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Numerical techniques are described to apply the coherent-potential approximation (CPA) to mass
defects in polyatomic cubic crystals, and to facilitate CPA calculations for light-mass defects in
monatomic cubic crystals. Results are given for two alloys in which local modes have been observed by
inelastic neutron scattering, Al ,Cu,, and (NH,),;K,,Cl. The CPA is in good agreement with
experiment for the local-mode peak position in the Al-Cu system, but the observed peak is much
sharper. For the (NH,-K)Cl alloy, the mass-defect CPA predicts a quasilocal resonant mode much
lower in frequency than the experimental local-mode peak, showing the need to include force-constant

changes in the theoretical model.

I. INTRODUCTION

When an isolated substitutional impurity is intro-
duced into an otherwise perfect crystal, the host-
lattice phonons can be scattered by the defect, and
local or resonant modes may arise. A great deal
of work has been done to elucidate the properties
of lattice vibrations around isolated defects, so
that rather elaborate calculations can now be com-
pared with very detailed experimental results.

To cite only one example, quite good agreement
between calculation and experiment has been ob-
tained for the infrared and Raman scattering of
substitutional silver ions in sodium chloride. 2

For substitutional alloys, multiple scattering,
defect-defect interactions, possible clustering
or ordering, and other effects make interpretation
much more difficult, However, phonons often ap-
pear to remain as reasonably well-defined ele-
mentary excitations in alloys,3~® and broadened
local modes split-off from the in-band modes have
been observed at fairly high concentrations of light
mass impurities, "1 Inelastic neutron scattering
is a particularly useful probe of phonons in alloys,
since it can measure the frequencies and lifetimes
of individual phonons, rather than sum or average
properties like the density of states.

The simplest of the computationally tractable
models for phonons in alloys is the virtual-crystal
approximation, in which the force constants and
masses for the alloy are taken to be concentration-
weighted averages of those of the constituents,
Although the phonon frequencies change continu-
ously with concentration, phonons have infinite
lifetimes in the virtual-crystal approximation,
and no local or resonant modes are predicted.

In the average-scattering approach of Elliott
and Taylor, ! which is correct to lowest order in
the concentration and includes certain terms of
higher order, the in-band modes are both shifted
and broadened, and local or resonant modes may
occur. However, if a local mode is predicted
above the host-lattice spectrum or in a gap, its

s

lifetime is infinite in the Elliott and Taylor model.

The coherent-potential approximation (CPA),
described by Taylor!? for phonons and Soven!® for
electrons, is a mean-field theory in which the
average scattering of phonons from any potential
defect site in the effective crystal vanishes, The
phonons are shifted and broadened in the in-band
region in the CPA, and if a local mode splits off,
it is broadened. For mass defects in monatomic
cubic crystals, the CPA is relatively easy to imple-
ment, A complex self-energy must be determined
self-consistently as a function of frequency from
a quadratic equation in which one coefficient is the
site-diagonal CPA Green’s function; this Green’s
function can in turn be expressed as an integral
of the product of the perfect-crystal density of
states and an energy denominator containing the
self-energy. The computational problems for
monatomic cubic crystals are to find starting val-
ues for the self-energy, and to develop rapidly
convergent procedures to track the self-energy as
the frequency changes,

For mass defects in polyatomic cubic crystals
(by which we mean cubic crystals having more than
one kind of atom in the unit cell, like NaCl-type
and zinc-blende materials), the CPA is much more
difficult to apply, because the site-diagonal
Green’s function in the equation for the complex
self-energy must be evaluated as an integral of a
matrix product over the Brillouin zone, rather than
as an integral of a scalar function over frequencies.
Similar integrals over the Brillouin zone must be
done to apply the CPA to mass defects in hcp and
other more complicated crystals.

