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The authors have discussed earlier the photomagnetoelectric effect in graded-band-gap semiconductors
assuming symmetrical band-edge gradients. The present paper rewrites the continuity equation under
asymmetric bandage gradients, and includes the effects of positionMependent minority carrier lifetime,
electron and hole mobilities, and effective masses. A study of excess minority carriers as a function of
position in the direction of graded composition indicates that under steady photoexcitation, minority
carrier distribution and total concentration of carriers are markedly dependent on the relative
magnitudes of conduction- and valence-bandage gradients. A plausible physical explanation of the
carrier distribution in the graded-band-gap specimen has been attempted.

I. INTRODUCTION

The authors' have earlier discussed the photo-
magnetoelectric effect in graded-band-gap semi-
conductors assuming a symmetric funnel-shaped
band gap. This, however, is an oversimplified
picture, and the recent work of Lauer and Wil-
liams indicates that the conduction-band-edge
gradient will, in general, be different from the
valence-band-edge gradient in a graded-mixed
crystal. It was shown by these authors that in the
case of a graded-mixed specimen in which cation
composition is position dependent, the conduction-
band-edge gradient is expected to be larger than
that of the valence-band-edge gradient. If, how-
ever, anion composition is position dependent the
valence-band-edge gradient would be large com-
pared to the conduction-band-edge gradient. In
certain cases both these gradients may have the
same sign, while in other cases their gradients
may be opposite to each other. It is, therefore,
deemed fit to reexamine the equation of continuity
for minority carriers in these semiconductors and
obtain results indicating the effects of conduction-
and valence-band-edge gradients, explicitly.

In order to write down an equation of continuity
that may be valid under the rather general condi-
tions, one has to incorporate into it the position
dependence of the effective mass and mobility of
minority carriers. Moreover, the absorption co-
efficient k& may also be strongly position depen-
dent. In fact, the authors have recently applied
Urbach's rule for the absorption edge to discuss
a case in which a crystal of graded composition
is illuminated by monochromatic radiation trans-
versely, i. e. , in a direction perpendicular to its
band-edge gradients. It was shown that the posi-
tion dependence of k, alone woo. 3 give rise to a
photodiffusion effect in the direction of graded
composition. However, for the sake of simplicity

the position dependence of k~ is ignored in the pres-
ent investigation. This assumption should be rea-
sonable when the energy of the incident radiation
is larger than the maximum band gap of the graded
material.

To consider the dependence of effective mass
and mobility with position in the case of a graded-
band-gap semiconductor, it is felt that two forms
of variation readily recommend themselves: (i)
a slow variation which can be considered linear
and (ii) a fast variation which can be taken to be
exponential. Recent work of Marfaing and Cheval-
lier points out the suitability of the latter case Bt
least in a restricted sense. Fortunately, an ex-
ponential variation can be easily accommodated in
the equation of continuity. Moreover, a linear
variation may be deduced from the exponential
function as a special case. Therefore, we assume
the variation of these quantities as follows;

e Qx

m*=m* e 3"

m„*=m+ e 4"
n0

where p&, m~, and m„* are the minority-carrier
mobility and effective mass, and majority-carrier
effective mass, respectively. The subscript 0
denotes the value of respective quantities at x =0.
The variation with position of the conduction band
edge E,(x) and the valence band edge E„(x) is taken
to be linear:

E,(x) = E,o
—o, ~x and E„(x)=E~+n2x . (2)

Depicted in Fig. 1 are the cases which are later
investigated numerically. In Fig. 1(a) the gradients
of conduction band edge and valence band edge are
opposite to each other and v, which represents the
ratio (o.gn, ) in the restricted sense discussed in
Sec. IV, is negative. In Fig. 1(b) the gradients
are of the same sign, and thus v is positive.
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(b)

EC

Ey

EF FIG. 1. Asymmetric
band-edge gradients (a)
v =-4.5 (continuous line),
v = —0. 5 (broken line) con-
duction-band-edge is common
to both; (b) v =+4.5 (contin-
uous line), v =+0.5 (broken
line) conduction-band-edge
is common to both.

