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A theory is presented for surface polaritons associated with the planar surface of a semi-infinite
anisotropic dielectric medium. Retardation is included. In general, two attenuating components with
different attenuation constants must be superposed within the medium in order to satisfy the boundary
conditions, and the macroscopic electric field vector does not lie in the sagittal plane. For special cases,
however, only one attenuating component is required, and the electric vector does lie in the sagittal
plane. The theory is applied to the specific case of surface magnetoplasmons in a semiconductor for
magnetic fields either perpendicular or parallel to the surface. In the latter case, propagation directions
parallel and perpendicular to the magnetic field are considered. Possibilities for the experimental
observation of the effects predicted are discussed.

I. INTRODUCTION

Polaritons are photons coupled to the elementary
excitations of a crystal such as plasmons, phonons,
and magnons and have been extensively investigated
both theoretically' and experimentally for bulk
crystals. The interaction between the photon and
the elementary excitation is particularly significant
when retardation is important —i.e. , the wave vec-
tor k is on the order of the frequency (d divided by
the speed of light c.

Recently, considerable interest has arisen in
surface polaritons in which the coupled excitation
is localized near the surface of a crystal. Kliewer
and Fuchs have treated the case of photons coupled
to long-wavelength optical phonons in ionic crystals
with an isotropic dielectric tensor and have derived
the dispersion relation for surface polaritons. The
same problem has been treated by Ruppin and Engl-
man. ' These theoretical results have been extended
to the case of uniaxial insulating crystals by Lyubi-
mov and Sannikov. ' Ibach has observed surface
optical phonons in ZnO in the unretarded regime
using the inelastic scattering of low-energy elec-
trons.

Surface plasmons have been discussed theoreti-
cally by Ritchie and by Ferrell and can be ob-
served experimentally by inelastic electron scat-
tering. Certain optical techniques for observing
surface plasmons depend upon surface roughness
or a grating ruled on the surface to provide the
additional momentum required so that the surface
plasmon can couple to the electromagnetic field.
Thus, Teng and Stern' have used this technique to
determine the dispersion relation for surface plas-
mons in aluminum by measuring the radiation
emitted from a grating bombarded by 10-keV elec-

trons. On the other hand, Marschall, Fischer, and
Queisser have measured the optical (infrared) re-
flectivity of a surface of n-type indium antimonide
upon which a grating has been ruled and determined
the surface -plasmon dispersion relation.

Another and perhaps more versatile technique is
attenuated total reflection (ATR) which has been
employed by Otto' to study surface plasmons in
metals. Ruppin" suggested that this technique can
be used to study surface optical phonons, and ex-
perimental observations have been made, for exam-
ple, by Marschall and Fischer 4 for gallium phos-
phide and by Bryksin, Gerbshtein, and Mirlin" for
NaCl.

The interaction of surface plasmons and surface
optical phonons in polar semiconductors has been
treated theoretically by Kheifets, ' Chiu and Quinn, "
and Wallis and Brion. ' Experimental work bearing
on this topic has been reported by Anderson, Alex-
ander, and Bell and Reshina, Gerbshtein, and
Mirlin. The influence of a magnetic field on sur-
face plasmons has been discussed in the zero-re-
tardation limit by Pakhomov and Stepanov, ' Abdel-
Shahid and Pakhomov, and Chiu and Quinn. ' Chiu
and Quinn and Quinn and Chiu ' have recently
studied this problem including retardation. These
magnetic field investigations have been extended to
include interaction with surface optical phonons by
Quinn and Chiu, ' by Chiu and Quinn ' and Brion,
Wallis, Hartstein, and Burstein.