In this paper, we describe numerical techniques
for the accurate application of the CPA to mass
defects in polyatomic cubic crystals., Included is-
a straightforward application of the calculus of
residues which solves the problem of finding start-
ing values for the self-energy, and makes the CPA
essentially automatic for monatomic cubic crystals.
The requisite g-space integrations are done by
summing over a regular mesh of boxes in the
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Brillouin zone, with Monte Carlo sampling added
in regions in which the integrand varies rapidly.
Results at very low frequencies are obtained from
the appropriate limiting expressions,

Section II briefly reviews the CPA for mass de-
fects in cubic crystals and describes our compu-
tational procedures. In Sec. III, results are pre-
sented for two alloys in which local modes have
been observed by inelastic neutron scattering, one
a monatomic cubic metal (Al-Cu), ? the other a di-
atomic cubic insulator [(NH,-K)C1].® Section IV
draws some conclusions, and points to possible
extensions.

II. THEORY AND COMPUTATIONS

The basic equations of the CPA for mass de-
fects have been given by Taylor.!? For monatomic
cubic crystals, the CPA phonon Green’s function,
G® (q,w), satisfies the equation

1={Mu?[1-e()]I-& @)} G°(q,w), (1)

where I is the unit matrix, M is the atomic mass
of the host atoms, w is the frequency, and ¢ (@) is
the force constant matrix for the perfect crystal

at the wave vector a The dimensionless self-en-
ergy € (w) mustbe determined self-consistently from

0=€(w) - ch+€(w)l€(w) - 8] Gy(w)w? . (2)

Here, 6=(M - M,)/M, where M, is the defect mass,

¢ is the concentration, and Gy(w)= MG (I,7;w) is
the site-diagonal Green’s function, which is inde-
pendent of the site /, and can be expressed as an
integral over the perfect-crystal density of states
v(w),

!
’ V(w ) .
Go(w)—f dw Wl-€(w)]-w'? @)
For polyatomic cubic crystals with defects at

the side B in the unit cell, the CPA Green’s func-
tion is the solution of the equation

18,5 = 20 {M,0?[1 - €() 8,118, 00
b (4)

-2(b,0";q)}- GO, b'; q,w),

where M, is the host mass of the atom at the site

b in the unit cell. The complex self-energy €(w)

must again be found self-consistently from equa-

tion (2). Now, however, the site -diagonal Green’s

function in Eq. (2) is Gy(w)= MG, (I, 18; w), which

cannot be expressed as an mtegral over frequen-

cies. Instead, it must be evaluated as an integral

3 -
Gy(w)= %TrLZ Z—ﬂg {1 - e(w)w?[MP (8, B; q, @)}

In terms of the polarization vectors ¢ (d, B,7) and
frequencies w; (q) for the various branches of the

|©©

phonon spectrum, the perfect-crystal Green’s
function P (B, B; q, @) is given by

P (8, B,q,w>~2" MY TACHEN RS

w _wj(q

One problem encountered in applying the CPA
is to find a starting value for the self-energy at
some particular frequency, or if local modes split
off, to find starting values in both the in-band and
local mode regions., To solve this problem, we
use a theorem of the complex integral calculus.!*
If f(z) is a meromorphic function inside a closed
contour C, and is not zero at any point on C, then

1 flz)
Zni o fla) BT (7)
where 7, is the number of zeros and », the number
of poles of f(z) inside C, and a pole or zero of or-
der m must be counted m times. If the integrand
is multiplied by z, then

i f%—z%z—dz 2i20=22, (8)

gives the difference between the sums of the values
of the zeros and poles, where again a pole or zero
of order m must be repeated m times. Similar
expressions hold for higher powers of z.

From Eq. (2), we define the function

fle)=€—cO+€(€-0)G, (w; €)w? (9)

which has zeros but no poles off the real € axis
since Gy(w;€) as determined from Eq. (3) or (5)
is regular for Ime€ # 0. Performing the integra-
tion (7) numerically over a closed contour in the
upper half € plane tells us whether there are any
roots within the contour; if there is one, the inte-
gral (8) gives its value.