It has been shown by Van Ruyven and Williams
that a space-charge-free graded mixed semicon-
ductor crystal ean be obtained by inhomogeneous
doping. We shall assume here that we are dealing
with a graded-band-gap semiconductor which is
nondegenerate and strongly n type. In such a case
the concentration of minority carriers is influenced
by the conduction-band-edge gradient only through
the band-to-band radiative recombination lifetime
~~ of the minority carriers. It is, therefore, pre-
sumed that in the present case band-to-band radia-
tive transition is the predominant mode of recom-
bination of the excess carriers. Physically such
a condition would be significant for semiconductors
in which the flaw density is very small. The vari-
ation of 7'~ with position can be derived as follows.

Band-to-band recombination lifetime v~ is given
by

Tp )(pPp/fv E{)3p+Pp+)3 ) {3)

where np and Pp are electron and hole concentra-
tions in thermal equilibrium and n, is the number
of excess carriers. GR stands for rate of recom-
bination in thermal equilibrium. For an n-type
semiconductor under small-signal conditions

Tp=Pp/GE

Now

Following Gora and Williams, the appropriate
continuity equation for excess minority-carrier
density P can be written as follows:

gp (1 dE~ dP kT d p,~+P
~

——+i( 2+P +—p/ ——
Bt ivy Pdx dx P e dx

kTppd P w x

e dx' (8)

where

1 dE„3 kT dm~~

e dx 2m~ dx

and I is the intensity of the incident radiation. Us-
ing Eq. (l), and in the absence of any external
electric field, the equation of continuity (8) under
steady-state conditions may be written

to solve such a problem. Their analysis, however,
does not take into account the space dependence of
volume generation and does not consider the effect
of surface states. Furthermore, it does not con-
sider separately the conduction- and the valence-
band-edge gradients. In the analysis to follow, an
attempt is made to show how the minority-carrier
distribution is influenced by the relative magnitude
of band-edge gradients.

II. EQUATION OF CONTINUITY

(Ev Evl /PT —( t )
-(Ev Ev) lpT~Rex e

p —(CO~t ) (m )3 ~2 eV( vs') EI pr

thus

Tp= (const. ) e "') ' ' '3'"= (const. )e'("
where

(6)

d P dP (~n 3b3
dx d2' (fpT 2

e ~a 3&3—P „exp —(b(+b2)x+b2 +
kT Tpp ppp

(9)
ek1I (A & )1 2

kT ppp

By defining 2 =e ('2'"=e ", Eq. (9) may be re-
duced to standard Bessel form as follows:

b, = —[(o(,/(2T ) —b 3] (7)

An attempt was made by Marfaing and Chevallier
2d P dP 1 ~e 353 ~b
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—ez bz, (~o Sb~

kTy p~v~ g2IIkT 2

100

1 2 (21+22) /2 (10)
kTb p,

The general solution of E(l. (10) is given by

P =z" [C)I„(z')+C2I „(z')]=C)U,+C2U2, (11)

where

o +s

U1 and U2 stand for z' I„(z') and z"/ I (z'), re-
spectively, and

10.

which is not likely to be an integer. C, and C~ are
functions of z, which is given by

10

z'= Pz'/; P = (2/b) (e/kT/1&ok())' = 2/bL&

C& and Cz are given by

h(z)U2
C1 ——

[ ]
dz+P, ,

(12)

10
1 1.2 1.l 1.6 19 2.0 2.2 2.l 2.6 2.8

h(z) U1
C2 ——

[ ]
dz+P2

where P, and Pz are constants to be determined,
and W[U„U2] is the Wronskian, the value of which
for a noninteger v is given by

FIG. 3. Carrier distribution with position for large
front-surface recombination {S~= 10, $2 =10, X=- 10,5 -3

~=10 cm, b~=-1). {a) v=+0. 5, (b) v=+4. 5, {c)
v=-0. 5, (d) v=-4. 5.

