the spread in cy-
clotron frequencies manifests itself by causing
branch cuts in the conductivity. We study the be-
havior of the dispersion relation near the endpoints
of the branch cuts and conclude that the collision-
less damping results in a shift, from the isotropic
limit, in the onset of the wave. In Sec. III we con-
sider a model Fermi surface which is a sphere with
a small cubic distortion (this should be a fair qual-
itative description of the heavy alkali metals cesium
and rubidium ). For this model we calculate the
dispersion relation for the first harmonic in detail
to first order in the distortion. The results of this
calculation completely confirm the general results

of Sec. II. Moreover, we find that the effects on
the dispersion relation of a small amount of Fermi-
surface anisotropy simulates both qua, litatively and

quantitatively the effects of correlations in an iso-
tropic metal.

H, CJENERAL THEORY FOR CLOSED ORBITS

We calculate o„(q, ~, 80) by solving the linear-
ized Boltzmann transport equation

s5f s5f e „sbf—+V~ ~ + —V~&&H0 ~

8fo &f-- eE ~ V ——
Bg (6)

where 5f(k, r, t)=f(k, r, t) f~(8,)-is the deviation of
the electron distribution function from equilibrium
[f0($,) is a Fermi function], and V, = v, ((((k) is the
electron velocity which for most metallic Fermi
surfaces will be highly anisotropic. We have
treated collisions in the relaxation time approxi-
mation by introducing the phenomenological scat-
tering time r. Equation (6) is readily solved by a
method due to Chambers, '

where the integral is over the electron trajectory
in phase space. The current density is given by the
usual integral over the distribution function

dkr(r, r)=rr f rrr, rf(F„r, rI,

from which we easily obtain the z component of the
current density

J,(r, t) =2e g "dk, m, f dq( V,(p)

&& f df [EDV,(t)
&f qX(t ') -fdt ')-(t t ) /, .8

where I k, l & k„on the Fermi surface and we have
taken E = E0e"~ ""to be along the z axis and the
wave vector q to be along the x axis. We have in-
troduced the following standard coordinates'
(8, k„q(), where

(i) ((' is the energy,
(ii) k, is the component of k along H0, and
(ill) q& is a phase variable specifying the posi-

tion of an electron along an orbit and is defined by

q =(1/m, ) f da/V, ,

where dk is an element of arc length along the tra-
jectory; V, is the component of V perpendicular to
HD; m, is the cyclotron mass for the trajectory and
is given by



D. R. FREDKIN AND R. FREEDMAN

o,(q, ~, HO)=(2 )~

Pr OO

x dqVy dp Vp —p)
0

xexp — [k„(q—y')
C

—k, (rp) Xcp']— (9)

where ~,(k, ) = eHO/m, (k, )c is the cyclotron fre-
quency of the orbit and we have defined X = (I/u&, ~)
x (1 —i&or) For .an arbitrary Fermi surface, k„(q&)

can be obtained by solving the coupled equations

Bk"=m, V~
B+

and

1 dk 1 8A($, k, )
~C

27t Vj 2m B8

where A(8, k, ) is the area in k space enclosed by
the orbit. In arriving at Eq. (I) we have written
the k space volume element in terms of these co-
ordinates d k = ng, dS dk, dp and have used the low-
temperature property of the Fermi function Sfo/
Sh = —5($ —Sr) to do the integration over the ener-
gy so that all quantities appearing in Eq. (7) are to
be evaluated on the Fermi surface. If we make a
change of variables in Eq. (I) and use the relation

x(f f') —x—(f) = —(I/m, ~, )

x[k (f —f ) k (f)]

which comes from integrating the equation of mo-
tion k= (e/c)(V„xHO) along the trajectory, then we
easily find

Bk„= —m, V„.
Bop

The physics of the problem is contained in o„
x(q, &u, HO) and we now focus our attention on this
object. For fixed k, we expand the z component of
the velocity in a Fourier series in the variable y

V,(p}= Z V„(k,)e'"",

and similarly

k„(q ) = Z K„(k,) e'"' .