Once starting values have been obtained for € (w),
a local method is employed to track the self-energy
as a function of frequency. Specifically, we use
a rapidly convergent modification of the Newton-
Raphson technique. If this method loses the self-
energy, then recourse is taken again to the con-
tour integral procedure. This combination of con-
tour integration and local tracking makes CPA
calculations for mass defects in monatomic cubic
crystals virtually automatic, and greatly facilitates
the calculations for polyatomic materials, where
even if no local-mode band splits off, it is not con-
venient to start at low frequencies and work upward.

A two-step procedure is also used to evaluate
the integral over the Brillouin zone in Eq. (5) for
the site-diagonal Green’s function for polyatomic
crystals. The 1rreduc1b1e % th of the zone is first
broken up into a large number of small boxes, as
in the Gilat-Raubenheimer method!® for calculating
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FIG. 1. CPA density of states for Agg,1Aug,y, as ob-
tained self-consistently by frequency integration from
Eqgs. (2) and (3), and by integration over the Brillouin
zone from Egs. (2) and (5).

perfect crystal densities of states. In most of
these boxes, the integrand in Eq. (5) is slowly
varying, and the contributions to Gy(w) are to a

a good approximation given by the products of the
value at the center of the box and its volume,
weighted appropriately if part of the box extends
outside the irreducible Ath. If the imaginary
part of €(w)is small, however, the integrand will
vary rapidly in regions of ¢ space where the CPA
phonons have frequencies close to w. In these re-
gions, Monte Carlo sampling is done. This pro-
cedure works well in reasonable amounts of com-
puter time except at low frequencies, but here,
Taylor-series expansions for the various quanti-
ties of the CPA can be employed. For example,
Ree€(w) approaches cf as an even power series in
w, while Imé(w) is an odd function which be-
gins at third order in the frequency.

To test the accuracy of our integration procedure,
we did a CPA calculation for a 10% silver-gold
alloy (Agy.,Ayg ), evaluating Gy(w) first by inter-
grating over frequencies as called for in Eq. (2),
and then by performing the equivalent integration
over the Brillouin zone of Eq. (5)for this mona-
tomic cubic alloy. The irreducible 4th of the zone
was broken up into 770 boxes for the g-space integra-
tion. Figure 1 shows a comparison of the results
of the two methods for the density of states. The
agreement is excellent, and within the convergence
criteria used in the iterative calculation of € (w).
The great difference, of course, is in the amount
of computer time required for the two calculations;
it took roughly half a minute of IBM 360-91 time
to generate the smooth curve in Fig. 1 by w inte-
gration, and about 20 min to determine the cir-
cled points by integration over the Brillouin zone,
or an average of roughly 20 sec per point.!®
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I1I. RESULTS

Local modes may arise around impurities if the
defect mass is lighter than that of the host, or if
the force constants between the defect and its
neighbors are much stiffer than those connecting
host-lattice ions, or through a combination of
these two causes. Two alloys in which local modes
have been observed by inelastic neutron scattering
at modest concentrations of light-mass impurities
are Al-Cu’ and (NH,-K)C1.® In this section we
will present the results of CPA mass-defect cal-
culations for these two alloys, each for a 10%
concentration of the light-mass constituent, and
show how well these results agree with experiment.

For the Aly,,Cuq ¢ system, a virtual crystal
model was used for the force constants, that is,
the force constants for the “perfect crystal” were
taken to be ®=0.1®,,+0.9%;,. This shifts the
phonon frequencies down by a small amount, since
the first-neighbor force constants for aluminum?’
are smaller than those for copper.!®

Figure 2 compares the CPA density of states

v (0)= - 2w/m Im [M(1 - €(w)) G, (1,1;w)], (10)

with the “perfect-crystal” result, which was ob-
tained by the Gilat-Raubenheimer method. The
effect of alloying in the CPA is to smooth out the
in-band modes and shift the band edge down, and
to produce a broad local-mode band centered at
about 8.9x10' Hz. The real and imaginary parts
of the self-energy are shown in Fig. 3. Since
Imé(w) is small except in the local-mode region,
only the local modes are expected to be signifi-
cantly broadened by the disorder.

