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Dielectric function for a model, two-band semimetal
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An approximate expression for the frequency- and wave-vector4ependent random-phase-approximation
longitudinal dielectric function at 0 K, for a model, two-band serrtt~etal, is derived. In the vicinity of
electron and hole pockets, energy bands are assumed to be parabolic and ellipsoidal; the small-pocket

approximation as well as the tight-binding approximation have been used for derivations. Contributions
to the total polarizability due to interlmnd (insulatorlike) transitions, intravalley (metal-like) transitions,
and intervalley transitions, which are specific for a ~i~etal, have been given in a closed analytic
form. The ellipsoidal symmetry of the carrier pockets does not destroy the isotropy of the
Thomas-Fermi screening, whereas an anisotropy of interband polarizability does. Carrier transitions
between different electron and hole valleys are shown to lead to st% contributions to the total
dielectric function, which are logaritbmically sloped and rather &«ajjt«d in the q space. The
multipocket plasma frequency in the q-8 limit is anisotropic. A stmiheuristic formula for the static
dielectric matrix has also been derived with the aid of the generaliuxi sum rule for oscillator strengths.
Problems of inverting the dielectric matrix are reviewed.

I. INTRODUCTION

The self-consistent-field (SCF), or random-
phase-approximation (RPA), longitudinal dielectric
function without local-field corrections has the
following form'2:

c(q, co)=~ -~; f(E,.p) -f(E„.r )

n ne ~~ k +cafe pe+8+15
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By definition «(q, &u) = q '$,~«,.jq&q~, where «;&(q, ~)
is the dielectric tensor D= «E, so that «(q, &u) (in
general anisotropic in q) describes the screening
of the external potential by a system. f (E„„-)is
the occupation number for the Bloch state (n, k)
=f1 '~ e'"'u„ f(r) with energy E„ f, v; is the qth
Fourier transform of the electron potential, 5 is
an infinitesimal positive quantity, and the matrix
element

(n, k
I
e "'

I
n ', 2') = af, „;;II, fu" „-(r)u„, „;;(r)d 3y,

(2)
where the integration extends over the unit cell of
the volume 0,.

The integrations involved in (1) have been done
for a number of physically interesting situations.
We should quote here I indhard's expression for
«(q, ~) for the free-electron gas, the static «(q, 0)
for a model isotropic two-band semiconductor of
Penn, ~' the longitudinal sum-rule estimation of
«(q, 0) for an insulator by Hermanson, ' and the
large-gap, tight-binding valence-band, and orthog-
onalized-plane-wave (OPW) conduction-band calcu-
lation of «(q, 0) for an insulator by Fry. 7'8 Lind-
hard's dielectric function is the usual starting point
for attemptstogobeyond RPA. " «(q, ' may be

treated as the diagonal part of the dielectric ma-
trix «(q+K, q+K, ~)' ' (K, K arereciprocal-lat-
tice vectors). It enables us to obtain the dielectric
function with local-field corrections I/« '(q, q, ~).'3'4

Equation (1) has also been applied to the case of
a semiconductor with the symmetry-induced zero
gap (Liu and Brust, ~ and Broerman'8 and the ref-
erences quoted there). Cohen and collaborators
have used the existing band-structure results to
obtain «(q, ~) for a number of semiconducting sys-
tems by straightforward numerical computation
(Ref. I'7 and other references given there).

The purpose of the present paper is to establish
the main features of the dielectric function for
semimetals. Abrikosov' ' bases his formula for
the dielectric tensor on realistic band-structure
calculations for bismuthlike systems, but only for
the case when q=0. By some simplification of the
band picture we have been able to calculate the
longitudinal component of the dielectric tensor
«(q, &) and arrive at formulas that are relatively
simple and transparent.