The problems of surface polaritons associated
with surface optical phonons in noncubic materials,
with surface magnetoplasmons, and with surface
magnons all involve an anisotropic dielectric or
permeability tensor. The surface-optical-phonon
case involves a symmetric dielectric tensor and
has been treated by the present authors and, for
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uniaxial crystals, by Lyubimov and Sannikov. '
However, the treatment in Ref. 29 is not complete
in that allowance is not made for the possibility
that more than one decay constant may be required
to describe the surface wave. The surface-mag-
netoplasmon (gyrodielectric-media) and surface-
magnon (gyromagnetic-media) cases involve anti-
symmetric off-diagonal parts to the dielectric and
magnetic permeability tensors. The gyromagnetic
case has been treated by Hartstein et al. ' in a. re-
cent publication. An interesting result was found
for certain configurations of magnetic field, sur-
face, and wave vector k —namely, nonreciprocity
between -k and+k. Furthermore, inder certain
conditions, the surface polariton does not persist
out to k= —~, so the surface excitation does not
exist in the absence of the photon field, and the sur-
face polariton may be called a "photon-induced"
surface polariton. Photon-induced surface polari-
tons have been discussed theoretically by Bryksin,
Mirlin, and Reshina ' and references cited therein
and by Harstein et a/. ' Experimental observations
of photon-induced surface polaritons in n-quartz
have been reported by Falge and Otto. "

In a previous paper" surface polaritons in gyro-
dielectric media were investigated theoretically for
the particular case of surface magnetoplasmons in
semiconductors with the magnetic field parallel to
the surface and the wave vector perpendicular to
the magnetic field. Photon-induced surface polari-
tons were found under appropriate conditions. In
the present paper, we give a general theory of sur-
face polaritons in an anisotropic dielectric medium.
The theory is then applied to the specific case of
surface magnetoplasmons in n-type InSb. Results
for various orientations of the magnetic field rela-
tive to the surface and of the wave vector relative
to the magnetic field are presented. As we shall
see, our results differ in certain significant details
from those of Chiu and Quinn.

We seek a solution to Eq. (l) for x &0 of the form

E E Oe-axe i (kyyAr~-ay t)

The form of this solution specifies an electric field
which is exponentially damped as one leaves the
surface of the material, and which is a running
wave along the surface. Substituting this solution
into Eq. (l), we arrive at a set of three homoge-
neous algebraic equations for E„, E,, and E .

Elimination of E„yields the following system of
two homogeneous algebraic equations for E, and E,:

A„,(n)E„+B (n)E, =0, (3a)

B~(n}ED+A~(n)EO= 0,

where

(3b}

magnetic field of 25 ko, the orbit radius is 800 A.
All of these distances are small compared to the

0
infrared wavelengths of interest, 10' A. We also
neglect the interaction of the magnetoplasmons with
optical phonons. This is reasonable for carrier
concentrations &10' cm such as were employed
experimentally by Marschall, Fischer, and Queis-
ser "

We choose the system of coordinates shown in
Fig. 1. The surface lies in the y-z plane, and the
x direction is perpendicular to the surface of the
material, penetrating into it. The wave vector of
the macroscopic electric field lies in the y-z plane
and makes an angle y with the z axis. The mag-
netic field lies in the x-y plane and makes an angle
8 with the x axis.

We start from Maxwell's equations. After elimi-
nating the magnetic field variables, we arrive at
the following equation for the macroscopic electric
field:

Q2D
Q X Q X E + -vf = 0c &t

II. GENERAL ANISOTROPIC DIELECTRIC MEDIUM

Let us consider a semi-infinite general aniso-
tropic dielectric medium, which is described by a
dielectric tensor e;~(~). We assume that the di-
electric tensor at a given point in the medium is
independent of the proximity of the point to the sur-
face. This is a reasonable assumption for wave-
lengths much larger than a lattice spacing. Fur-
thermore, we neglect the wave-vector dependence
of the dielectric tensor. In semiconductor prob-
lems, this is generally satisfactory for excitations
whose wavelength is large compared to the Thomas-
Fermi length and to the cyclotron-orbit radius or to
the carrier mean free path. For n-type InSb with
carrier concentration of 10 cm and mobility of
3&&10 cm Vsec ', the Thomas-Fermi length is

VOA, the mean free path is -6000 A; and in a

=X

FIG. 1. Diagram showing the relationships of the
magnetic field and wave vector. The surface is the y-z
plane.
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A„.(k)=[k'„—~»„, -k')k,' k„»»'

4g
2 4

—ik„a(f„,+ t„,)~ —f„„f
C C

(4a)

K~ = k —(QP /c )f„~,

2

»»„„(k)= —(k,k, ~ ~ »„„),~ k„k„
C j

+2 4
—ia(k„f„+k„f )~ -f f,„—,, (4b)

To effect a nontrivial solution to these two homo-
geneous equations, we set their determinant of
coefficients to zero. This procedure yields an
equation F(a, k, &u) =0, which has the roots a,
=a, (k, ur}. Of these roots, only those with positive
real parts make suitable attentuation constants for
surface waves. We shall see that, in general, two
such roots are required to satisfy the electromag-
netic boundary conditions at the vacuum-dielectric
interface.