Figure 4 is a comparison of the calculated re-
sults with experimental data of Nicklow et al.” for
the inelastic neutron scattering at the zone bound-
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FIG. 2. CPA density of states for Al ;Cuy 4 compared
to the “perfect-crystal” density of states of pure Cu but
with virtual crystal-force constants.
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ary point q = (3, 3, 3) (2n/a). To obtain the calcu-
lated curve, we summed the coherent and inco-
herent contributions, 1*1%'1%20 3nd then folded in a
Gaussian to incorporate the experimental reso-
lution. The rapid rise in the experimental values
below the LA in-band peak is due to high-order
diffraction processes in the monochromator and
analyzer.

The agreement between the CPA and experiment
for the local-mode peak position is surprisingly
good. The outer electronic configurations of alu-
minum and copper are quite different, so one
might expect force constant changes to play a larg-
er role than Fig. 4 seems to indicate. However,
the CPA does a rather poor job in fitting the sharp-
ness and intensity of the local mode relative to the
in-band peak; this is understated in Fig. 4, since
the observed phonon peaks are riding on the down-
slope of a lower frequency peak arising from
another scattering process. The experimental re-
sults also contain an interesting but barely resolved
hint of structure at about 9. 2x 10'2 Hz in the local
mode region. Such structure, if confirmed, would
reflect correlations which lie beyond the scope of
a single-site CPA. Pair and higher correlation
effects are expected even for purely random alloys,
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FIG. 3. Complex self-energy € (w) for Aly,Cugq.
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FIG. 4. Calculated and observed inelastic neutron
scattering from Aly, Cuy 4 for the scattering wave vector
Q=(3, %, %) (2n/a). The experimental points are from
Nicklow et al. (Ref. 7) with background subtracted, and
the horizontal bar shows the experimental resolution.

and may be enhanced by clustering or ordering.

In this connection, Borie and Sparks?! have ob-
served short-range ordering of the aluminum atoms
in Al 14Cuy g, alloys.

The disagreement between the CPA and experi-
ment for the position of the in-band LA mode in
Fig. 4 is typical for this alloy; the in-band phonon
frequencies predicted by the mass-defect CPA,
like those found from low-concentration limit ex-
pressions, lie generally above the observed peaks.
As suggested by Nicklow el al., this may result at
least in part from the expansion of the lattice
which occurs when the aluminum is added to the
copper. The attendant general lowering of the
in-band phonon frequencies could be modeled by
further decreasing the force constants of the
“perfect crystal” used in the CPA calculations.
However, calculations that we have done show that
lowering the in-band modes in this way also has
the undesirable effect of lowering the local-mode
peak, The change in volume on alloying and the
difficulties encountered in matching both the in-
band and local-mode frequencies are indications
that the forces do vary significantly around the
different constituents.

The work of Smith el al.® focussed on the local
and torsional modes of small concentrations of
ammonium ions in KC1l. Although the NH,” ion
is roughly the same size as the potassium ion,
they found that isolated mass defect theory pre-
dicted a resonant mode near the top of the perfect-
crystal spectrum, and that a nearest-neighbor
force constani increase of the order of 25% was
necessary to move the impurity mode to its ob-
served position above the band. Not surprisingly,
the mass-defect CPA calculations for the 10% alloy
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also predict a resonant mode near the top of the
perfect-crystal spectrum, which illustrates the
necessity of finding some way to incorporate force-
constant changes for phonons in alloys.