In the long wavelength limit

(q/m, (u, ) [k„(q —q ') —k„(q )]

-O(qVr/&u, ) «1,
we can expand the exponential in Eq. (9) and write
an equation of the following form:

o,(q, ~, n) = o(0) [1—C(n)(qR)'], (12)

where cr(0) is the field-independent infinite-wave-
length conductivity, C(q) is a dimensionless func-
tion of the variable, g= ~„x/u, where u&~x is the
cyclotron frequency of the electrons on the ex-
tremal Azbel '-Kaner orbit. The dimensionless
variable g has no real physical significance and is
introduced here to provide a correspondence with
the experimental situation where the magnitude of
Ho is varied (note that q«HO). Physically, equation
(12) can contain no term linear in qR because the
response of the electrons cannot depend on the di-
rection of the incident field.

Using the above results and performing some
simple manipulations, we easily find

where m„x =eHO/sr~ac is the Azbel'-Kaner cyclo-
tron mass. We have restricted ourselves to Fermi
surfaces for which V, is a constant of the motion
so that in Eq. (10) we have taken V„=0 for n v0.
An analytical example of such a surface is 1~m /m~x~qg

C(Il'tB = —(2 dk V Z
(m, /n m„„)(I+g/cow) —g

I

ments about cyclotron wave propagation in the col-
lisionless limit (d~- ~. As k, varies from —k„ to
k„, m, (k, )/m„„varies over some finite range

$(k) = QF, (k, )=- Sr,

where the 5, are arbitrary functions of the Carte-
sian components of k. More generally, V, will be
a constant of the motion for any surface for which

k, in the energy-momentum relation is not coupled
to k„or k, . The neglect of V„ for nc0 is, perhaps,
justified for real crystals when the z axis is a sym-
metry direction, since, if the z axis is an N-fold
rotation axis, V„=0 unless n is an integer multiple
of N.

We can, at this point, make some general state-

(or, perhaps, q, —m, /m„x —1; we consider only
the first alternative because no new ideas appear
in the other case). We can read off from {13)that
C(q} has branch cuts whenever

I/«
I ~I & ni/n, n =1,2, ".

and the nth and {n+ 1)th cuts overlap when

n»/(n, 1) . —

C(p) is an analytic function of p with no singulari-
ties besides the branch cuts just mentioned. From
(5) and (11), we have the dispersion relation
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(qR)' = 1/c(q),
provided that (14) leads to i qR i «1. From (13),
we see that we may expect wave propagation for
q &q, , where C(q) &0, that Landau- (collisionless)
damped wave propagation will occur for 1& g& q, ,
and that in general there may be undamped wave
propagation for

q, /(m+1) & q« I/n

and Landau-damped wave propagation when

I/n Iql q, /~.
The origin of the Landau damping is simply reso-
nance of the wave with a harmonic of the cyclotron
motion of electrons on some orbit.

We anticipate some singular behavior of qR(q)
when g is near a branch point. %'e shall make some
plausible assumptions about the Fermi surface in
order to study the behavior of C(q) in the neighbor-
hood of q=1, g, . At the l,eft-hand endpoint, q=1
and the major contribution to C(q) comes from val-
ues of k, =O, which, we suppose, is the extremal

(Azbel -Kaner) orbit. As k, - 0, we assume the
following limiting behavior:

Vo~ k, , K, = constant,

qR = —C(q, )-'" [1 1(q'- q', )

x ln(q —q, ) + ~ ~ ~ ] (18)

In Sec. II we studied the effects of Fermi-surface
anisotropy from a general point of view. Here we

consider a particular Fermi surface and calculate
the dispersion relation in detail to O(qR)z. Con-

sider the surface

for Iq- q, l «1. These equations contain some
useful information. Equation (17) tells us that as
q-1, from the low-field side of the Azbel'-Kaner
cyclotron frequency, qR is pure imaginary so that
no wave exists. As the field is increased and g
passes through &=1 we see that the imaginary part
of qR decreases (though remains finite) and that qR
develops a small real part which starts off with in-
finite slope at q= 1. From Eq. (18) we see that as
g- g, , from the low-field side, the imaginary part
of qR approaches zero. On the other hand, the
real part of qR is finite as g- g, and has infinite
slope at g=q, . The effect of the Landau damping
is to cause a shift, from g = 1, in the onset of the
wave. This is because a wave is not well defined
until ReqR& ImqR and this occurs somewhere on
the high-field side of g= l.