The equation F(a, k, &u) = 0 may be put in the form

F(a, k, (u}=f„,a'+a(k, (o)a'ib(k, (o)a'

and k =k +k +c(k, &u)a+d(k, &u) =0, (8)

where

a(k, &u) = —ik, (f„,+ f ) —ik,(f„,+ f },
b(k» (d} ((d /C )(f~f~+f„~f~k f~fiy f~f„k) [k f~+ k~f + k f + k k (f g+ f )]

C(k, (d) =(i(d /C )[k~( f~ f~g+f~f~ —f~f~~ —f~~f~)+ kk(f~fyg+f~f~ —t~P~~ —f~„f~. )]

(7a}

(7b)

d(k, (d) = k [k~f~+ k~f~+ k k~(f~g+f~}]+((d /c )k (f gf~ —f yf~)

+ ik [ky(f~+ f»»»») + k~(f~g+ f~ )]» (7c)

+(&d /c )[kg(f~f~g f~f~)+ k (t~f~ f ~f~) + sky(f~f~y+ fy„f~~ f~fy~ f~~f~)]

+((d /C )[fizfyyf~ f~zfygf~+ f~(f~yfqg —fyyf~g) + fy~(f~f~~ —f„yfg~}] . (7d)

This dispersion relation reduces to that of Ref. 29
for k = 0 and E;&

——a&, .
Let Eq. (8) have two roots with positive real

parts. Call these roots n„o2. Then the homoge-
neous equations for E, and E, may be solved twice;
once with the substitution n = n, into the determinant
of coefficients, and again with the substitution a
=a2 Let E„(a. ,), E,(a,) be the solution correspond-
ing to the root a;. Then by inspection of Eqs. (3)
we determine that

I

E =[KA (a,)e i'+Kg (a,)e 2"je'"&
(lib)

E,= —[K,B„(a,)e '&'+K2B (a,)e '2*]e"t+~~~"
(1lc)

We turn now to the region x( 0 outside the dielec-
tric medium. We seek a solution to Eq. (1) of the
form

(E„E„,E.) = (E' E'„E')e~+e'"+"~"" (12)

Maxwell's equations then lead to the result that
E,(a;}=K;A~(a;), (8a) E, = —(ik„E„+ik,E,)/ao, (13)

E (a()=K(C(a(), (9)

where

C(a, ) = (1/K„') I[ik„a;+((u'/c')f~ ]A~(a, )

—[ik~a; + (QP/c )f„~]B~(a;}). (10)

The general solution to Eq. (1) can be written as
the linear superposition

E„=[K,C(a, )e ~i*+K,C(a, )e '2"]e'")'~~"" (lla)

E,(a;) = K;B~(a;), i = 1—, 2, (8b)

where the quantities K; are amplitudes to be deter-
mined from the boundary conditions. Maxwell's
equations then yield

+ f„[A~(a,)K, +A (a,)K, ]

—f„gB~(a,}K,+ B (a, )K,], (14a)

E,'=A (ai)Ki+A~(a~)K~,

E~ = —B~(a |)Ki —B~(a2)K2 .

(14b}

(14c)

where ao=k —(ur /c ).
The boundary conditions at the vacuum-dielectric

medium interface require the continuity of the tan-
gential components of E and B and the normal com-
ponents of D and B (l). = 1). Utilizing Eqs. (8) and

(9}, the boundary conditions on E and D become

—(ik E'+ik~Ek)/ao=f [C(a|)K|+C(a2)K2]
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If one uses the Maxwell equation i((d/c)B=V&&E,
the boundary conditions on 8 can be written

(k~ E; —k„E') = kgA (n ~)K, + A (o(~)K2]

+ k) [B~(c(q)Kq + Bk())(c(2)K2], (15a)

(k, /o(0)(k, E,'+ k, E;). —o.o E',

= ikg[C(n, )K, + C(n2)K~]

