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Dynamics of electrons and phonons in semiconductors. II. Drag effects
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We present an analysis of the dynamics of the coupled electron-phonon system in the presence of an
intense electric field in nondegenerate semiconductors. The effects of mutual electron-phonon drag are
taken into account. The electron and phonon distribution functions are both assumed to be anisotropic,
the isotropic part of the electron distribution being a Maxwell-Boltzmann distribution with a
time-dependent electron temperature T,(t). Comparison is made with the results obtained in neglecting
the anisotropy of the distribution functions. It is shown that the anisotropy of the electron and phonon
distributions does not drastically change the qualitative evolution of the-isotropic part of these
distributions; the quantitative differences are functions of the carrier concentration. The stimulated
emission of phonons is discussed.

I. INTRODUCTION

The application of an intense electric field to a
semiconductor generally leads to significant devia-
tions of the electron distribution function from its
equilibrium value. The phonon distribution is also
modified through the electron-phonon coupling,
and can also deviate considerably from its thermal
equilibrium value when the phonon lifetime is long. 4

This is the case for acoustic phonons at low tem-
peratures. '

Even for weak electric fields, where the elec-
tron drift velocity is small compared to the rms
ve'ocity, the phonons acquire a drift velocity par-
allel to that of the electrons. This phonon drag ef-
fect is well known since it manifests itself in an in-
creased electron mobility. In an intense electric
field, the electrons not only acquire a drift velocity
but also acquire increased energy. The same is
true of the phonon distribution.

Many theories' '~ ' of the steady-state electron
mobility have been presented, taking account of
phonon heating effects. Some of them have included
a phonon drift term in their calculations. "' Sato
concluded that this term is negligible for all phonon
"temperatures. " Conwell, ' on the other hand,
showed that its effect on carrier transport can be
considerable when the drift velocity of the carriers
exceeds the sound velocity. Recently, some anal-
yses of the time-dependent case have been under-
taken. ' As in the steady-state situation, drastic
simplifications have been made, due to the com-
plexity of the coupled equations: Paranjape and
Paranjape" gave an approximate analytic expres-
sion for the electric current, based on an isotropic
phonon distribution function in which some time-
dependent terms are approximated as constant.
Yamashita and Nakamura, ~o on the other hand, con-
sider anisotropic distribution functions but neglect
the carrier heating. In a previous paper, '4 we
presented a detailed theoretical study of the cou-

pled dynamics of carriers and phonons, ' the elec-
tron and phonon distribution functions were as-
sumed to be isotropic. The coupled equations for
the electron and phonon distributions were solved
numerically for a model nondegenerate semicon-
ductor, with a simple parabolic band structure, and
an elastically isotropic crystal. In fact, for weak
electric fields, the electrons are scattered quasi-
elastically in the absence of optical modes, and the
carrier distribution and therefore the phonon dis-
tribution are approximately isotropic.

However, the importance of the drift term in the
phonon distribution has been shown experimental-
ly" '7 at both strong and weak electric fields: Hub-
ner and Shockley ' observed an effect of phonon
drag on electrons in silicon, ' Ascarelli~e obtained
evidence of the anisotropy of the phonon flux in ger-
manium at high electric field (30 V cm ~) and the
stimulated emission of phonons by supersonic elec-
trons was observed by Zylbersztejn in n-Ge. ~

In this paper, we report a theoretical study of the
time dependence of the electron and phonon distri-
bution functions, taking account of their anisotropic
parts. We consider the interaction of phonons with
the electrons and with the boundaries, but still
neglect the phonon-phonon processes. We intro-
duce a momentum boundary relaxation time T

„

which is of the order of the phonon transit time L/c
(L and c being an appropriate sample dimension and

sound velocity, respectively), and an energy-bound-
ary relaxation time 7'i), which is different from the
momentum relaxation time r ~: r~ = qL/c, q being
a numerical factor which measures the acoustic
mismatch between the crystal and the heat bath. '