In Sec. II we discuss our model of a semimetal.
In Sec. III a convenient modification of the i.nitial
formula (1) is given. Contributions to the polariza-
bility due to intravalley carrier transitions are
calculated in Sec. IV by using the "small-pocket
approximation. " The semiheuristic formula for
the interband-transition polarizability is discussed
in Sec. V. Intervalley transitions lead to small,
irregular contributions to polarizability; they are
investigated in Sec. VI. In Sec. VII the screening
and plasma properties of our model semimetal are
discussed. The sum rule for oscillator strengths
is generalized and applied in Sec. VIII to derive
an approximate semiheuristic formula for the
static dielectric matrix for semimetals. Appr~xi-
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FIG. 1. Brillouin zone
for antimony.

mate methods of inverting the matrix are dis-
cussed.

II. MODEL OF SEMIMETAL

Let us consider a typical semimetal-antimony.
Conduction electrons occupy the states about points
L of the Brillouin zone (BZ). Hole states are near
points T of BZ (Fig. 1).' There are -10 ~ conduc-
tion electrons per atom in electron pockets and the
same number of holes in hole pockets. The energy
bands at points L are shown in Fig. 2. The pockets
are known to extend usually beyond the region of
parabolic bands. Some authors suggest that the
bands in the vicinity of the pockets are not ellip-
soidal is, ai

In the present paper we choose a two-band model
of a semimetal. It is convenient to treat it as
dervied from the two-band model of a semiconduc-
tor or insulator (Fig. 3). The bands are separated
by the direct energy gap for every wave vector k
of the BZ. However, the bands overlap over small
areas of the BZ, where they attain extreme values.
If the states near the minimum of the conduction
band are filled with electrons, we refer to a pocket
in the electron valley. Empty states near the ener-
gy maximum of the valence band will be treated as
occupied by holes; we then have a hole pocket in a
hole valley.

We assume, for the sake of simplicity, that the
energy bands near the pockets are both ellipsoidal

and parabolic. The band about the gath pocket, i.e. ,
the nth valley, centered at k„, can be written

E„„-- E, = (If'/2m) n„h„„,-
(3

8„-„=—D„+ (k —k„)Q~„(k —k„),
where g„O„ is the inverse effective-mass tensor,
D„ is the "depth" of the nth valley, counted from
the Fermi energy E~ and the valley character in-
dex g„=+1 or —1, for electron and hole valleys,
respectively. Now we put A2/2m = 1.

Each pocket is characterized by its position vec-
tor k„, tensor 0„, carrier concentration pg„, and
carrier charge n„e, where g„n„n„=O. The assump-
tions are that pocket carriers are degenerate (i.e. ,
T=0), coupling with phonons is absent, and the
pockets are far apart. The final results of our
analysis may be useful also in the case of degen-
erate, many-valley semiconductors.

III. MODIFICATION OF THE POLARIZABILITY FORMULA

Formula (1) may be rewritten as follows:

e(q, ~ ) = 1 + 4w Z o.„„.(q, ~ ) (4)
n, n'

where the intraband (n = n ) and interband (n en )
polarizabilities are

4v&z z'(qi (d) vp7Xn, n'(q& &) ~

f(E., l) f(E".Z )-
Xn, n'~q~ ~ = „.

k, k gSZEn «-En~, k +@&+1~

x~&n, k~e *" '
nk'&~' .

The total polarizability is given by an additive form
of functions X„„,, which mill be called transition
integrals. Some inter- and intraband transitions
are shown in Fig. 3. The relevant transition in-
tegrals will be calculated or estimated below.