W = U, U2 —U1'Uz= —z sinvz/z(r-j. ) ~

10'

1 ( +bk(/2)22
kTi(2+2

Thus the complete solution of P is given by

2k I&&p (m+1)z)'/2
P = 'T 2 . [g(z')+P)1„+P2I „], (13)

kT)1&2b sin)/2

where

J(z')= I „fz I„dz—' —I„J z I „dz'

m = 2(k, +b,)/b x 1--
III. BOUNDARY CONDITIONS

10,
The constants P& and P2 can be evaluated by ap-

plying appropriate boundary conditions. To obtain
the boundary conditions, one has to deduce an ex-
pression for excess minority-carrier diffusion
current. Following Cohen-Solal and Marfaing
we write for the ambipolar diffusion current

2
10

1.0 1.2 1.l 1.6 1.8 2.0 2.2 2.4 2.6 2.8

FIG. 2. Carrier distribution with position for small
surface recombination {S~=10, S2=10, ~=10 cm-5 -3

b~ =-1, E=2k1/b=-10). (a) v=+0. 5, (b) v=+4. 5,
(c) v=-0. 5, (d) v=-4. 5.

I„/12()2() +P ())k T dP 1 dE
(P/12+)2(1„) dx 2kT dx

3 P(b —1) d———(lnm* mk') + —ln54dx " 2(b+1) dx

where b =)2()/p() is the doping ratio. Now for a

(14)
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QI —Q2—lnb = —', (b4 —bs) +
dx (15)

Furthermore, for a nondegenerate strongly n-type
semiconductor (i. e. , n()»P()) and low injection
levels, Eq. (14) takes the form

dP n2 3b,i = —kTp —-P —+
dx kT 2

(16)

Thus the boundary conditions at the front (x =0)
and the back (x = w) surfaces may be given by the
following relations:

is(0) = —kT i).ss —P(0) —+
dP(0) o(s 3bs

= -P(0) s, e
(17)

space-charge free graded-band-gap semiconductor,
the following relation may be obtained after sub-
stituting the usual expressions for np and Pp,

is((u) = —kTi) ~„-P((d) —+
dP((d) o(s 3bs

=P((u) s, e

where s, and s2 are, respectively, the front- and
back-surface recombination velocities. For the
sake of convenience, the above equations are re-
written

Ds(0) =P(0) s, +Ds(0) —+
dP(0) ns 3bs

—=P(0) si

D ((d) = P((d) -ss D((u) ——+
dP((d) n2 3bs

dx 2 P

:——P ((2)) ss

(18)

where D~(0) = kTp~o/e and D~((d) = kTi), s„/e.
From Eqs. (13) and (18) the constants P, and Ps

are obtained as follows:

AP =—

AP =—

bz'((o) ~, sb
~ ss

2 " 2 "
D~((d)

P& i) &b I &4 I bz'((d) ~, rb
~ ss

~
bz'((d), rb ss'

I

2 2 D (0)

(19)

where A = 2k,IezP 4)/kT i(.ebs sinvv, and

Pb , 4'b s,' bz'((d), rb ss
2 2 D(Q) 2 ' 2 ' Dq()")

b, rb s,'
2 ' 2 " D(D)')

bz'((u), rb ss
2 " 2 " D() "")

The subscripts 0 and v represent the values of
the relevant quantities at x= 0 and x= ru. 4' and I
represent the derivatives of 8 and I with respect
to z'.