—[21Bkkk(o(g)K) + &2 Bk))(a2)K2] k (15b)

—o(OE,'+ (k„/ o()0(k„E;+k~E;)

= ik, [C(n ~)K, + C(n2)K2]

+ [o(&Ak))(&&)K& + o(2 A~(c(2)Kz] . (15c)

Equations (14) and (15) constitute a set of six lin-
ear homogeneous algebraic equations in the four

unknowns K„K~, E'„and E',. Clearly, there are
redundancies. Equation (15a) follows from Eqs.
(14b) and (14c). The other redundancy is more dif-
ficult to isolate. All we need, however, is four
independent equations. We chose three of these to
be Eqs. (14a), (14b), and (14c). The fourth equation
we obtain by multiplying Eq. (15b) by ik„and Eq.
(15c) by ik, and subtracting to give

0(- kn Ev+ k)) E(k) = k~[n)Bn„(ns}K&+ c(pB(k))(c(2)K2]

+ kJc(qA~(o(q)Kq+ (x2A,y(nq)K2] . (16)

Equations (14) and (16) now constitute our boundary
conditions. In order for these equations to have a
nontrivial solution, the determinant of coefficients
must vanish. This condition gives the dispersion
relation for surface polaritons which can be re-
duced to the form

~ ~ ~

2 2

o( e„ON„a~+~ e~ An (c(q) — ik~o()+~ e„~ Bn~(o(g) +Kn[(ik~+o(oe, y)Any(c(g)

—((k. a,k, la (a ))I(a, ~ a,)(k„k,„(a,) k,A (a, )j

—(corresponding term with o„ns interchanged) =0. (17)

An alternative expression for the surface-polariton dispersion relation can be obtained by making the re-
placements A (o(,)-B„(n,} and B~(o.&}-A„(n,) and using Eqs. (14b), (14c), (15b), and (15c}. The result is

~

~

~

~i' . uP k,k~ ik . (d k,—-+ (k„a, a ~,„ + ' ' B„,.(a, ) ~ ik.a, a c', ——' a, ~ a, A,.ta, )I

ik &. e~ k ik . co k k,x ~(lka +-ak — a +a B„(a ) —~ lka ~E — n (I )IK& k c Qp

—(corresponding term with n„n2 interchanged) = 0. (18)

We shall use either Eq. (17) or (18) as seems most convenient for the particular case under consideration.
The amplitudes K„Kz, E'„and E,' can now be calculated by solving the linear homogeneous equations.

From Eqs. (14) and (16), we find

K, K(no+a, )[kyB~(n, )+ k A~(o(a)1

K2=-K(oo+o'&)[k B~(ni)+k An(ni)]

(19a)

(19b)

where K is an arbitrary constant. E,' and E~ follow from Eqs. (14b) and (14c).
The problem has now been formally solved. The dispersion relation, as well as the electric fields and

attenuation constants are known as functions of frequency or wave vector. It should be noted that our treat-
ment assumes that the dielectric tensor has a step-function behavior, so that it can be valid only for wave-
lengths large compared to the lattice spacing. We also neglect nonlocal effects and damping effects due to
scattering processes.

III. SURFACE MAGNETOPLASMONS IN SEMICONDUCTORS

We now apply the results for the general anisotropic dielectric medium obtained in the previous section
to the particular case of surface polaritons associated with surface magnetoplasmons in semiconductors.
The geometrical configuration is shown in Fig. 1. The semiconductor is assumed to be semi-infinite and to
fill the half-space given by x—0. The external magnetic field Bp is taken to lie in the x-y plane and to make
an angle 8 with the x axis. The two-dimensional wave vector f describing the propagation of the surface
wave parallel to the surface is taken to make an a,ngle y with the z axis.
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Let us consider a semiconductor which is n- or P-type and in which the free charge carriers occupy an
energy band which is simple and parabolic. We neglect effects due to damping (&u,v» 1), to spatial disper-
sion, and to the interaction of magnetoplasmons and optical phonons. The dielectric tensor can then be
written in the form '

sin HE, +cos H&, sin8 cos8(e, —e, ) —i sin8E2

c(&u) = sin8 cos8(e, —c,) cos'8e, + sin'8e, z cosg &~ (20)
z sinHE~ —z cosHE'2

where E, = e„(1+[re~/(v', —uP)]}, ez —e„~,uP~/&o(&s-
—&o,), c,=e„[1—(uP&/uP)], &u, is the cyclotron fre-
quency defined by &u, =eBO/m*c, m~ is the effective
mass, co, is the plasma frequency defined by (d',