Figure 5 shows the complex self energy for
(NH,).1Ky.¢Cl, and Fig. 6 compares the CPA den-
sity of states for the alloy,

v (W)= = (w/mIm2; My(1 - €(w) 6,,'8)02, (Zb,1b; w)

’ (1)
to that of pure KCI1, as determined by the Gilat-
Raubenheimer method from the shell model used
for the perfect crystal., The small hump at about
5.75% 10' Hz in the alloy density of states is the
quasilocal resonant mode. Otherwise, the CPA
curve differs very little from that for pure KCI,
primarily because only 5% of the total number of
atoms in the crystal change when 10% of the posi-
tive ions are replaced by impurities. The irreduci-
ble &th of the Brillouin zone was broken up into
770 boxes for the CPA calculations, which for all
of the results given for this material took some-
thing of the order of 30 min of IBM 360-91 time,
or roughly 25 sec per frequency point on the av-
erage.

Figure 7 compares the calculated and observed
neutron scattering for the scattering wave vector
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FIG. 6. CPA density of states for (NH,)y, (K;,9Cl com-
pared to that for pure KCI.

Q=(2.7,2.7,3.3) (27/a). The calculated in-band
TO peak at 4. 05x 102 Hz falls slightly below the
observed peak. However, the calculated quasilocal
mode, which is the major peak at 5. 85x 10" Hz,

is far below the experimental local mode peak
above 7x10' Hz. The experimental points in Fig.
7 are unpublished data from experiments on a

10% single crystal,?? with much more scatter in
the local-mode region than in the published work,
which was done on substantially larger polycrys-
talline and powder samples.® In the measurements
done on the 10% single crystal, it has proven dif-
ficult to obtain good data spanning a frequency
range from below an in-band to above the local
mode. For several scattering vectors for which
the statistics were better, there were in-band
peaks near the frequency of the CPA resonant

SCATTERING INTENSITY (orbitrary units)
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FREQUENCY (10'2 Hz)

FIG. 7. Calculated and observed inelastic neutron
scattering from (NHy)y, 1Ky ¢Cl for the scattering wave
vector Q=(2.7, 2.7, 3.3)(2r/a). The horizontal bar shows
the experimental resolution, and background has been
subtracted from the experimental data.
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mode, so that a comparison of calculation and ex-
periment for these scattering vectors would be
misleading.

The calculated curve in Fig. 7 is the sum of the
coherent and incoherent scattering,?® convolved
with a Gaussian resolution function. The major
uncertainty in the calculated results is the large
incoherent scattering cross section of the hydro-
gens of the ammonium ion, which varies strongly
with environment and neutron energy. In the ab-
sence of direct measurement of this cross section
for the (NH,-K)Cl system, a value of 50 b was
chosen as a reasonable figure from the work of
Rush, Taylor, and Havens?* on various ammonium
halides. As shown in Fig. 8, the incoherent scat-
tering is responsible for virtually all of the local-
mode peak, and provides a background on which
the coherent in-band peaks ride.

IV. CONCLUSION

We have described numerical methods to apply
the CPA to mass defects in polyatomic cubic crys-
tals, and to automate the CPA for monatomic cubic
crystals. Essentially the same procedures can be
followed for the hcp and other lattices, although
noncubic systems are more complicated in that the
complex self-energy has more than one independent
component,

The comparison of CPA mass-defect calculations
with experimental results for (NH,-K)Cl1 indicates
the need to incorporate force-constant changes in
the theoretical model. In a subsequent paper, we
will describe one way in which the CPA can be ex-
tended to include force-constant changes. For
Al-Cu, the neutron-scattering data also suggests
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FIG. 8. Coherent and incoherent contributions to the
calculated scattering cross_section of (NH,),1Ky,sCl for
the scattering wave vector Q=1(2.7, 2.7, 3.3)(2n/a).

that practical ways must be found to treat pair and
higher correlation effects. However, the amounts
of time required to do CPA mass-defect calcula-
tions in polyatomic cubic crystals indicate that
future refinements in theory may not be easy to
apply.
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