
PHYSICAL RE VIEW B VOLUME 9, NUMBE R 8 15 APRIL 1974

"Excitonic" ~atter in a superstrong magnetic field
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This paper is an investigation of the properties of excitonic matter in a superstrong magnetic field.
The binding energy of an excitonic molecule is first calculated as a function of the magnetic field. The
molecule is found to be bound relative to two excitons and so is expected to occur when the
electron-hole concentration is small. When the electron-hole concentration is large, a new phase
consisting of a two-dimensional van der Waals "solid" of electron-hole cylinders is proposed —analogous
to situations at the surface of neutron stars. The binding energy of these cylinders is calculated for the
case that the electron and hole have equal isotropic masses.

I. INTRODUCTION

This paper is stimulated by recent progress
made in (i) matter on neutron stars, (ii) electron-
hole drops. The electron-hole drop is the con-
densed phase obtained when a high-intensity laser
is ~one on a semiconductor crystal such as Ge.
It is now believed that this condensed phase is a
plasma of electrons and holes' (though there are
still some who believe that this might be a molecu-
lar solid2) that form metallic droplets inside the
semiconductor. The question that I am interested
in here is what happens when a magnetic field is
applied to these drops. When the magnetic field
is small, nothing drastic is expected to happen (by

that I mean that all that the 9 field does is to pro-
duce a small perturbation on the ground state);
however, an interesting possibility arises when the
magnetic energy becomes comparable to the exci-
tonic energy. Then it is conceivable that major
structural change can occur in the electron-hole
fluid.

A similar problem arises in the investigation of
matter on top of neutron stars where a super-
strong magnetic field is present. In such cases
Ruderman3 has predicted that a new phase of mat-
ter may exist in which chains of atoms form a
two-dimensional solid. These chains consist of
nuclei arranged at periodic intervals with the elec-
trons spread in cylinders around them. The ki-
netic energy of the electrons in these cylinders is
much less than that in the atomic case due to the
delocalization of the electrons in the z direction.
Qn the other hand, as contrasted with the case of
the atom, there is no sacrifice in the potential en-

ergy because here, as the electron goes away from
one positive charge center and loses its potential
energy relative to it, it approaches the next one on

the chain and regains a comparable amount of po-
tential energy.

The cylinders so formed can then attract each
other and form a two-dimensional van der Waals
"solid. " Such a phase is believed to exist for mag-

netic fields of the order of 10 G; Ruderman also
pointed out that because of the large dielectric con-
stants and small effective masses in semiconduc-
tors the critical field in those cases could just be
about 10 -10' G. However, in his calculation
Ruderman made heavy use of the fact that the pro-
ton mass is much heavier than the electron mass.
In a typical semiconductor, the electron and hole
mass are approximately equal, and the direct
Coulomb potential that gives rise to Ruderman's
binding goes to zero when the electron mass be-
comes equal to the hole mass. His calculation is
therefore not applicable in the present situation.
Another source of binding can come from ex-
change; from the exclusion principle the electrons
tend to stay away from each other and thus this
exchange Coulomb term can contribute a certain
amount to the binding.

It is the purpose of this paper to investigate how

much binding this exchange term can provide.
The organization of the paper is as follows: the
binding energy of an excitonic molecule is first
calculated in a superstrong magnetic field by the
vibrational method. These molecules should exist
in the "excitonic matter" at low densities. The de-
tails of this calculation are presented in Secs. II-
IV where the effect of the exchange is emphasized.
The binding energy of the excitonic cylinders is
next estimated. The various physical aspects of
this new state and its possible detection are dis-
cussed in Secs. V-VII.

In this paper a model calculation will be per-
formed. The model assumes one electron band
and one hole band with equal masses. It is also
assumed that all the spins are lined up because of
the magnetic field. The latter assumption may
not be exactly correct in the case of Ge, but its
effects can be easily incorporated and will not
affect our qualitative conclusions about the exis-
tence of the electron-hole-liquid cylinders. A

second paper which applies this calculation to
germanium is being prepared.