=4vXe /m~e„, &„ is the background dielectric con-
stant, and N is the free-carrier concentration.
Using the general results of Sec. II and the expres-
sions for the components of the dielectric tensor,
we can obtain the dispersion curves, attenuation
constants, and electric field components for sur-
face polaritons associated with surface magneto-
plasmons in semiconductors. We now consider
several specific cases for the orientation of the ex-
ternal magnetic field 80 relative to the surface and
to the wave vector R.

A. Bo perpendicular to the surface

For this case, sinH = 0, and we have E„,= E„=E,„
= E,„=0. The problem possesses cylindrical sym-
metry about the external magnetic field, so the re-
sults are independent of y. For simplicity we take
p = 0, so that k is in the z direction. Equation (6),
which determines the decay constants o.„reduces

to the biquadratic equation

63CK —(fgKg+ EgK))& + Km[6(ICI+ (4P/C )fp] = 0, (21)

where v, = IP —(&u /c )e; T.he solutions for a are

a ~i+ &s~
2

n =a'
2f~ ) c

e( —t3 l Kg((d /c )ez
2f3 )

(22)

In general, both solutions must be utilized to satisfy
the boundary conditions, as discussed in Sec. II.
In order to have a bonafide surface polariton, it is
necessary that both n, and n, be real and positive
or complex with positive real parts. Under some
circumstances, however, one e may have a positive
real part, but the other n may be pure imaginary.
We then have a superposition of an attenuated or
surface component and a propagating or bulk com-
ponent. This type of wave is known" as a pseudo-
surface wave. Specific criteria for the onset of
pseudosurfaee waves will be given later. It must
be pointed out that the propagating component normal
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to the surface produces a loss of energy from the
surface into the interior of the crystal, and hence
the wave must attenuate in the direction of propaga-
tion parallel to the surface —i.e. , the wave vector

k must be complex. We have not taken this into
account, so our treatment does not apply to the
pseudosurf ace waves.

The dispersion relation given by Eq. (17}can be
reduced for the configuration under discussion to
the form

(+3/]2 PE'3)[K] + ]2 ]]22 + ]2 0(]2]+ ]22)]

f3(f]/e3) = —1, (24)

which has already been obtained by Pakhomov and
Stepanov and by Abdel-Shahid and Pakhomov.
The asymptotic decay constant is given by

(25)

We see immediately from Eqs. (24) and (25} that e]

+ o]o2(+1+o2) + op(+1+ +]+2+&2) op~1 0 ~ ( 3)

This relation has already been derived by Chiu and
Quinn. ' ' Equations (22) and (23) have been solved
for the dispersion curves using a high-speed com-
puter. Typical results are shown in Fig. 2 for the
case of n-InSb with ]0,/0]2=0. 5. Since k is per-
pendicular to Bo and the direction of k is immate-
rial, k appears only as even powers in Eqs. (22)
and (23), and the curves for positive and negative k

are identical. The dispersion curve starts on the
light line ~=Ac at ~=co„rises just to the right of
the light line, flattens out, and then after a gap,
approaches an asymptotic value for large k. For

helicons propagate and there are no surface
waves.

The asymptotic frequency of the surface magneto-
plasmon is specified by the equation
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where

t' „=(»|—ea)/& i .

uation (26) has been solved for the onset frequen-
cies as functions of magnetic field. The results

F' 3 for n-InSb. One sees that no
udosurface waves exist below ur, /&v~= 0. 3 .pseu osu

th latter value, pseudosurface wwaves exist
reasesover a range of frequencies whose width incr

of the lowerwith increasing cu, . The frequency o e
boundary of the pseudosurface wave region e-

(2'I)

ust both be negative in order to have a
bonafide surface wave in the large- imi .
in turn can be so only if ~,& e~.