This is in the spirit of our previous work, and is
the simplest fashion to include phonon interactions
with the heat bath without becoming involved with
spatially inhomogeneous distributions. As in our
previous paper, ' the carrier concentration is as-
sumed to be constant. Impurity scattering and in-
travalley acoustic-phonon scattering are the only
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(2 2)

y,„(k)= k,y, (e„) (2. 3)

where kE is the component of the carrier wave vec-
tor k in the field direction. e„is the carrier en-
ergy,

e~=ifak /2m

n, m, N, (T,) being the carrier concentration, ef-
fective mass, and effective density of states, re-
spectively, and

N, (T,) = 2(2~mk,

Teak')"

'

where k~ is Boltzmann's constant.

electron scattering processes considered. At low
temperatures this is valid for moderate heating of
the electron system. Strong heating of the electrons
would require the inclusion of optical-mode scat-
tering.

A study of the time dependence of both the elec-
tron and phonon distribution functions requires the
solution of the coupled electron-phonon transport
equations which we set up in Sec. II, along with the
numerical method used to obtain their numerical
solution. As in Ref. 14 we consider a model non-
degenerate semiconductor, with a simple band
structure and an elastically isotropic crystal. In
Sec. III, we present and discuss the results.

II. MODEL CALCULATION

A. Distribution functions for electrons and phonons

We write the carrier distribution f(k) as the sum
of two terms: a spherically symmetric term (or
isotropic term) fo(k) =fo(e„),which is taken to be a
Maxwell-Boltzmann distribution characterized by a
time-dependent electron temperature T,(f), "'a' and
an asymmetric term (or drift term) f,„(k),

y(k) =y, (k) +y,„(k) (2. 1)

Similarly, the phonon distribution N(q) is as-
sumed to be of the form

N(q) =N, (q)+q, N, (q) (2. 4)

B. Coupled Boltzmann equations for electrons and phonons

The Boltzmann equation for the electrons gives

eE - &f——~ V f+C f+C f=a r (2. 5)

where e is the charge of the carriers (e &0 for
electrons), E is the applied pulsed electric field,
and C, and Cr are the collision operators for
acoustic phonon scattering and for impurity scat-
tering, respectively. For the latter, we have

Cz(f(k)) = Cr(f«(k)) = —ksf&(e~)/rz (2. 6)

where vr is the electron momentum relaxation time
due to impurities. As usual, we take

T =C~3/' (2 &)

which leads to the following temperature depen-
dence of p.r.

T3/2 (2. S)

~ and C being constants determined from experi-
mental results.

The phonon term is given by

where q~ is the component of the phonon wave vec-
tor q along the electric field qa = q cos(q, E). N, is
a spherically symmetric term and q~N, is the
asymmetric part of the phonon distribution func-
tion.

It must be emphasized that no assumption is
made, either on the form of Xo and N„oron the
form of fi in the electron distribution function. We
have, however, restricted the anisotropies of the
distributions by retaining only the first two
Legendre polynomials in the general expansions of
their angular dependence.

C,f(k) = a+(g, (Q(k+ q) [N(q) + 1]—f(k)N(q)j 5(el-„;—e, - k~, ) + Lt'(k —q)N(q) —f(k) [N(q) + 1]]a(e, —e-„;—K~,)),
(2. 9)

where D is a constant:

2VpA VpB
(2. IO)

In Eq. (2. 10), E, is the acoustic deformation-po-
tential constant, p is the density of the crystal, and
V is the volume of the crystal. ~~

The anisotropic part of Eq. (2, 9) only needs to be
considered for the determination of f|(e„).The
nonlinear terms in q~ and k~ obtained in developing

1 A a

(N, + —,')q'dq
()

(2. 12)

the terms in the brackets of Eq. (2. 9), using Eqs.
(2. 1)-(2.4), do not contribute to a drift of the car-
riers. They are irrelevant for the determination
of C, f, . Then we obtain

C,(fP )=aka[ f,(e,)/r, —f,(e-,)/x]

with
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1 A hu

ky)l +H (2. 13)