In doing the calculation, the field strength I
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have assumed is such that the magnetic energy is
comparable to an exciton rydberg but smaller
than the ordinary rydberg. With such a field
strength one does not expect the basic band struc-
ture to change very much since the magnetic ener-
gy is of the order of an meV (the exciton rydberg
in Ge is 3.6 meV) whereas the typical pseudopo-
tential well depth is of the order of a Ry. One
could also question whether there would be some
sort of structural phase transition as the magnetic
field is applied if the difference in energy between
the two places is very small. In the absence of
detailed calculation, it is of course impossible to
answer the question definitely. But such a situa-
tion seems rather unlikely, and since nobody has
ever observed it in the materials that we shall be
interested in (Ge for example), we shall, there-
fore, assume that no such phase transitions occur.
Also, no magnetic breakthrough can occur because
the band gap of Ge is of the order of 0.56 eV, where
as the excitonic rydberg is 3.6 meV.

II. VARIATIONAL VfAVE FUNCTION

In this section, I shall propose the form of the
variational wave function. The system of interest
consists of two electrons and two holes with equal
masses. Whereas in the atomic case the binding
energy is only reduced by a factor of 4 when the
hole mass becomes equal to the electron mass,
from previous calculations4 ~ the molecular binding

is reduced by a factor of 100 in the corresponding
limit. Calculation of binding of "ordinary mole-
cules" (i.e. , hole mass much larger than electron
mass) under strong magnetic fields has been done

by Kadomtsev. We expect intuitively that this
binding energy will correspondingly be reduced
dramatically when the electron mass is set equal
to the hole mass. In the zero-magnetic-field case
the spin wave function is antisymmetric so that the
spatial wave function is symmetric, and one can
say that there is some kind of "bond" between the
two "atoms. " The excitonic molecule remains
bound as the electron-hole mass ratio goes from
0 to 1. In the high-B-field case, all the spins are
lined up. The spin wave function is symmetric
and the space wave function is then antisymmetric;
the atoms are, so to speak, in an "antibonding"
orbital. Whereas when the hole mass is very
heavy, they can still be bound due to the large
quadrupole moment of each atom, such moments
vanish when the electron and hole mass become
equal. Intuitively therefore, one would doubt very
much whether the system would be bound relative
to two excitons. Were it not for the exchange
terms, such would indeed be the case, as we shall
learn at the end of this calculation.

If the B field is fairly large, we expect the
four particles to move around in circles in the

eBA kg
2

Pal + g + 2, (2. 2)

and

or(t ) = I'( n,
~

rrr
~

+-1, t) (2. 2a)

is the appropriately normalized hypergeometric
function.

The wave function $„„describes an electron
state moving around the origin with a mean radius

r = (21r/+ 1)1/spo,

where

p, = (bc/eB)"',

(2. 2b)

(2. 3)

and a momentum in the z direction equal to k, .
Note that the energy (2. 2) is independent of 1 m l.
As the Coulomb interaction is turned on, it is
found that this Coulomb energy becomes bigger as
ni increases and so the smallest possible m con-
sistent with the exclusion principle should be
chosen. From the introduction we know that the
spatial wave function has to be a,ntisymmetric.
The above reasoning suggests the following form
for the wave function:

[« =1(X1)« =o(X2) « =1(X2)« =o(X1)]

where

+ («m=1(XS)"m=O(X4) "m=1(X4)«m=O(XS)1

X V(X1X2XsX4) (2. 4)

«(x) =e ' '"'p e™or(p) (2. 5)