F 2 that there is a secondOne also sees in ig.
b h which lies in a frequency rangesurface rane w

'

i ht lineThis branch never reaches the ligabove ~~. is r
In fact itk and has no asymptotic limit. n

= 1 and terminatesstarts at the frequency where &3= 1 and term'
the bulk-magnetoplasmon disper-when it intersects e u

n = 0. Chiu and Quinnsion curve specified by n =

not find this branch because they assumed E„=
an ud under this assumption E, = on y a i

For the case under considerat|on ~,/ ~=
pseu osud urface waves exist in the region indicated
in Fig. 2. The criterion for the onset o p
surface waves is that one oof the e's be zero-i. e. ,
the surface-wave dispersion curve 'urve intersects the
bulk-magneto plasmon dispersion' n curve. Then
from Eqs. (22) and (23) one can show that the onset
frequencies are specified by the equation

i/2 ~2
1/2 ' u 1 3 2 2 0 (26)

e frequency of thecreases until it reaches , .
es e ual tou er boundary increases until it becomes equa o

in Fig. 3 specifies the right-er . The upper curve in ig.
hand end-point of the upp

' ' T eer branch in Fig. 2. T e
u er branch exists for n-InSb only for v, ~~~ 0.
Q„' ' 'dinn and Chiu di no r

notbl because this branch does nofor n-oaAs, proba y ec
exist for the values of the parame eters they con-
sidered.

ion B er-In e co ith nfiguration under discussl p p
seen that, inI r to the surface), we have seenpendicu ar o

to two differ-eneral, two solutions corresponding ogener
t be su erposed inen at attenuation constants mus e sup

~ ~ Further-order to sa is y et' f the boundary conditions. Fu
s ittalthe electric vector does not lie in the sagimore, the elec ric vec

e (the lane defined by the norma o e s
'

n exce t in theface and the direction of propagation p
unretarded limi ) co~'t k» /c. The electric vector
sweeps out an e ipse w ill' hich contains the direction
of propagation an id 's inclined to the normal to the

ace. The tilting of the electric vector ou o
the sagittal plane for finite k can e a ri
the photon conten o e mt f th mode. We have calculated

a constants and electric field components
=0 5 Th ltfor the case of n-InSb with (d, co~=

f th educed decay constants P; ==a k, i=1, 2or e re
i . 4. Atthearepo e1 tt d against wave vector in Fig.

t linestarting poin o e
' t f th surface wave on the light

=&a =0 and Q=~, while P, is finite. In the
limit of large wave vector, the amp i u e

zero so that in the un-solution involving P2 goes to zero, so
retarde imi,ed limit only the solution involving, is
neede . e rd. Th esults for the electric vector com-
ponents are p o e1 tt d against wave vector in Fig.
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in terms of the ratios iE,/E, and E,/E, .(The z di-
rection has been taken to be the direction of propa-
gation. ) For k) &u,/c, the wave is elliptically po-
larized with the plane of the ellipse inclined to the
sagittal plane. In the limit k» &u~/c, the surface
wave becomes an elliptically polarized wave with
the electric vector in the sagittal plane. The ratio
iE,/E„papr oahce sthe value I/Pz.

Although no true surface waves exist in the
asymptotic l,imit k- ~ for e, &(d~, they may exist at
smaller k. This is illustrated in Fig. 5 for n-InSb
with ~,/~~=1. 5. A true surface wave bran. .h exists
over a finite range in k and is the analogue of the
upper branch in Fig. 2 for ~,/&v~=0. 5. The right-
hand end-point of the surface branch in Fig. 5 again
corresponds to the intersection of the surface
branch with the bulk branch. The left-hand end-
point occurs when e = (d, rather than when &3= 1,
since the first criterion is now the more restrictive
of the two. If E„=1, the upper surface branch no

longer appears.

B. Bo parallel to the surface, kl80

The configuration discussed in this section is
particularly simple, since Maxwell's equations de-
couple even when retardation is included. The elec-
tric vector is always confined to the sagittal plane
and only one decay constant is required to describe
the surface wave in the active medium. A prelimi-
nary account of this case has already been reported'4
by the present authors, while the ferromagnetic
case has been treated in Ref. 30. The effect of in-
teraction with optical phonons has been considered
by Brion et al. ' and by Chiu and Quinn.