IV. RESULTS

v = (1/b) o(s/kT = —ns/4s, (2o)

r = ns/o(, (21)

To understand the role of band-edge gradients
we assume o(4/kT, c(s/kT» b„b„b4 The po.si-
tion dependence of minority carrier lifetime vp
under the above conditions may be obtained from
Eq. (5). Thus we find,

I

analytical manner, and, second, because the task
of computing P is further complicated, because the
values of Bessel function for arbitrary noninteger
values of v are not tabulated. We therefore choose
two cases of practical importance in the literature.
Cohen-Solal and Marfaing prepared thin films of
graded structure for which i b I

-10 /cm. For a
film thickness &-10 cm, the magnitude of z' will
normally be limited to values below unity. On the
other hand, in the work of Williams et al. i b i

-10/cm, for which the magnitude of z' will gen-
erally be much greater than one. Under these
conditions it is possible to approximate the Bessel
functions by the leading terms in their series ex-
pansions. These approximations are as follows:

To compare P at different values of x from Eqs.
(13) and (19) is not easy, first because it is not
possible to evaluate exactly the integral 8(z ) in an

for I
z'

j «1,

(22a)
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for I &'I»1,
8 1/2

I„(z )-, ,/z, I „(z)-, e . (22b)
(27(z 28

(i) For Iz'
I » 1, a complete analysis is not possi-

ble. However as I„(z') and I (z') both become in-
dependent of v, it may be remarked that the mi-
nority-carrier distribution will be weakly depen-

dent on band-edge gradients.
(ii) For Iz'l«1, 8(z') can be written with the help
of approximations (22a) a.s

8(z') =
(- 2v) z™1

F(v+ 1)1 (- v + 1) (m + v+ 1) (m —v+ 1)
(23)

Pj and P~ may also be approximated to the fol-
lowing forms:

where

A (htr( ~ 1) r)w
) (

b r rb ) (
btr r(tr

)
(btr( ~ () r(

2
+

2
+ ~ 2

+
2 -~o ~ 2

+
2

+ ~ 2

(24)
b(d v rb(d f) (d(m + 1) rb&u b(dv rf)() (f)~(m + ].) rf/~2+21 2 2

+ +Sq

bcov xbco b~ v xbco b rb b~ v xb cu

and S, = s,'(()/D~(0); Sz= sz~/D~((d).
Values of the excess minority-carrier density

P may now be plotted as a function of z for values
of v, both positive and negative, using Eqs. (13),
(23), and (24). Figures 2-4 give these values for
different surface conditions of the graded-band-gap
structure.

The effect of v on the total carrier concentration
can be evaluated by considering the photoconductiv-
ity G which, according to DeVore, is given by

G=f Pdx (25)

Substituting for P from Eqs. (13), (23), and (24),
we have:

(2v) (2Pm+1) (e bw(m+1 )')-/2 1)-G=-
f/ I'(- v+1) I'(v+1) (m +v+1) (m —v+1)

p"5 v 2f/)p~' 'rr( ()' ' r( ))'"' ") '""
A plot of G for different values of v is shown in

Fig. 5.
V. DISCUSSION

A study of the band-gap variation for the various
values of v depicted in Fig. 1 is the basis for a
plausible physical explanation for the minority-
carrier distribution shown in Figs. 2-4. %e have

chosen to consider only positive n&, so that b is
negative in all our examples. One can analyze the

cases for negative values of a, and positive b, also
along similar lines. However, the present dis-
cussion does not include these cases, as they are
not expected to give results significantly different
from the ones discussed below. Figure 2 corre-
sponds to negligible recombination at both sur-
faces, so that the variation in P in the specimen
is mainly determined by the magnitudes of the

I

band-edge gradients. Normally one expects that
the concentration of the carriers should decrease
as one moves away from the illuminated surface
to the dark surface. But for large and negative
values of v (assuming positive (r&), the excess
carriers generated at the front surface are sub-
jected to a large value of so-called "quasifield"
(a term Kroemer' has used to describe the effect
of band-edge gradients), which results in their
motion away from the front surface. For v posi-
tive and large, the diffusion of carriers which
might have resulted in the case of a homogeneous
semiconductor due to nonuniform generation in the
bulk is hindred by the "quasifield" set up in the
opposite direction by the valence-band-edge gra-
dient. Furthermore, owing to small surface re-
combination, the over-all concentration of carriers
in this case, for all values of v is very large as
compared to the cases discussed later, where
either front- or back-surface recombination is
high.

