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Study of an amorphous ferromagnet by the coherent-potential approximation

E-Ni Foo and Shyamalendu M. Bose
Department of Physics and Atmospheric Scg'ence, Drexel University, Philadelphia, Pennsylvania 19104

(Received 5 October 1972; revised manuscript received 21 May 1973}

An amorphous ferromagnetic system has been studied by the coherent-potential approximation method at
the zero-temperature limit. Going beyond the mean-field theories the present calculation predicts the
existence of a critical fluctuation of the exchange interaction beyond which ferromagnetism cannot occur. A
comparison with the Green's-function theory developed by Montgomery et al. reveals certain important
difl'erences.

l. &M'RODUCTION

Since Gubanov' first predicted the existence of
ferromagnetism in an amorphous material, there
have been several reports of evidence indicating
the existence of ferromagnetism in such a mate-
rial. Because of the changes in exchange inter-
actions, the magnetic properties of an amorphous
ferromagnet are, in general, different from those
of a crystalline ferromagnet. The changes may
be due to the difference in the interatomic distances
(structural disorder) or the presence of some sub-
stitutional and interstitial impurities (quantitative
disorder). There are as yet no satisfactory theo-
ries which have taken into account both types of
disorder simultaneously. Most of the theories
have been limited to studying of the quantitative
disorder only. Recently, Montgomery, Krugler,
and Stubbs (MKS) have studied such a system in
the mean-field approximation using the Green's-
function technique. They have used a "lattice
model" for an amorphous ferromagnet in which
the spins are fixed on the lattice points, but the
magnitudes of the exchange interactions are allowed
to fluctuate stochastically. They find that disorder
produces a low-energy peak and a high-energy tail
in the density of spin-wave states for a simple
cubic geomet~. Also, the ferromagnetic Curie
temperature is found to decrease linearly with the
mean-square fluctuation of the exchange interation
in their approximation. It should, however, be
pointed out that their theory is basically a mean-
field theory which is expected to be valid only in
the weak-scattering limit.

Recently, Foo and Wu (FW) have applied the co-
herent-potential approximation (CPA) to a substi-
tutionally disordered Heisenberg ferromagnetic
binary alloy. The CPA, which was first introduced
by Soven, ' has been proven to be a very powerful
method in studying disordered systems. It serves
as an interpolating scheme between the dilute and

high concentrations and between the weak- and
Strong-scattering limits. By using the CPA, FW were
able to predict successfully the existence of a crit-
ical concentration of antiferromagnetic impurities

in a ferromagnetic host system. However both
MES and FW theories have neglected the spin fluc-
tuations at the impurity sites, the effects which be-
come important at finite temperature especially in
the strong-scattering limit. Thus the accuracy of
their calculation of the disorder-dependent Curie
temperature is in question, since the spin fluctua-
tion is expected to modify the Curie temperature.
However at the zero-temperature limit, the spin
fluctuations are expected to be negligible and one
would expect the CPA calculation to be fairly ac-
curate even for fairly strong scattering potentials.
In this paper we apply the CPA to the aforemen-
tioned "lattice model" of an amorphous Heisenberg
ferromagnet at zero temperature. It should be
pointed out that another drawback of the FW calcu-
lation was that they had to neglect the correlations
among the adjacent exchange interactions in apply-
ing the CPA to the substitutionally disordered fer-
romagnetic alloys. However in the present model
of an amorphous ferromagnet, ther e exists no such
correlations since the fluctuations of the exchange
interaction are supposed to be completely random.

H. THEORY

The Hamiltonian for an amorphous ferromagnet
which is approximately represented by the "lattice
model" is given by