From Maxwell's equations we find that the decay
constant is specified by

n' = k' —(&u'/c')e„ (28)

where c„is the so-called "Voigt" dielectric con-
stant given by Eq. (27). The dispersion relation
can be obtained from Eq. (17) as has been done by
Chiu and Quinn ' '; however a simpler expression
results if one uses the equation

&'D=O (29)

In the vacuum, from Eq. (29) one obtains

E„'/E', = —fk/a, .

The continuity of the z component of E and of the x
component of D give

(31)

E„/E, = —(ik+ a,e„)/aoe„„. (32)

The boundary conditions for the magnetic vector
yield nothing new. Combining Eqs. (30) and (32),
we obtain the dispersion relation in the simple form

n +aoe„+ik(ei~/e„~) = 0. (33)

One notes immediately that this dispersion relation
is nonreciprocal —i.e. , positive and negative values
of the wave vector k are not equivalent.

Calculations of the dispersion relation for this
configuration have been carried out for n-InSb. The
case k )0 with e,/&@~=0. 5 is plotted in Fig. 6. A

Within the dielectric medium, one can take the
electric vector of the form given by Eq. (2) with
k„=0 and k, = k and obtain after substitution in Eq. (29),

E„/E =(ike„—ne„,)/(ike„+ne„„) . (30)
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very interesting feature is immediately apparent,
namely, the dispersion curve consists of two parts
with a gap between them. The lower portion starts
from the origin (in contrast to the case with Bo per-
pendicular to the surface), rises just to the right of
the light line v = kc, bends over, and terminates
when the curve intersects the dispersion curve for
bulk magnetoplasmons (bulk polaritons) defined by
o.'= k —&o e„/c = 0. The upper branch starts on the
line defined by E„=0, rises, and then approaches
the asymptotic frequency for unretarded surface

magnetoplasmons found by Pakhomov and Stepanov ~

and defined by the equation 1+E„„—i&„=0. In the
large-wave-vector unretarded limit, the electric
vector for the upper branch executes a circular
motion in the sagittal plane. At the small wave
vector extremity of this branch, the electric vector
is plane polarized perpendicular to the surface.
Note that this branch stops before it reaches the
light line.

The reduced wave vector at which the upper
branch starts is specified by the equation

CL
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FIG. S. Surface polar-
iton dispersion curve for
n-InSb with 8& parallel to
the surface, k II Bp and
~ = 0. 5 ~&. The dashed
curve e = 0 is a bulk polar-
iton dispersion curve.
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z 1+g
1 —(1+0')/&'J)' ' (34)

where K = I k I c/&u~ and rl = &u, /&o~. If 1', is to be finite
and positive, then E„and p must satisfy the in-
equality

e„&(1 r+P)'+/ri= (ur', + u&~)'~ /v, . (35)

That a gap can exist in the dispersion curve is
evident from a consideration of Fig. 7 where E„ is
plotted against $. There is a region below the line

=0 where a„ is large and positive, so that o is
negative for finite wave vectors and no surface
wave exists. If the unretarded surface-magneto-
plasmon frequency lies above the line e„„=0, as it
does for InSb with g = 0. 5, then a surface wave
exists both above and well below this line, and a
gap must exist just below this line. To have a sur-
face-wave branch above the line E = 0, the ratio
~,/&u~ must exceed a critical value specified by Eq.
(35). For InSb, this critical value is 0. 064.

For a value of &„just below the right-hand side
of Eq (35), the.upper branch lies below the line

=0 and to the right of the lower bulk dispersion
curve. As E„decreases, the gap rapidly closes,
and only a single branch remains.

Turning now to the case of k& 0, we plot in Fig.
6 the surface-polariton dispersion curves for n-
type InSb with @=0.5 and k& 0. It is clear that the
situation is qualitatively different from that where
k & 0. We now have a complete lower branch running
from the origin out to the asymptotic value specified
by the equation 1+E +i&„=0 given by Pakhomov
and Stepanov. In addition, however, we have an
upper branch which starts at the light line where

egQ —[(tg+ e3)Kg+ ((d /c )ea]c

+ f3[&) —(&d /C )t2] = 0.
The solutions are

(36)

(d 6 Ep+k' —r —' —' . (37)
C

The dispersion relation can be obtained from
either Eq. (I I) or (18). The simpler relation seems
to follow from the latter equation which gives

E„„=1, rises to the right of the light line, and ends
when it meets the upper bulk-polariton dispersion
curve, n = 0. The upper branch for k& 0 exists
whenever E„&1and p &0. It may be remarked that,
for both k &0 and k& 0, there are frequencies at
which both a bulk wave and a surface wave can
propagate, a situation which does not exist in the
absence of a magnetic field.