We see that f~(ee} is a function of T, and N(q). The
current density may be written in the usual form

g=ule lgE,
A is a constant,

A = mEi/4wpu8'

where p, is given by

p = (l e l /m) (v') (a. ls)

v, is the usual momentum relaxation time for elec-
trons on acoustic phonons and fe/x arises from the
anisotropy of the phonon distribution. This term
is positive since the phonon drift is in the same di-
rection as the electrons, i.e. , N, & 0. Stated
otherwise, the first term represents the momen-
tum transfer from the drifting electrons to the iso-
tropic phonons (Ne), while the second represents
the momentum fed back to the electrons by the
drifting phonons (N~). In deriving these equations
we have expanded the function fe(ee+ Ku} with re-
spect to Ko, dropping terms involving powers of
h~ greater than the first:

f,(e, +tf~) =f,(e,)

The expression for f,(e„)is obtained from Eqs.
(2. 5), (2. 7), and (2. 11): we assume a quasista-
tionary value of the electron distribution f(k)
(af/at =0) corresponding to the instantaneous val-
ues of the phonon distribution and electron temper-
ature. This is justified by the extremely short
electron-momentum relaxation time. ~4 Then

with

7 '= (1+6)r

The 6 term, y,rising from the anisotropy of the
phonon distribution, increases the relaxation time,
and therefore, the carrier mobility.

The rate of change of the phonon distgibution due
to the electrons is given by

—
l
=a~ ~,GN(q)+I]f(k)5(e„- &+iud, —ee)

k

-N(q)f(k}5(e;,;-m, —e,)) . (2. 19)

It is straightforward to see that nonlinear terms in
qs and ks are obtained in developing Eq. (2. 19),
with the use of Eqs. (2. 1), (2. 4), and (2. 14).
These terms may be neglected only if the asym-
metric parts of the phonon and electron distribution
functions are small. They are included in the fol-
lowing equations where, for consistency, we only
retain the first two Legendre polynomials in
cos(q, R):

taN N T N-
(a. 20)

I, at, =

with

with

and

T Tfi + T

mk~T, 1
letES x

f,(e„)= — 'k r(1 G+)E
mk, T,

(2. 15)

(2. 16)

(2. 17)

, (2.21)

1 ~~t/8~1/2E2 1

r~(q, T,) 2"etrpu(ksT, )'~eR(T, )

~exP
2mk T, 2+ g

where N(T, ) is the Planck distribution at tempera-
ture p, .~4

B, =BV/Sve

47t n' & e'q' t I'~q~
t

Dx ge l&~e+ 2 I fi«e}«e- ~e-
l

fi(ee)«e
LE ~ ] 6 (4f/Ptrng/ h ) m ] I &a/g-fftlt/ h)

(2. 22)

For most of the phonons, at least for q & amu/tf, B
is negative and the BN, term enhances the heating
of the phonons since N, & 0, BN& &0. This arises
from the mutual drag of phonons and electrons. 8
is equal to zero when the nonlinear terms in kE
and qE are neglected.

Equation (2. 19) yields for .the anisotropic part of
the phonon distribution

('"'l =-"'+l"' —' l'" '", (2.22}
at ), v~ &R) R~) 8

with
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—+
" f,(e,) de, , (2. 24)

R2 2 Sq 8 (q/ pymg/ g )

—=—+ ——
i f,(c„)de„;(2. 25)

1 1 1 m~i
Ri R2 2 hq ),(q/2 ~„/g)

the two terms 1/Rz and No/Ri express the electron
drag on the phonons.

The total rate of change of the phonon distribution
is

7 being either r~, 7» or 1y.
Numerical calculations have been performed for

different carrier concentrations. The effective
electron mass is taken as m = 0. 25mo, mo being the
free-electron mass, and the acoustic deformation-
potential constant is assumed to be E, =10 eV. "
The mean sound velocity is taken as u =5.4&&10'

cm sec '. We assume r', = 25', with r, = 0. 2 p, sec.

III. RESULTS
eS ~N'I

where the rate of change due to the heat bath
(SN/St)~ is given by

8ND N(To) —No

at

and

(2. 28)

(2. 27)

In Figs. 1-11are shown some of the results ob-
tained in neglecting the nonlinear terms in q~ and

kz [B=0 in Eq. (2. 20)]. This approximation will
be discussed later. We have verified that it is
quite valid here and leads to errors of a few per-
cent. We also compare with results obtained in
neglecting the anisotropic terms in the distribution
functions (referred to as the I case).