In Fig. 3 is plotted a case of practical impor-
tance, where the front-surface recombination is
very large. Note that for v negative and large,
excess minority-carrier diffusion is assisted by
the valence-band-edge gradient. The equilibrium
concentration therefore increases with position.
For positive v, carrier diffusion is opposed by the
valence-band-edge gradient, which increases the
probability that carriers will be lost due to re-
combination at the front surface. In fact, at the
front-surface carrier concentration approaches
zero because of the very large value of S, assumed
in this case. Thus after an initial increase P de-
creases with x, owing to lesser carrier generation
and because the valence-band-edge gradient op-
poses diffusion of carriers towards the dark sur-
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FIG. 4. Carrier distribution with position for large
back-surface recombination (S1 =10 3, S& =105, K=-10,
~=10 4 cm, b~=-1). (a) v=+0. 5, (b) v=+4. 5, (c)
v=-0. 5, (d) v= —4. 5.

observed for homogeneous semiconductors. ' With
a larger absorption coefficient, a greater propor-
tion of carriers are created at the front surface
where recombination is large.

When v is positive and large, the case of large
back-surface recombination is characterized by a
very steep gradient of excess minority carriers
(Fig. 4). Thus when the front surface of such a
specimen is irradiated, due to the large concen-
tration gradient, both electron and hole pairs gen-
erated at the front surface would tend to diffuse to
the back surface. However, due to the differential
mobility of holes and electrons, a potential differ-
ence is developed between the dark and the illumi-
nat:ed surface. Assuming the mobility of holes to
be less than that of electrons, the holes lag behind
during diffusion and the illuminated surface becomes
positive with respect to the dark surface. (In the
case of semiconductors for which hole mobilities
are higher than those of electrons the illuminated
surface mill be negative with respect to the dark
surface). Furthermore, in the typical situation
characterized by Fig. 1(b), the diffusion of elec-
trons to the back surface is assisted by the con-
duction-band-edge gradient, while the diffusion of
holes to the back surface is hinderedby thevalenee-
band-edge gradient. Thus the effect achieved by

10

face. This particular distribution indicates a
strong possibility of observing sign reversal in the
photodiffusion voltage across the specimen. '

Figure 4 is a plot of the carrier distribution when
back surface recombination is very large. There-
fore, for all positive as well as small negative
values of v, the excess minority-carrier concen-
tration decreases with x, mith a gradient depending
on the magnitude of v. However, when v= —4. 5

(i.e. , large and negative), there is a slight in-
crease in the concentration due to dominant effect
of the valence band-edge gradient at small depths
below the front surface. But near the back surface,
due to high back-surface recombination, the con-
centration of the minority carriers falls sharply.

In Fig. 5, G has been plotted as a function of v

for the case of large front-surface recombination.
These curves show how the total excess minority-
carrier concentration would vary with the asym-
metry in the band-edge gradients. One finds that
for v large and negative, the photoconductivity is
large as the valence-band-edge gradient assists
the diffusion of minority carriers away from the
front surface where recombination is high. The
decrease in photoconductivity with increase in the
values of absorption coefficient as seen in Fig. 5

can be explained on the basis of similar results

—1
20

-2
10

-100

10
—5 -4 -3 -2 -1 0 1 2 3 4 5

FIG. 5. Variation of photoconductivity with v for large
front-surface recombination (S~ =10, S2 =10, ~ =10 cm,
5~ = —1). (a) K= —10, (b) K= —20, (c) K=-30, (d)
K =- 100.
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differential mobility is enhanced. This situation
may therefore be quite favorable for producing
photovoltages of the Dember type.
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