&=
2

Z J;qS, ~ S),

where J&& represents a randomly distributed ex-
change interaction between spine S; and 5& located
at the nearest-neighbor sites j and j, respectively.
For the purpose of illustration, we consider a rec-
tangular distribution for J,.&

represented by

f(Z)= l if ~, JZ()~ - n

=O if (q

where Jo represents the mean value of 4,.&
and 6 is

the fluctuation about the mean value. This partic-
ular model is analogous to the Anderson model of
cellular disorder in tight-binding band which was
used in studying the electronic states. We mould
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further assume that, even though the exchange in-
teractions J&&'s fluctuate, their effect on local mag-
netization at each site is more or less homoge-
neous. This is a reasonable approximation only at
zero temperature. Thus, we can describe the
actual disordered system by an effective Hamilto-
nian which retains the symmetry of a perfect lat-
tice, and is characterized by a yet-to-be-deter-
mined coherent-exchange interaction J,. In the
spirit of the CPA, we consider a single a.ctual ex-
change interaction J,&

immersed in such an effec-
tive medium. The J, is determined self-consis-
tently by requiring that the net scattering from the
single scatterer J,&

must vanish on the average.
The spin-wave Green's function 0, correspond-

ing to the Hamiltonian given by Eq. (1), is calcu-
lated by using the random-phase approximation
(RPA). The equations of motion for 5 in the RPA
becomes

CO

Gim ~~lk(okm Gim) 5im&0'

where u and 0 represent the frequency and the mag-
netization of the ferromagnet, respectively. Since
we have assumed that the effect of the random ex-
change interactions on the magnetizations at each
site is homogeneous, we have set o, = o in Eq. (3).
One can also write Eq. (3) in a matrix form as

(Z-H)0=1, (4)

where

T= 7 + VG,T. (9)

Equation (9) is a 2x 2 matrix. The t-matrix ele-
ments have the form,

~49 ~c
1-2{@„-Z,)(G, -G, )

' (10)

where Qo and Qq denote the diagonal and first off-
diagonal matrix elements of 5,. Taking the con-
figurational average of the I; matrix we have

&T,i&=-&T;,&

1 ~0+~

T])4J
J'0~4

where

o- (Go-oi) (12)

J, = J'0 —a +n cot(n/u) . (14)

Then the spin-wave density of states can be calcu-
lated via

p(Z)= ——I C,(E, Z,).
1 (»)

In the spirit of the CPA, one determines 8, by re-
quiring

&r„&=0.

Using the relation (11), the criterion given by (13)
becomes

For a simple cubic lattice, the Green's function
has the form of

H = ~~,s[li&(il + Ij&&jl Ii&&jl —lj&&il]
i&, g}

(5)
G I, zl =E E- su+ Z e' '")'

a

(16)

v„=(~ -&.&[If&&il+ lj&&jl —li&&jl —
I j&&il] «)

immersed in an effective medium with an effective
Hamiltonian

&.=&.(~„[li&&il+ lj&&jl —Ii&&il —li&&il]. (7)

The effective Green's functions, is given by

G.= [E —H, ]-'. (6)

Here Eq. (5) is the Hamiitonian which replaces
Eq. (1) after the random-phase approximation, and

I i& represents the spin-deviation state at site i and

[i, j}represents a summation over all nearest-
neighbor pairs.

Since the J',&'s are uncorrelated in this amor-
phous model, we can treat each J',

&
as an indepen-

dent scatterer. The scattering potential corre-
sponding to such a single scatterer is

Ci = —[1 —(Z - 6Z)G, ],

where a represents the unit lattice vector,
For numerical computation of the spin-wave

density of states, instead of the above Go we con-
sider a model Green's function for the perfect lat-
tice which has the following form:

Go(E, &) = (I/I«')[E —« —[E(E —I~)1"'} (16)

The density of states obtained from this model
Green s function describes qualititively the density
of states of the simple cubic lattice rather well ex-
cept that it can not reproduce the Yon Hove singu-
larities. Using this Green's function and Eqs. (14)
and (15) one can calculate the density of state
p(E) in the CPA. The MKS theory can be derived
from Eq. (14) by letting n- 0, then

Then the t matrix corresponding to the scattering
potential V,&

can be obtained from eT~ = clo + 6 /3Q. (19)
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The second term, n /3n, is the self-energy as
defined in the MES paper.