III. MODEL FERMI SURFACE

m, (kg)/m„„= 1+bk, ,

o 3

h (k) =
g +

2 gkz Z ka = constant
2%i 2172 kF o-1 (19)

c(q) = —
I c(1) I [1—p(I —q')' "+ "], (15)

for I g —1I «1, where P is a positive constant. At
the right-hand endpoint of the cut, g= g, and the
major contribution to C(q) comes for k, =k„. As

k, -k„, we suppose that

Vo = constant,

K, ~ (kz —kg),

where 5 is a positive constant. If we put the above
Ansatz into Eq. (13) and do the integral, we find

&u, = v@'(I+ -', e sin 9), (20)

when m* is an effective band mass, e is a small
positive dimensionless parameter, and kF
= (3w n)' t' when n is the density of conduction elec-
trons. The surface in Eq. (19) describes a sphere
with a small cubic distortion.

In Appendix A we calculate &u, (k, ) for the surface
given in Eq. (19) for the dc field 5, having an arbi-
trary orientation with respect to the symmetry
axis of the surface. For H along a (100) symme-

try direction we find

and

m, (k.)/m„, = q, —o(k„-k,),
where 6} is the usual polar angle in spherical co-
ordinates. Using equations (13) and (20) we easily
find

where n is a positive constant. If we put the above
Ansatz into Eq. (14) and do the integral, we find

C(q) = C(q, ) [1—r(q'- q', )

x in(q —rP, )+ ~ ~ ~ ]

for I q- q, I «1, where y is a positive constant.
Combining Eq. (14) with (15) and (16), we obtain
the complex dispersion relations

~R =t
I
c(1)I'~'

x [1+ —.
' P(I —q')' "+.. ]

for I'g —1 I «1, and

C(q) (2eq )- (az -', ) + za(a' —1)ln, (21)
1

where

a' = [q' —(I + t/~r)']/3sq',
and in obtaining Eq. (21) we have written 2iK,
=k~sin6), K„=O for nc1, to within corrections of
O(e ). In the limit &or -~, C(q) has a branch cut
for 1 ~ q ~ 1+ 3/2s corresponding to the spread in
cyclotron frequencies. Combining Equations (5),
(12) and (21), we obtain the dispersion relation

qR = (2e q')'" [(a'- s )+ -'a(a' —1)
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(22 )

We have computed qR as a function of g for various
values of & and ~7.. Some results of these compu-
tations are shown in Figs. 1-3. In Fig. 1 we show
results for the ~v - ~ limit. The dotted line is the
ImqR for & =0.05 and represents the collisionless
damping discussed in Sec. D. The ReqR is also
shown in Fig. 1 and has the behavior discussed at
the end of Sec. II; note the infinite slope at both
endpoints of the branch cut. The curve marked
& = 0. 001 is for a metal having an essentially
spherical Fermi surface and for which interactions
have been neglected. Finally, the curve marked
A, =- 0. 02 is the dispersion relation at the first
harmonic for a simple metal for which interactions
have been included by solving the Landau-Silin ki-
netic equation. ' In Figs. 2 and 3 we show the ReqR
and ImqR, respectively, for (d7 = 10. From Fig.
1 we see that ReqR =ImqR at a frequency shifted
from the Azbel'-Kaner cyclotron frequency by an
amount comparable to the shift produced by an A~
= —0.02. Figures 2 and 3 show that even when col-
lisions are included, the effects of anisotropy on
the dispersion relation simulate the effects of in-

teractionss.

Since it is difficult to work with single-crystal
alkali samples, cyclotron-wave experiments are
generally done with polycrystalline samples so that
the dc field is not along a symmetry direction. It
is natural to ask whether or not the above effects
will be "averaged out" in a polycrystalline sample.
In an attempt to answer this question we have cal-
culated C(g, R), where R is a unit vector specifying

I.O

l.00 I.02

&AK

l.04 I .06

FIG. 2. Curves marked E=0.001 and a=0. 05 are plots
of the real part of Eq. (22) for ~v=10; a typical experi-
mental value for the alkali metals. The curve marked
A2= —0.02 is plot of the real part of the dispersion rela-
tion for ~w=l0 in a metal having a spherical Fermi sur-
face and for which interaction have been included (Ref. 5).

the orientation of Ho. We have studied" the analy-
tic behavior of (C(q, n)) which is obtained by aver-
aging C(q, A) over all orientations. It is found that
(C(q, 0)) for &u~- ~ has a branch cut for I » q» I+ 2c
so that the effect of the averaging is to increase the
range of frequencies for which there will be colli-
sionless damping. This is understandable since
the averaging allows all possible orbits to be sam-
pled. This result suggests that not only will the
above effects be present in a polycrystalline sam-
ple but may well be more pronounced.