(the 2 dependence has to be different because the
wave function has to be localized in the case of a
bound state); v is symmetric with respect to the
interchange of variables 1, 2 and 3, 4 and essen-
tially takes into account the correlation effects
that enter. As is mentioned, the maximum cor-
relation in p is to have the orbits sitting on top of
each other, and this has already been taken into

account. Also, the maximum correlation in 4
would be to have the electrons (holes) sitting on

opposite ends of the diameter of the circular orbit;
the latter being fixed by the magnetic field. This

lowest Landau level. In order to extremize the
potential energy, they should move in orbits of
the same radius and stay right on top of each
other. The above reasoning therefore suggests
that we should choose our trial function as Landau
orbitals with the same center. Let us denote the
electron coordinates by the subscripts 1 and 2 and
the hole coordinates by the subscripts 3 and 4.
The Landau wave functions can be represented in
cylindrical coordinates by the set

e 2/2-t. l ml/2 (g) ermy e1kzc (2. 1)

where zhcf = eBp and the energy E is given by
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has also been taken into account by the Hartree-
Fock-type term multiplying v in (2. 3).0 v thus
depends only on z. The choice of v is guided by
the work of Hylleras and Ore. ~ Specifically, I
choose

4,(,) = exp (- aZ (*,(}
e""" ' -' ' (2. 6)

x(e'+3p e 3 Oe 4 0-e'"4p e 4 ~0e 3 +0).2 2 2 2 ~ 2 2 2 2

3

(2. 7)

,V here is the normalization constant. Note also
that for the ease of calcul. ation we have included
only the leading term in 0)(p) [see Eq. (2. 1)] in

(2.7).
III. ALGEBRAIC DETAILS

In this section the detail of the calculation of
(g I Hl (})) will be presented. The result of this cal-
culation will be presented in the next section. We
have

H= Ho+ V,
4 4 2

Ho=2 H; =Z — V —~A

(3. 1}

(3.2a)

1 8 8 8 1 82
p — + + ——

2'P'H p 8pi 8p 8z. p2 8 y~

2m c 8y,. 8Mc
(3.2b)

where ~ and P are the variational parameters.
Note the symmetry with respect to the variables
1, 2 and 3, 4. The first factor on the right-hand
side of (2. 6) localizes all the particles around the
origin, while the second factor tries to keep the
electrons and holes closer to each other than to
members of their own species.

We thus finally arrive at the following wave func-
tion:

4

g = ~exp —~ ~ z; l e '~'1"2 '3 '4]
i=1

2 2 2 2 . „2 2
(ee('1p e ('1 ('0 e ~3 0 —e" p e 3 0)1 2

the wave function, N„ is obtained from the condi-
tion

4

H e ~ "' e '1'3'3'4 IIdz =1C
i=1

(3.6)

Because of the absolute values in the exponent,
the regions of integration have to be split up for
every possible sign of the exponent. After some
tedious but straightforward arithmetic we obtain
the result

N
1

6(A1+Ah, +B1)+8(A3+Bz)+2I4) '

1 1 1 1
e(a —l)) e(a —p)(a ())' e2(a —l))u' eea')'

(3.6)

1 1
64(y ((y+ p)

'

1
32(y'( +p) '

1 1 1
e( —()) e(u ())' eea') '

(3.7)

82
(())~ 2 3 $) =I(Ia 2(yp(3A1 -3A1 —3B1

i=1
+ 2A3 —2B3 + I4) + a + p (3.6)

Lastly, we turn our attention to (() I yl (t) ) which
can be expressed as a sum of a direct term plus
an exchange term, viz. ,

&&I 1'I 4)= ~«, +1'... (3.S)
2

Vdit =
ufyi 1 1 uyyt 1 z v

13

1
B2= 126a'(a+ P)

'

I4=
1

16(a+ p)4

The value of (()) I g, , Sz/Sz, I())) is calculated in a
similar manner as the normalization integral, and
we obtain

2

v=F
;), i~; —x;I

We split Ho into two parts '.

H, =Z H,'+Z--y .

1, pj=12 or 34
—1, otherwise .