It is convenient to introduce an energy-shifted
occupation number f, such that f(E —Er) =f(E). We
have for the valleys (3)

f($„g) for the electron valley
1-f&$„„-) for the hole valley. (6)

In terms of it one can write a convenient formula
for both inter- and intravalley transition integrals:

(- p n.f(&..g) n;f(&. .g ) —l(n. --n. )
X&, & iq~ &di=. .

k, k'Q BZ In~n, k 4' n'k' + @&d + &~

x
I

&n, k e ""In', k )I

IV. INTRAVALLEY TRANSITIONS

Let us concentrate now on the case n=n . In-
troducing a new parameter y, which takes the val-

ues +1, —1, and making use of specific properties
of the Bloch states, we obtain after a short manipu-
lation the following expression for intravalley
transitions:

X.&q ~) = ~ .~ f(&., e)
y=+1 kE.BZ

1(n, k I e '""
I n, k+ yq) I

'
8„ f —h„„;„;+yn„(a(u+ f6)
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EF
E(L,)-E(L„)=0.24e FlG. 2. Energy bands

for antimony at point I of
BZ (according to Ref. 20).

Calculation of the matrix elements in (8) is dif-
ficult. To avoid it, we assume that the effective
region of k summation in (8) [f(8„p)= 1] is small,
compared with the BZ. We expect that even if the
matrix elements vary significantly over the whole
Brillouin zone, they are virtually constant both
over electron and hole pockets, if these are suf-
ficiently small. Therefore, within a "small-pocket
approximation" we may write

xln q +2kFq
q'-2k, q- ew

2 (q, ~)= —sgn(~) a
—krF

ff 1 n 2 ~k

4m' 4 q

where

2 2 @ 2

1—, -1 (11)
2kFq

' 2kFq

2
& 1, (lib)

2kF q

x.(q, ~) = ~ l&n, k. le *""In,k. +rq&l &.(rq rn.~),
@=+1 (9)

where k„ is the position vector of the center of nth

pocket, and

~ (- ) g f~n, P . (10)
pe az 8„„--8„„;;+N(u+isgn(g)8

'

For the parabolic, ellipsoidal valleys the summa-
tions in (10) can be done analytically (see Appendix
A). By neglecting for the sake of clarity the band

index n, the result can be expressed as follows
(2 and 2 stand, respectively, for real and imag-
inary parts of 2):

keg k ~ h —q& (q, (u) = 4, k',
4
—,+4 1-

7l'g kF q

(8) and (9) in the tight-binding approximation. Let
y„(r —1) be the atomic or Wannier function local-
ized on lattice site l, and we have

l n, k &
= x '"Z e"'q „(r- 1),

1

(n, k
l
e ""

l
n, k+ q &

= E e "'M„„.(1, q), (13)

M„„.(1, q) = fp„(r —1) e "'y„,(r) d r .
With a very sharp localization of y„(r) ("very tight
binding"), we obtain

&n kle ""In' k+q&=M„„,(o, q),

M„„(0,q) = p„(q),

where p„(q) is the atomic or Wannier form factor.
If y„(r) is the atomic function of s type, p„(q) de-
creases at large distances as q . With this lo-
calization, therefore, the dielectric function tends
to decrease with q more rapidly than in the plane-
wave-like case, where (n, kI e "'In, k+ q) =1.
With a moderate localization, the 14 0 terms in

(13) are not negligible and lead to anisotropy in q
and dependence of )&„(q, ~) on the position vectors
of pockets k„. In the long-wavelength limit the
matrix elements in (8) become unity.

In principle, the tight-binding approximation is
unsuitable for a system with the complicated elec-
tronic structure of a semimetal. We have been
able, however, to derive the intravalley contribu-
tions to the polarizability without using it and it
will serve only to estimate terms regarded as
small, i.e. , those due to intervalley transitions.

V. INTERBAND TRANSITIONS

Let us consider first nearly vertical small-q
interband transitions, marked I in Fig. 3. In the
present, the semimetal modifications of the semi-
conductor (insulator) two-band scheme [Fig. 3(a)]
are assumed to concern only very small areas of
the BZ. It follows that the principal contribution
to polarizability is the same as in a semiconductor.

q=—(q ~ 9 ~ q)'n, I 0" I
—= det[ 0" ],

k =
I 8 I

' (k ) k =
I 0 I

' (k )

k' =-(3v'n)"' (k' )'=(4/a)e-'k'

(12)

o em' co~cL.~@4~ eemim, et'
The properties of a hypothetical ellipsoidal pa, ra, -
bolic single-band system, which follow from (11),
are summarized in Appendix B.