BN|&i N~
Bf j g Ty

(2. 28)

where 7~ and 7~ are the relaxation times discussed
in Sec. I, and To is the heat-bath temperature.

The evolution of both the electron and phonon dis-
tributions can be determined from Eqs. (2. 5)-
(2. 28), and from the usual energy-balance equation
for electrons:

A. Electron temperature and mobility

In Fig. 1 we present the time dependence of the
electron temperature T„for different carrier con-
centrations and electric fields. According to our
adiabatic approximation, ' the initial temperature
T', reached by the electrons immediately after the
application of the electric field, depends only on the

The (de/dt) term will be neglected, according to
our adiabatic approximation, ' which leads to the
following energy-balance equation: 80

I

A
E =10Vcm

ix + n=5x10" co
'~i h n=5xlQ" cl

~ 4 o= 10"~ce S

C. Numerical method

(2. 30)
lX

~~ 60
CL

We have solved the evolution equations on an IBM
370. 165 for a typical n-type nondegenerate semi-
conductor. The numerical method is similar to
that in our previous paper. 4 Initial values of
f,'4 0, T,w To of the electron distribution are deter-
mined immediately after the application of the elec-
tric field to the equilibrium system at temperature
Tp = 4 2 'K. The phonon distribution remains at
equilibrium in this initial step [No =N(TD), N& =0].
Then the variations 5ND and 5N, of the phonon dis-
tribution during a small time interval bt are cal-
culated from Eqs. (2.20)-(2. 28). The variation
5T, of the electron temperature, which is neces-
sary to maintain the energy balance [Eq. (2. 30)],
is then calculated. The value of f, corresponding
to these modified values of N(q) and T,(t) is cal-
culated from Eq. (2. 15). We then proceed to the
next step, at t=24t and so on. The time interval
bt is chosen so that

dt/(r ) „«1

40.'ji
C)
lX

C3
LLI

~ 20

E=5 Vcm

n=5x 10 cm
14

~
i

oA ~ I

1 2

T I ME t (~eg )

FIG. 1. Electron temperature T~(t) vs time t for
different carrier concentrations g. The anisotropic
terms of the distribution functions, included in the
A case, have been neglected in the I case for compari-
son. The dashed line represents the electron tempera-
ture obtained for a different value of the acoustic mis-
match parameter q =&&/v& =100 with ~& ——C. 2 @sec
(yg =5 x10 cm 3, F. =10 V cm )
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PHONON %AYE NUMBER q (108m ')

FIG. 4. Isotropic part of the phonon distribution No
vs phonon wave number q at different times for a carrier
concentration n =10 cm . The curves in the I case
are shown for comparison. The curves in the inset rep-
resent the phonon distribution N obtained in the I case
at about the same temperature, for two values of the
electric field.

C. Electron differential mobility

The evolution of the differential drift velocity
v(e„)defined by writing Eq. {2.15) in the form

dG/de,
G+1

dr/de„ (3.4)

We now see from Eqs. (2. 13) and (2. 17) that G is
zero, both for small or large k, so that dG/de„can
be positive or negative. Therefore, from Eq.
(3.4) the maximum may be displaced in either di-
rection. To see this explicitly in a simple case,
we consider a. small phonon drift term N, such that
1+G=1:

{2.12), and (2. 16) r(e~) has a maximum, rl (e„)be-
ing an increasing function of e~ [Eq. (2. 7)], and

r, (e~) being a decreasing function of e„.Therefore,
the increasing part of the curve v(e„)[or p, (e~)] cor-
responds to dominant impurity scattering, and the
decreasing part of the curve v(e~) [or p(e,, )] corre-
sponds to dominant phonon scattering. The slope
of the curve, for small energy e„,depends essen-
tially on the constant C in Eq. (2. 7), which is a de-
creasing function of the carrier concentration.
Therefore, a~ at time t = 0 is expected to be larger
for larger carrier concentrations (the phonon dis-
tribution at this time is the thermal equilibrium dis-
tribution of 4. 2'K). Indeed, we observe in Figs.
5 and 6 that ee (n=5 X10 ' cm ) &e„(n=10 cm ).
Let us consider the evolution of f~ with time. If
the term N, remained rigorously equal to zero, the
maximum of p, (e,) would move towards smaller e„
as expected from the increasing number of randomly
directed phonons No (T being a decreasing function
of No). The presence of the anisotropic term N, can
provoke a, displacement of the maximum of p, (e~)
either to higher or lower energies. The maximum
is determined by the condition