(3 3)

(3.4)
u1 2u1 1 u22u2 1 v ~

+12
(3.11)

0
2

m u 0
2 ~~ 2

t ~

2

u.=o(1) I

'
I
..-0(3)

I

' —' v ', (3 10)
+13

2

V,„=— u,*(3)u, (3) —u, (4)u,*(4)v'
V34

(We have changed to atomic units so that h 3/2m = 1.)
Appendix A shows that, just as in the free-electron
case, (() I H I 0 ) = 2 (-,

'
h&o, ) = )f0)„where 0), is the cy-

clotron frequency defined by 0), = eB/n)c. The cal-
culations of ((I I g; 83/Sz,'I ())) is straightforward but
tedious. First, the normalization of the z part of

Note that in the direct term, what is left is just the
"self-energy" term between the electrons and the
holes in the same states. The exchange terms, of
course, are only effective between particles of the
same species. The interaction potential can be ex-
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pressed in a separable form in cylindrical coor-
dinates ass

2= —Z dke' ("& "o' cosk(z, —zz)~&i-&2i & =-- P

This expression is substituted into (3.10) end (3.11,)
and the resulting integration carried out. The
arithmetic turns out to be rather complicated; one
obtains

&I (kp )K (kp ) . (3.12) (1) (2)
nadir nadir + nadir &

(i) 2e n n m ln4~ pi n 1 ln40. p;
((ir & 3 2( +P) pim 4 ( 2 Po) pim P) 3 2( P) 3 2 (P +3 ) (P +3 )2

1n2(a+P)p, 1 1n4ap, 1n2(a+P)p, o 1 1 1
(P+3a)' 2a(a+ P) (a+ P)' (a+ P)' 4a' 4 a —P a+ P (a+ P)(a' —P')

4(a 4)' 4 aa( 4)' 44'(a ()) 44'(a —4) aa(a —4)' (a —4) (a 4)')

porn
= ~3po ) pram

= po) (g) h ~a (4. 1)

4g2 n

&a'(a + P) &a'(a —P)

7t' 1 1
4a (4+4 )' ( 4)')

We can now go ahead and try to minimize the
total energy as a function of ~ and P. Since the
expression for the energy is algebraically rather
complicated, the minimization is not done explicit-
ly but is rather done by means of the computer.
The expression for the energy is evaluated for a
range of values of ~ and P and the minimum is ob-
tained by inspection. The result of this calcula-
tion is presented in the next section where its sig-
nificance is also discussed.

E = —a(lnB)z (4. 2)

The next question concerns the stability of the
molecule against its decay into two excitons. The
binding energy of the hydrogen atom in a strong
B field has been calculated by Cohen et al. ' us-
ing a variational method. However, the binding
energy of the exciton is not just half that of the
atom. Indeed, in the high-B-field limit, one ex-
pects the binding energy of the exciton to be

Calling the molecular binding energy E, a plot of
E vs p is shown in Fig. 1. The points fall rough-
ly on a straight line, suggesting that the binding of
the molecule depends on the magnetic field strength
B roughly as

IV. BINDING ENERGY OF THE MOLECULE

E"'= ln' aaa

pap
(4. 3)

The results of the binding of the molecules are
presented in Table I for both the case with ex-
change and that with the exchange term excluded.
Note that the parameter that we use instead of B
is the ratio of the cyclotron radius to the Bohr ra-
diusq viz.