To gain some insight into the physics of the
situation, let us estimate the matrix elements in

FIG. 3. Energy-band diagram for model two-band
semimetal, as derived from the corresponding diagram
for semiconductor or insulator. Arrows show various
electron and hole transitions, contributing to the polariz-
ability of the system.
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In the static case (u = 0) it is rendered by the for-
mula of Penn~5:

hQ„
4m(yp(q, o) = ", , h /E~ «1p & g ~ 2 r g p

SQ
4~e' g+~ '

(Is)

4mn'(0, ur ) = (kII„)'/[8', —(h&u)']. (i6)

The imaginary part of the polarizability is
-5($, —k~) —S($,+ W). o. (0, ~) matches the po-
larizability of Penn, Eq. (15), for ~ =0 and is
accurate in the limit ~- ~. (In the intermediate,
singular range of frequencies h~-S„we may
possibly "smooth" it out, e.g. , by the substitution
~ —n /(1 +P~"), where P is a small adjustable
quantity. )

Hence, it is expected that to include information
about the dynamics of the system, the following,
semiheuristic form of the small-q interband-
transition integral may be useful:

where 0„ is the pla, sma frequency for the lower
(valence) band's electrons of density N, i.e. , A2

= 4me N//m and X in the assumed units (0 /2m = 1)
is close to 1. Within the small-pocket approxima-
tion N equals practically the number of all elec-
trons N+-,'no (where n 0Z,n, ), because no«N; h„
the "average" energy gap between bands, is ex-
pected to be much larger than direct gaps in the
pocket regions.

To gain some understanding of what the corre-
sponding formula should be in the dynamical case
(~ 40), let us consider a simple hypothetical sys-
tem with two levels separated by 8 . With N-fold
degeneracy, the Kramers-Heisenberg dispersion
formula (see, e.g. , Ref. 22) gives us

tinguish in semimetals certain special transitions,
which are just peculiar to them. These are the
large-momentum-transfer (large-q) transitions be-
tween states close to the Fermi level belonging to
different valleys, nonequivalent with respect to the
reciprocal-lattice translations. As an example we
may take transitions IV and V between electron
and hole valleys in Fig. 3(b), or the transitions be-
tween two electron valleys centered at different
points f. of the Brillouin zone (Fig. 1). Under the
small-pocket approximation the corresponding con-
tributions to the total polarizability should be con-
sidered small. However, owing to the step charac-
ter of the occupation number and the zero denom-
inators in (7), these transitions can contribute in
an irregular way, and this effect should be there-
fore analyzed in detail.

This distinction of intervalley transitions is
somewhat arbitrary; in an exact treatment they
would be automatically included in the usual inter-
or intraband transitions.

To clarify the nature of the expected irregular
behavior, we shall apply the very-tight-binding
approximation (14) and put also

M„„,(0, q) =M„. „(0,q) = M„„,(0, q) . (16)

In general, integrations for ellipsoidal valleys can-
not be done analytically. We assume spherical val-
leys

h„ f —= e„(k -%„)= —D'„+da(k —k„)2,

where, for further convenience, the self-explana-
tory function e„(k) is introduced. Simple transfor-
mations of (7) give

Z g„„,(q, w) = Z
~
M„„,(o, q) ~'

nAn' nAn'

q' (Ofi„)''
4we' (8 + Xq')' —(I )' ' (17) ~(q„[Z„„,(q —k„„„~,K„)

the imaginary part having the two-g-function form,
as that for (16). For a noncubic crystal this for-
mula should be further generalized, to include the
anisotropy in q.