0fi(e,) = —hv, (ea) = — v{ea)foa~„a,T,
(3. 1)

is shown in Fig. 5 for a carrier concentration
n = 5X10' cm and an electric field E =10 V cm '.

Equations (2. 15) and (3.1) give

v~(e~) =- (Ie I/m) 7(1+G)E = —v(e~) (3 2)

I «.) = Ie I(./m)(1+G) ~ (3.3)

It is seen that the mobility p(e, ) [or the velocity
v(e„)]decreases with time. We note that the curves
have a maximum for an energy aNI, whose position
is a function of the carrier concentration and of the
electric field: a~ may be a monotonically decreas-
ing function of time as in Fig. 5, or it may first in-
crease and then decrease with time as in Fig. 6.
The maximum at time I =0 (N, =0, 1/X=O- G =0)
simply reflects the maximum of the electron relax-
ation time r(e~); as expected from Eqs. (2. 7),

In Fig. 6 is shown the time dependence of the dif-
ferential mobility p, (e~) =v(e~)/E, for an electric
field and a carrier concentration different from that
of Fig. 5:

I 0.08
I

30

I—o
~ 20

K

~o
ILJ

10

uJ
CK
Lal

ELECTRON NAVE NUMBER k (10 m )

1.8 2.54 3.12 3.6 4 4.4 4.76 5.1 5.4
I I I I I I I I

T~('K) t (p,sec)

5325 + 0
~ 0.08
x 0.16
~ 0.64

1.96
o 396

4.76

0'
0 10 20 30

ELECTRON ENERGY c) (10 IV)

40

FIG. 5. Differential drift velocity v(~&) vs electron
energy &z at different times for a carrier concentration
n =5 x 10 cm . The lower curve corresponds approxi-
mately to the steady state.
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FIG. 6. Differential electron mobility p (&~) vs electron
energy for different carrier concentrations and electric
fields, at different times. The dashed-dotted lines
represent the approximate position of the maxima.

di/de»
T

dG/de„=0 corresponds to the value of e„'for N, =0
and the sign of (dG/de~), „willdetermine the sense
of the displacement of E~ for N, 4 0. The form of
—(dr/de„)/r is shown in Fig. 7; in the vicinity of
the cross point e„,we see that c„increases for
G'=dG/de, &0 and decreases for G'&0. Therefore,
the nonmonotonic variation of e„with time is due to
the anisotropy of the phonon distribution: the loss
of electron momentum in the scattering by the pho-
nons is smaller, since the phonons are drifted in
the same direction as that of the electrons. This is
one aspect of the phonon drag effect on the electrons.

The time dependence of the differential drift mo-
bility is essentially determined by the increase of

No with time. This obviously leads to a reduction
of v, particularly in the intermediate range of en-
ergy. At low energies, T is independent of No since
impurity scattering is dominant in this energy
range. 7 is also independent of No at very large en-
ergies, where it tends to the zero-point limit.
This, along with the q dependence of the phonon

heating in the intermediate range of energy, leads
to a general flattening of the p(c~} [or v(e~)] vs e,
curve.