~ p /a() E(Ry) (-E)'"

TABLE I. Binding energy of the molecule as a func-
tion of the B field (p /a0=4. 9x10/B' where B is in G)

with and without exchange. Note that the binding energy
is expressed in terms of the ordinary rydberg, not the

exciton rydberg.

p 1 5g 2 49 x10
ap ap eB

One thing is immediately obvious from the table.
The exchange term is very important! It caused
the molecule to be about twice as bound as it would

be without the exchange.
Ruderman3 has shown that in the extreme-high-

field limit the binding energy of an atom goes as

0 ~ 1
0. 05
0. 01
0. 001

0. 1
0. 05
0. 01
0. 001

Without exchange
—3.6
—6. 119

—18.5
—59. 3

With exchan. ge
—6. 60

—10.9
—28. 9
—80. 9

1.89
2. 5
4. 3
7. 7

2. 6
3. 3
5. 4
9. 0
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FIG. 1. Binding energy of the excitonic molecule with

exchange (Q, without exchange ( x), and that of two ex-
citons (+). The latter is estimated according to Sec. V,
using the values of Cohen et al. (Ref. 9). The straight
lines are arbitrarily drawn between the points to illus-
trate that they roughly behave linearly (but not quite —as
is seen in the deviation).

where ao, the exciton Bohr radius, is twice that
of the atom. p, here is the effective mass and is
equal to —,'m.

Thus in this approximation

f ) 1 8 a
E',„' = —

2 ln2+ln ~
ma2 p

(4. 4)

[and not just as (ga/2ma~~) in~(ao /p)].
For a field strength B=2.4&&10" G (correspond-

ing to po = 0.1). Cohen et al.' obtained a value 8.25

Ry for their binding energy of hydrogen whereas
formula (4. 1) gives a value of —10.12 Ry. This
suggests that formula (4. 3) is not exactly appli-
cable to the region of field strength in which we

have calculated the binding energy of the molecule,
but it suggests the following estimate. We take
Cohen, Lodenquai, and Ruderman's binding ener-
gy in Ry, divide it by 2 Ry and subtract ln2 from
its square root, and then square it. Since we are
interested in two excitons, the above result has to
be multiplied by 2. We find that the total binding of
two excitons for the case po =0.1 (corresponding to

B2.4&&1 OG) to be —3.6 Ry. This value is small-
er than our binding energy which is —6.61 Ry.
Cohen et al. ' have only done the calculation for a

limited value of the B field. Our estimate using
his results is shown in Fig. 1. As is seen, the
binding energy of the molecule without exchange is
so close to that of two excitons that it is not possi-
ble to say that the molecules (without exchange) are
bound. Qn the other hand, it is fairly obvious that
the molecules are bound relative to two excitons
when the effect of exchange is included.

V. ELECTRON-HOLE CYLINDER —THE TRIAL NAVE
FUNCTION

In Secs. II-IV we have calculated the binding
energy of an excitonic molecule in a magnetic
field, and we find that even though the exchange
does increase the binding, it does not change the
logarithmic dependence of the binding energy on
the magnetic field. In this section we shall in-
vestigate what happens in the high-density limit
and what role the exchange plays in this case.
As contrasted with the low density case, it will be
found that the binding energy has a power-law de-
pendence on the strength of the magnetic field,
viz. , E~ B '3.

Suppose we ignore the Coulomb interaction.
Then the ground state of such a system is just the
Hartree-Fock wave function of the Landau wave
functions described in Eg. (2. 1). The levels are
filled in the usual manner; i.e. , one first takes
k, =0 and starts filling up all the m states until one
reaches am suchthat p =(2m ~+1)"poequals
the sample size; then one goes to ahigher k„and so on.
When the Coulomb interaction is included, it turns
out that the exchange interaction is essentially pro-
portional to 1/m, so that it might be more profit-
able to sacrifice some kinetic energy and gain
more potential energy by going to a smaller m
and a larger kF. In this way one will have cylin-
drical electron-hole drops, the radii of which can
be tuned by a B field.

To be more precise then, the wave function we
are proposing is

4(p p, ~) = det(0'( p, 0, ~))

- &ma 1 1/2
=dt

X ~ &; m, -,,./4. 0 t
2 2 . 1

vi- '

Our task is to find (g IHI g) and determine what
and k~ should be for a magnetic field of

strength B. We shall come back and discuss the
suitability of this wave function after the calcula-
tion.