IV. CONCLUSIONS

The spread in cyclotron frequencies for a metal
having a nonspherical Fermi surface leads to a col-
lisionless damping of cyclotron waves (for the po-
larization f tt IIO). This damping can cause effects

0.6

0.9
er = IO

0
0.98 I.02 l.04 I.06 l.08 I. IO I. I2

"AK

0.6

0.9S l.00 I.04 I.06

FIG. l. Solid curves marked &= 0.001 and &=0.05
are plots of the real part of Eq. (22) for ~v'= ~. The
dashed line is a plot of the imaginary part of Eq. (22) for
e= 0.05 and (dv = and represents the collisionless
damping discussed in the text. The curve marked A2
= —0.02 is a plot of the (de = ~ dispersion relation for a
metal with a spherical Fermi surface and for which inter-
action have been included (Ref. 5).

FIG. 3. Curves marked &= 0.001 and e= 0.05 areplots
of the imaginary part of Eq. (22) for (d7 =10. The curve
marked A2= —0.02 is a plot of the imaginary part of the
dispersion relation for (dv = 10 in a metal having a spher-
ical Fermi surface and for which interactions have been
included (Ref. 5).
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on the dispersion relation similar to the effects
caused by electron-electron interactions in metals
with spherical Fermi surfaces. From our calcu-
lations we conclude that the Landau parameters
(A„}may not be accurately determined from cyclo-
tron-wave experiments even when there is only a
small amount of anisotropy.

APPENDIX A

The cyclotron frequency of electrons on the Fer-
mi surface may be written

It is convenient to define the integral

F(t y tf 3) f dsy @rf nt $(-k)s

which becomes, upon substituting for 8(k) from
(A3), expanding the exponential to 0(e), and per-
forming the integration

2m'' '" *2
F(r x lt 8)=( e

cd ~(ki) = 2rrm cLrz
{0)

88 q.q
(A 1)

where ~c" =eH~/m*c and A(tr, , h) is the area en-
closed in k space by the orbit. Let a dc field IIO

= H0n have an arbitrary orientation with respect to
the symmetry axis of a crystal; then we can write

A(k„, 8) = f d'tr r)([$ —$(k)] 5(k. t) —)t„)), (A2)

where k„ is the component of k along the field, 8
is the energy, and r)(8 —b(k)) is the unit step func-
tion defined by

(A6)
where we have introduced cr = g'. , rr'„, tl being the
Cartesian components of n. We are led to consider
the following integral:

G(~, a, S)= f dte "'F-(t, ~, n, S),
which is readily integrated to give

G(X, cr, S)= (2rr) m*e ~
t

x -+ "(cr-1)1 Gism k,
S S

and

r)(x) = 1, x ) 0

r)(x) = 0, x & 0 .

3'*
(v ~ 1)—ink, ',

) .

From (A4) and the above equation we have

(A6)

It is useful to have the following integral represen-
tations:

""dS
r)(h h(k))

" ecs-sci&)s a&02m', )„S
which is the inversion integral of the Laplace
transform of the unit step function, and

s 4()t ~) 1 1
d~ s G(8$2mi 2m, ,„

which becomes, after substituting from (A6) and

doing the integral by contour integration,

—
g

= 2rrm* [1+6&m*4„(cr- 1)
8

k'
$(k)= ~+X Z k',2' e 1

(A3 )

5(k„—k t))=(1/2rr) J dte"'~"",
which is the usual integral representation of the
one-dimensional Dirac 6 function. As before, we
consider

—3m"'(h - a'„/2m*)(a+ 1)] .
If we evaluate (A'7) at 8 = hs, we find

=2rrm [1+3ex (cr- 1)
8A 2

8$ /we

——,
' e(l —x')(cr+ 1)],

(A7)

(A8)

with &=e/2m "kr. If we substitute the above in-
tegral representation into (A2) and take the deriva-
tive with respect to 8, we obtain

dSe s8A 1 1 "'"
g gp g

8$ 2' 2m, ,„

where to within corrections of 0(&') we have writ-
ten k„=k~ with x=k' n=cose. Finally, combin-
ing Eels. (Al) and (A8), we find

(u, = (oco' [1+ -,'e(1- xs)(cr+ 1) —3ex (cr- 1)] . (A9)

g3k f kent-8 (R) s (A4)

In (A9) we note that the orientational dependence of
the field is contained in o =g', 8', while the vari-
able x serves to locate a particular orbit.
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