D. Phonon distribution: Anisotropic part

A typical evolution of the anisotropic part of the
phonon distribution function is shown in Figs. 8 and
9. The function I qN, ) of q is seen to have a max-
imum whose position varies with time. At very

small time (t= 0), immediately after the application
of the electric field to the equilibrium system,
IqN~L arises from an electron drag on the phonons,
the electrons transferring momentum to the pho-
nons. It therefore only depends on the amplitude
and form of v(e,). The evolution of IqN, I is com-
plicated, since it depends on No as well as on the
differential velocity of the carriers, and on the re-
laxation times v~ and r, . The dependence on r& is
negligible for sufficiently small times (t «r, ).
The relative importance of No and v(e~) determines
the form of ( qN~ l and particularly the position of the
maximum. A relatively small carrier concentra-
tion (n =5&&10' cm ') tends to make the maximum of
lqN, } only weakly No dependent (Fig. 8), while a
large concentration [which reduces v(e~) and its
variation with c„andproduces a large heating of
the phonons, even for small times] tends to make

I qN, I strongly No dependent (Fig. 9). The rate of
increase of lqN, I decreases with time, which is
expected since the momentum exchange between
the carriers and the phonon decreases as l qN&l in-
creases.

The ratio l qN, }/N„characterizing the anisotro-
py of the phonon distribution, is seen in Fig. 10
for a carrier concentration n=10' cm . It is seen
to be a nonmonotonic function of q at a given time,
and a nonmonotonic function of time for a given
wave number q. The evolution of I qN, I /No is es-
sentially determined by the carrier differential ve-
locity v(e~} and by the relaxation time r~ The.
variation of 1/r~ with q is shown in Fig. 11 for
different temperatures. The relaxation time r~

Electron energy Cl,

Energy Cl,

FIG. 7. Upper curve represents the form of the &~

dependence of the 6 term which is a function of the
anisotropy of the phonon distribution. 6 is related to
the differential mobility by p(zz) = (1+G) l e l v/m. The
lower curve represents the variation of the logarithmic
derivative of the electron relaxation time v with the
energy &~.
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comparison of the sound velocity to the mean drift
velocity, vD = p,E, of the carriers is not possible in
the expression of the total phonon rate of change. '

However, this latter SN(q)/St may be written in the
form

0.5

I I

1 2 4

PHPNON W4$ f NUIIBf R ) (lP8 ~- )

FIG. 8. Anisotropic part of the phonon distribution vs
phonon wave number q at different times for a carrier
concentration n = 5 x 10 cm

may be sufficiently large for the high-frequency
phonons to explain the kink observed in the curve
of Fig. 10 for t =0.075 p, sec [here T, =42. 65 'K and

1/r~ (q =6x 10' m ') -0], and the displacement of
the maximum for t = 0.025 p.sec. Kith increasing
time, the ratio IqN&lNo decreases since momentum
relaxation due to the boundaries becomes impor-
tant, and in addition the electron drift velocity de-
creases.

E. Stimuhted emission of phonons

The phenomenon of stimulated phonon emission
is not obvious in our formulation of the coupled dy-
namics of electrons and phonons, since a direct

where $ is independent of N and I3 is generally an
attenuation coefficient (P& 0). In fact, P&0 corre
sponds to stimulated emission of phonons of wave
vector q.

Though the mean drift velocity v~ of the carriers
is always larger than the sound velocity (u=5. 4
x 10' cm sec ') for the case n =5x10'4 cm ~, E =10
Vcm ', as can be seen in the upper curve of Fig.
2, the stimulated emission of phonons is only ob-
served in our calculations [P & 0 in Eq. (3. 5)] until
time t= 0. 10 psec (the mean carrier drift velocity
being then v~=16x10' cm '). This arises from the
phonon relaxation times which increase the thresh-
old velocity for the onset of stimulated emission, '

then, the drift velocity v~ must be compared to an
effective sound velocity u*, "larger than the real
sound velocity u. In the case just considered
(n=5x10 cm, E =10 Vcm, v~=0. 2 psec} the
short boundary relaxation time r~ of the phonons is
expected to give a large effective sound velocity.
In fact, with relaxation times T~ =1 p.sec and r~
=100 p, sec, the stimulated emission still exists at
time f=0. 6 p, sec (vn=llx10' cmsec '}. However,
in both cases, it is no longer visible in the steady
state.

fi = ]9 "~c,m ~0t (ysec)

0.8

0.6
ID

e Q/K

0.2

-X—

1 2 3 4

PHONON WAVE NUMBER ) {108m )

FIG. 9. Anisotropic part of the phonon distribution vs
phonon wave number qat different times, for a carrier
concentration n = 10 cm 3.