VI. ALGEBRAIC DETAIL

We shall follow the calculation in Sec. III and
shall use the same notation with the generalization
that particle indices i now runs from 1 to n instead
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of from 1 to 2. We have a cylinder of X electrons
and N holes spread out in m ~ shells of increasing
radius, each shell has N, electrons (holes) so that
the total number of electrons (holes) N is equal to

From Sec. III and Appendix A, we have

QI)II l)l)) =2Nx-,'@(d, =N&(o, . (6 1)

The evaluation of ()l) lg S2/Szz. I)l ) is much easier.
One just proceeds as in the free-electron theory
and finally obtains the energy per electron (hole)
(see Appendix 8 for details):

(6. 2)

The total kinetic energy is that due to the elec-
trons and the holes and is therefore 2Z„„, i.e. ,

where

3 mt2 z) (6. 3)

L x L
2po2 Ã

r =(2M +1)" po .

(6.4)

We next turn our attention to the potential energy
terms

( )l)
I vl )l) ) = v«, + v„. (6. 5)

As indicated, they can again be decomposed as a
sum of a direct and an exchange term. Here

V«, = Ze'
I
g-(1)

I

' —'
I
q'. (2)

I
'dr, dr, ,

km +12
(6. 6)

6, = -)p' ~ f), O)p'. ()„p6.. .O)6..., ( ).'. . 6'.
tn1k 1

The factor of 2 that appears in V,„ is due to the
fact that there are contributions from both the elec-
tron-electron and the hole-hole terms. We shall
first concentrate on the exchange term because,
as it turns out, it is the only term of importance
here.

Using Eq. (3.12) we have

V 2p N2 N2 p ei((61-612&(mz-m2+m&2
ex

tn1 k1 fez

fft2k2

X ( p p )m1+m2+1 -(pzpp2) /2p0 ((kz-kz) (kl-k2)2 2 2

1 2

is the normalization constant. Using the fact that

f dzz e'""coszzb = &&[5(x+ b)+5(x —b)], (6. 10)

we can do both the z and the y integration, arriving
at the following expression for V,„:

V,„=-L16&z Z N „N
mk781

m2k2

V,„=V~+ V~, (6. 12)

where V„ is the contribution from those terms for
which m, = m2 and V~ is from those terms with m1
~m, .

The small expansion for I„(x)K (x) will be used,
in particular I()(x)K()(x)- —ln(x) as x- 0. With this
simplification, the k integral can be easily done,
and we have

2

p„= pp Zpp f(p, p )

x 8-'&1'&2"+odp1 dp2 ln ' —2 . 6. 13( 2 2)/ 2 277p )

Here

m (2 2)m+1 (6. 14)

After some tedious algebra we obtain an approxi-
mate formula for V„".

2e' ~2 zzr e' (2.'72)'
V. =2N

l
ln

l l
6

W
(615

From Appendix 8, we have

2

V~= ——2N a
l

where z is of the order of unity. Thus

(6. 16)

p =6)6 1 ——(0. 4+6)) . (6. 17)
2e' W2z(r e'

ex

V«„as it turns out, is also much smaller.
In fact,

pN(, p1p2 1& e
'

dp1 dp2

».,-.(I kz —kzl p()K.,-., (l kz - k21 p, )
(6. 11)

L here is the total length of the cylinder.
Let us write

Here

&(cosk(z, —z2) I (kp&)K (kp&)

&& dp, d&2 dz, dz2 dp, dp2 dk .

I' 1/2

mk I &L ) (2p2)m+1

(6 6)

(6.9)

1/2
x dk cosk(z, —z2) dz, dz2

0 -1/2

xI()(kp()K, (kp&) . (6. 18)

Since there is only one sum over k (those electron-
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VII. BINDING OF THE ELECTRON-HOLE CYLINDER

From the previous section, the total energy per
unit electron-hole pair can be written as (apart
from Nh~, )

8~2 g 2
p

2 e2——(41 4
— ~(0. 8+0)) .