C. Bp parallel to the surface, I(;IIQp

This configuration is more like that discussed in
Sec. III A (Ba perpendicular to the surface) than that
discussed in Sec. II B (Bo parallel to the surface,
k1 Ba). For general values of k, the electric vector
traces out an ellipse which contains the normal to
the surface and is inclined to the direction of propa-
gation. Solutions corresponding to two decay con-
stants must be superposed in order to satisfy the
boundary conditions.

The equation which determines the decay con-
stants o, , [Eq. (6)] becomes
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(+0++ 1+o2)+1+2e1 + too(+1 + +2)

+ +1++1+2 + o2)+Oele3+ oOK163(1 —eg} = 0. (38}2

This relation is equivalent to but a little simpler
than the corresponding dispersion relation given by
Chiu and Quinn. ' As in the case of Bo perpen-
dicular to the surface, k appears only as even
powers in Eqs. (37) and (38), so reciprocity holds. t |(e3/eg) = —1 (39)

We have obtained numerical solutions to Eqs.
(37}and (38) using a high-speed computer for the
case of n-InSb with ~,/&u~ = 0. 5. The dispersion
curve, which is plotted in Fig. 8, starts at the
origin, rises just to the right of the light line, and
then flattens out to an asymptotic value given by the
equation
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approximations. It would be interesting to study
the effect of removing these approximations. In
making a detailed comparison between theory and
experiment, one should certainly include damping
associated with the scattering of the charge carriers
by lattice vibrations or imperfections. It would be
interesting to see under what circumstances effects
arising from spatial dispersion can be observed.
The assumption that the dielectric tensor is a sim-
ple step function at the surface needs modification
if depletion or accumulation layers are present.
The effect of these layers on the surface polariton
dispersion curves has already been investigated by
the present authors. ' Another approximation in
the present work is the neglect of the interaction
between magnetoplasmons and optical phonons.
This is justified in n-type InSb for carrier concen-
trations & 10"/cm' such as in the experiments of
Marschall, Fischer, and Queisser. " Some theo-
retical results including the interaction with optical
phonons have been reported recently by Quinn and
Chiu ' for n-type GaAs. %'e prefer to focus atten-
tion on the phenomena exhibited by the magneto-
plasmon-photon system alone and avoid complica-
tions associated with optical phonon interactions.

In the present investigation the detailed ru-vs-k
curves have not been determined in the pseudosur-
face wave region. This is simply due to the addi-
tional complication of having to deal with a complex
wave vector. However, it should be emphasized

that the pseudosurface waves are well-defined
modes of the system. In fact, the dispersio~
curves in the pseudosurface-wave region are simply
the continuations of the dispersion curves from the
ordinary-surface -wave regions. Any technique
that is used to detect the modes in one region will
work effectively in the other. The situation is
similar to that for pseudosurface elastic waves. "

The results of the present work are applicable
to materials such as n-type InSb with simple spher-
ical energy bands. It would be of interest to con-
sider n-type Ge or PbTe which have multiple aniso-
tropic energy surfaces. One may expect additional
surface polariton branches for appropriate orienta-
tions of the magnetic field arising from the presence
of subgroups of carriers with different effective
masses. An investigation of P-type InSb or Bi
should reveal additional phenomena arising from
several types of carriers.

The experimental observation of the surface
polariton dispersion curves discussed in the present
paper for n-type InSb should be possible using su-
perconducting or Bitter magnets giving fields in the
50-kG range. One wants to operate under condi-
tions such that co,T &1. The simplest configuration
is probably that with Bo parallel to the surface,
Bo~~ k. Other configurations will probably require
somewhat more complicated mirror arrangements
or ports normal to the magnet axis, but are never-
theless feasible.
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