0 1 2 3 4 5 6 7 8
PHONON WAVE NUMBER q

{108~-&~

FIG. 10. Ratio of the anisotropic to isotropic part of
the phonon distribution vs wave number q at different
times for a carrier concentration n =10 cm 3. '1 he

corresponding electron differential velocity vs energy
is shown in the inset.
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2'
I

n = 5 F 10"~cm

+ 20.37
~

K) I k 30.42
I

x 42.41
o 53.25

1 2 3 4 5 6 7 8
PHONON WAVE NUMBER q (10~ m )

suits are presented in Figs. 1 and 3 with v~=0. 2

p, sec and 7', =20 p.sec. It is seen that the variations
of T,(t) and N(q) are small, the most significant
deviations appearing at times t ~ r', = 5 p, sec (the en-
ergy relaxation time first considered), which is a
fairly large time for the electric pulses generally
employed in semiconductors. Therefore, the con-
sidered variations of r', (which has been chosen in
our calculation smaller than the value for Ge de-
duced from the reflection and transmission of elas-
tic waves~} and p do not drastically change the re-
sults.

CONCLUSION

FIG. 11. Electron-phonon relaxation frequency 1/v
vs phonon wave number q for different electron tem-
peratures.

The most serious deficiency of our treatment
lies in neglecting all but the two lowest-order
Legendre polynomials in the expansion of the dis-
tribution functions. For phonons traveling parallel
to the sample surfaces, the effective r, and 7', are
infinite and under stimulated-emission conditions
the distribution functions must become extremely
anisotropic. A consistent treatment of the elec-
tron-phonon system taking into account these dif-
ficulties poses severe computational problems
which are beyond the scope of this paper.

F. Nonlinear terms

So far we have neglected the nonlinear terms in

q~ and kE. The results obtained without neglecting
these terms are only slightly different from those
presented above. For instance, with n = 5X10'
cm, E =10 Vcm ', the electron temperature curve
lies between the curves of the A and I cases in Fig.
1, and the variation of the phonon distribution is
about a few percent, giving a slightly larger phonon

distribution (Fig. 3), as discussed in Sec. II 3. The
The nonlinear terms enhance the stimulated emis-
sion of phonons. However, all these effects are
small and therefore the nonlinear terms in qE and

k~ may be neglected.

G. Acoustic mismatch parameter

In all our calculations, we have taken the acous-
tic mismatch parameter g = 25. A different value
of q (0 = 100) has also been introduced for compar-
ison (for n=5xl ' 0cm4~, E =10 Vcm ~). The re-

The results presented above show that the es-
sential qualitative features of the response of a
semiconductor to an intense electric field at low
temperature are not drastically dependent on the
effective anisotropy of both the electron and pho-
non distribution functions. Large deviations of the
phonon and electron distributions from the equilib-
rium values are observed. The same qualitative
time dependence of the electron temperature is
found. We have, however, shown the importance
of electron-phonon drag effects which significantly
modify the quantitative results obtained for the
electrons in neglecting the anisotropy of the dis-
tribution functions.

Stimulated emission of phonons is seen to be pos-
sible for intermediate carrier concentrations and
short times. These latter results would be en-
hanced by a larger boundary momentum phonon re-
laxation time. In fact, the effective relaxation
times ~~ and ~~ for phonons traveling parallel to the
sample surfaces are infinite, and in the stimulated-
emission conditions the phonon distribution becomes
strongly anisotropic. This regime is poorly treated
in this paper, where only the two lowest-order
Legendre polynomials in the expansion of the dis-
tribution functions are considered. However, the
heating of the phonons enhances the phonon-phonon
interaction, hence the phonon relaxation time could
become smaller than the boundary relaxation time,
particularly for short-wavelength phonons. 2'~6

Therefore, a large increase of the boundary relax-
ation time without the introduction of the phonon-
phonon scattering mechanism would not be realis-
tic.

The energy dependence of the carrier differen-
tial velocity v(a„}shows that the assumption of an
energy independent drift velocity would have been
a crude approximation.
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