3 ml2 r l I, 2mr

(7.1)
Minimizing with respect to both l and r, we ob-

tain (taking n to be zero)

r = 1.1 a, ( p, /a, )~',
l = 0.58 a()( p() /a())"',
E= -13.4(a, /p, )"'e'/a, .

(7. 2)

(7. 3)

(7.4)

One might wonder how good Eq. (7.4) is since
correlation has not been included. Recently,
Horing, Danz, and Glasser" have evaluated the
correlation energy of a free-electron gas in a
magnetic field. Realizing our cylinder is just a
free-electron gas with a Fermi energy

1
2m l

(7. 5)

we can directly apply their formula. They obtain

rocF „= ' lny, (7. 6)

y= ff'(oP /4i;h(u, . (7 7)

lny is typically of the order unity, e.g. , with
po= 10 ao, lny =5. Substituting Eq. (7. 5) into
Eq. (7.6), we obta, in

F. „=-—~ Ry, (7.8)

which is much smaller than Eq. (7.4), thus justi-
fying the neglect of the correlation energy.

It is conceivable that the above-mentioned cylin-
ders can attract each other by van der Waals
forces and form some sort of a two-dimensional
structure. However, one has to have an idea of
the surface energy invol~~ed to make a prediction
as to whether there should be one or more than one
cylinder in an electron-hole drop. Intuitively, one
would expect the surface energy to be much smaller
than the volume energy that we just calculated so
that at low pumping power level there should just

hole terms for which k, k2 are zero because the
corresponding contribution from the electron-elec-
tron terms exactly cancels it out), this term
should be 1/N, times smaller than the exchange
terms.

Collecting (6. 5), (6.11), (6. 15), (6. 16), and
(6. 1&), we finally have

2=2 1 ——x(0. 4 ~ 8)) . (8. 18)
e2 ~g~r e
l l l

be a few cylinders present in the drop. These
cylinders should be easily detected from light scat-
tering. Recently, Pokr ovskii and Svistunova did
light scattering on the electron-hole drops and
from the angular dependence of this Raleigh scat-
tering was able to obtain an estimate of the dimen-
sions of the drops. It is expected that this light
scattering will be strongly anisotropic in the pres-
ent strong-magnetic-field case.

Without detailed calculation taking the full band
structure of a crystal into account, it is not possi-
ble to make statements as to how large a field is
required for the above to be seen. A rough esti-
mate could be made from the fact that the magnetic
field must be such that the exciton binding energy
be comparable with the binding energy [Eq. (7. 14)],
l. e. ,

13.4(a&)/po)"'x2=1 . (7. 9)

Since we shall be mainly interested in Ge, we
take ao to be the excitonic radius in Ge. The po
that appears in Eq. (7.9) should in this case be
[(Sc/eB)eo"]"', where e, is the static dielectric
constant and is equal to 15.4 in germanium. (Since
typical excitonic energy is much less than the band
gap, the use of a static dielectric constant is justi-
fied. ) With this, we obtain a necessary B field of
4 G. This estimate is of course too rough to be
true, but it does indicate that the B field required
by condition (7.9) is not very large. Another cri-
terion that has to be satisfied is that only the low-
est Landau orbital is occupied. That results in a
B field limit of about 10 G.

VIII. CONCLUSION

In this paper we have calculated the binding ener-
gy of an excitonic molecule with equal electron and
hole masses and showed that a large amount of the
binding relative to the state of two excitons comes
from exchange. We have also showed how it is
possible for the electron-hole drops to form a new
phase consisting of cylinders as the magnetic field
becomes large and have estimated its binding ener-
gy in the model for which the electron and hole
masses are equal. In these pseudo-one-dimension-
al cylinders it is conceivable that there can be
some Peierls-type' instabilities that convert the
cylinder into an insulator if the temperature is low
enough. This will not affect our estimate of the
binding energy very much since such effects will
have been included in the correlation-energy cal-
culation already and they are shown to be small.
Lastly, it is also possible that there can be some
spin-density-wave instabilities, but this is also
expected not to change our binding energy very
much.