It should be noted that o, in the MES theory is
obtained from Eqs. (12), (IV), and (18) by taking
J= Jo, whereas the CPA approach calls for o(E, J,)
in Eqs. (12), (14), (17), and (18). The p(E) calcu-
lated via CPA has been compared with the p(E)
calculated (by using the above model Green's func-
tion) in the MKS theory by using Eq. (19), for
n/Zo= D. 5 and l. 0 as shown in Fig. 1. The main
difference between the results of these two theo-
ries is that the sharp peaks occurring at E= 1',
(which is the energy corresponding to the upper
band edge for an ordered system with an exchange
interaction Z0 ) in the MKS theory do not appear in
the CPA result. We believe that this peak in the
MES calculation is a result of their perturbation
approach which is proper only for certain energy
regions even if the fluctuation parameter n/J'0 is
small. The expansion parameter in their Eq. (18)
which is energy dependent has a discontinuous de-
rivative at E = 12J'0 and this is the cause of the
appearance of the peak. We also note that in the
CPA, the maximum of the density of the spin-wave
states for the case of n/Jo= 1.0 occurs at an en-
ergy lower than obtained from the MES theory, al-
th h this qualitative difference disappears asoug i

PA4/'Jo becomes smaller. The bandwidth in the C
is also wider than that in the MK'e theory. %'e

have investigated several values of n, (up to 6,) and
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I'IG. 2. Coherent exchange interaction at E=o, Jc(0),
is plotted as a function of 6, Here both J~(0) and 6 in
units of Jo. The solid line is based on the CI'A and the
dashed line is obtained from the MKS theory.

have found no indication of the existence of non-
anaiyticities in G, off the real energy axis. '

In order that the ferromagnetic state be stable
we require the density state p(0) =0. This stabil-
ity criterion implies that Zo(0) must be real. How-
ever we find that as we vary n, J,(0) given by

j,(0) =go+34, (0) —n, cot[2/3J,'(0)] (2o)

becomes complex as ~ exceeds certain critical
value n, . We would like to point out that Eq. (20)
is also exact for simple cubic lattice within the
present approximation and is independent of the
choice of (18). In Fig. 2 we have plotted the real
solution for Z, (0) as a function of 6 (solid line).
For n& 1.56go there is no real solution for Z, (0)
implying that there cannot be any ferromagnetism
for ~& 6,. For values of b, between Jo and 1.56JO
there are two real solutions of J,(0), but we find
that only the upper one gives us the physically ac-
ceptable solution. The effective J at F =-0 in the
MES theory satisfies the following approximate .
equation, "

Zv(0) =Zo[l —(n/3')'].

6 8
E

)'0 /2 I4

The dashed line in Fig. 2 represents j,(0) obtained
from the MES theory. This indicates that in MES
theory no finite critical fluctuation exissts. This is
not surprising because the MES theory is basically
a mean-field theory and should not be expected to
give reasonable results for large values of b, .

III. DISCUSSION

FIG. 1. Spin-wave densities of states of an amorphous
ferromagnet are plotted as a function of E. E and 4 are
in units of Jo. The solid line is based on the CPA and the
dashed line is obtained from the MES theory.

We have applied the CPA to the case of an amor-
phous ferromagnet containing quantitative disorder
for a wide range of fluctuation of the exchange in-
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teraction at the zero-temperature limit. Since at
this temperature the local spin fluctuation which
has been neglected in our formulation is expected
to be minimum, our theory should give reasonable
results. Our theory predicts the existence of a
critical fluctuation beyond which ferromagnetism
becomes unstable-a result which cannot be re-
produced by any mean-field theory. However it
should be pointed out that for b, & Jo, a fraction of
the exchange interactions become negative and
some of the spins are expected to flip. Thus in
this region our assumption of a homogeneous g is
not necessarily correct. If this spin fluctuation is
taken into account, it wil. l modify the critical fluc-
tuation. Thus our estimate of the critical Quctua-
tion 6, is only an upper bound. Both the present
CPA theory and the MKS theory are "molecular"

theories in which correlations between different
molecular cells have been neglected. Besides the
errors introduced by the "molecular" approxima-
tions which are the same for both the theories,
the CPA is correct to all order in (V",&),

s whereas
the MKS theory is correct only to second order in
(V,&). Thus we expect the CPA theory to be more
accurate than the MKS theory. Let us emphasize
once again that even for small values of 6 our CPA
theory produces results which are qualitatively dif-
ferent from the MKS results. As pointed out be-
fore, owing to the perturbative nature of the MKS
theory, it gives rise to peaks in the density of
states at the upper edge of the ordered lattice even
for smaller values of h. Our CPA theory which
is basically nonperturbative in nature does not
produce any such peak in the density of states.
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