Although the stability of the electron-hole liquid
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relative to the excitonic liquid depends a lot on the
band structure in the zero-magnetic-field case,
this is not so in the high-magnetic-field situation.
Indeed, as is shown in this paper, the binding en-
ergy of the electron-hole liquid goes as B"~ [Eq.
(2. 3) and (7.4)] whereas that of the exciton goes
as lnBO so that when the magnetic field is high
enough the electron-hole cylinder is always more
stable than the excitonic phase. This is true not
only in Ge.
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APPENDIX A

We shall confine our interest to the p and Q co-
ordinates and write that part of the wave function
as

@2
&q„lH,

'
I y. &=-(-.'n~, }m=,m,2M 2po

&g„l H, lg )=,(m+1),
82 1 (A 10)

In this appendix, we shall calculate the kinetic
energy of the one-dimensional electron gas de-
scribed in Secs. V and VI. The density of states
being L/2w (we use periodic boundary condition),
the total energy is

k'
(Bl)

2m 2m 3
The Fermi momentum is obtained from the require-
ment that

so that

&g IH lg )=

This fact is used in Sec. VI where one is interested
in electron-hole cylinders.

APPENDIX 8

0 = A(I)4&(2) —4&(2)02(I) .
Here

2 2 2 2
y, =iV, e'"pe'' 0, q2=N2e'' 0

Then

(Al)
where N, is not the total number of electrons be-
cause we have not yet included the degeneracy of
the states. In fact, N, is related to the total elec-
tron density N by

«IH'I &&=«ilH'I &i&+«2IH'I &2& . N, ~ = N, r /2po=. N . (B3)

The cross term vanishes because H, commutes
with L, and g„|t)2 are different eigenfunctions of

L, (and hence orthogonal to each other).
H] could be further decomposed as Py +H p.

where

Here r is the maximum radius of the cylinder
and m is the number of shells in the cylinder. In
writing down (B3) we have assumed m» 1 so that
r= (2m+ 1)"'pa =(2m)" po. Putting (B3) and (B2)
into (Bl), we finally have

jeg'g
H„.=-

2m p2 acp2, 2mc

1 8 & e H
2m p Bp&

P~
Bp& Smc2

Then

e2 11
&c IH., I q, ) = —,
&q, lH„ lq, &=o,

52 1 3

(A3)

(A6)

(A7)

Egin 47T 5 ~p

N 3 ml2 r

APPENDIX C

In this appendix we shall argue that Vs /m
oo ~

Using the fact that

I„,„,(x)If...,(x)
1

„() m1 —m2 i

we obtain, after some algebra,

(B4}

(C1)

1
&4IH.,I4&=

2
(Aa)

so that

2

-r = -.'&~ c = &&2 I
H 2 I &2 &

2m p()
(A 9)

in agreement with what one would expect using the
full solution in (2. 1). In fact, in general we have

" & [[-:(-,.-.)].p~, =-2N, —
l

1II 2
m 1™2

t l m 1™2 1

Using 3teriing's approximation for I"(m), we

obtain

+ [-,'(m, + m, )]-1"2' 1
8 m1+1/2 m~1/2 i, l

m1 m2 Jmj —m2)
(C2)
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This can be written as

'l( +™d)~'"(l( ~ ))
~'"

B m, m2

1 e2
x 2N)—Im1- m2I ' l

It is obvious from (C3) that the dominant contribu-

tion comes from those terms for which m1 is close
to m2. We thus write

e2
V~-——~ 2N)m (c4)

To evaluate e one has to go to the computer.
Since the present calculation is a rather simplified
model, it is not worthwhile to carry out the exact
evaluation of z.
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