VI. TRANSITIONS BETWEEN DIFFERENT VALLEYS

Besidesthe metal-like andinsulatorlike transi-
tions already considered, it is reasonable to dis-

+ 2„„.(- q —k„„,, —~, K„)]

—-'(q„- q„.)Z„„.(q —k„„,, (u, Ksz)),
(2o)

where the pocket separation vector k„„.=k„, -k„,
K„ is the radius of the nth pocket, i. e. , e„(K„—k„)
= 0 Kpz is a radius which is larger than the pocket' s
radii, and

0 d k

(2v) ~f~, r q„e„(k) —q„.e„.(k+Q) + I~+i sgn(~)5
(21)

Here the k summation has already been substituted
by integration. The following properties of the
functions 2 should be noted:

2„„.(Q, (u, K) = —2„.„(-Q, —(u, K),

7„„,(Q, ~, K) = 2„„.( i Q i, (u, K) .
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(2Z+ M)'- P'
(2K- M)' —P' M &0

(23)
I

Using (x+i5) ' = 4'(1/x) —ix5(x), we can evaluate
both the real and the imaginary parts of Z =Z +zZ
by elementary methods. The result is

&N, ,~(Qg (dy K) =
(2 )g 2

4KP+ (2C/A+2K —P )

(2K+P)'+ 4C/A P'-
(2K- P)~+4C/A P-

28'P arc +are, W &0
2E+P 2E- P t

where by definition

and

W for left-hand-side positive
—M' for left-hand-side negative,

(24)

(25)

Similarly

P=!8!/A, A=@„d„-Yi„d~,, 8=2'„,d~,Q,

C = %o —q„D „+Yi„,D „,—q„,d„gP .

I JPg —)Pg, ka&K, b ~0

K —kj, kg &K &~k, b ~0
tl 2A

(2v) I I 0, K &k„»0
b&0,

(26)

where n = B -4AC and k„km are

2Aki= IBI -6" for c&0, all A

= —
I 8 I+ & for C & 0, all A,

2Ak, =
I B I +&"' for A & 0, all C

=- IBI -&"3 for A&0, all C .

(27)

+ ~1, 1(yq k1, 8~ y~~ KRH ~ (3o)

explicitly added.
Using (22), we can write for the transitions be-

tween two valleys of the same character (i.e. ,
Ul l2 7)

41,2 22l ~ [~1,2(Yq k1, 2 y~ +1)
y=+1

Time-reversal symmetry requires that the band
structure of a crystal has inversion symmetry.
Let us consider the situation shown in Fig. 4.
Pockets 1' and 2 are equivalent by inversion to 1
and 2, respectively. Transitions from pocket 1 to
the empty states of valley 2 are accompanied by
transitions from filled states of 2 to empty states
of 1 . An importa. nt point is that as a function of

q the sum of transition integrals y, ~+ yz. , is, in
general, more smooth than is each of its compo-
nents separately.

Equation (20) should therefore be replaced as
follows:

~ x.,"(q ~)=~ IM„„,(o, q)l'y„„,(q, ~), (26)
mn' n4n'

where
1

4. . (q, ~) = -L [n.&. . (Yq -k. ..y~, K.)
y=+1

+q„.Z„.„(yq -k„„., y(o, K„,)
1
a(n. -n;)&..—.(q-k. ,„,y~, K„)],

(29)
in which the contributions due to transitions be-
tween the inversion-equivalent valleys have been

(31)

%e shall study now the static contributions only.
They appear to be independent of g.

A. Transitions between different electron valleys

Equation (30) gives

Z [z, ,(p, o, z, )+z, ,(p, o, z,)]. (32)
Q=qkki g

FIG. 4. Inversion prop-
erty of the electronic band
structure. Transitions be-
tween electron pockets 1
and 2 accompany the transi-
tions between the inversion
equivalent oockets 2' and
gt

and for transitions between the valleys of opposite
character (i.e. , g, = g = -7h)

tI1, 2 2' [~1,2(y~q k1, 2 y+ Kl)
y=ai

+ Z~ z(yq —k~ q,
—yu&, Kq)

+f 2(q -k1, 2 y& Kss)]
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The slope of function G(X, c) is logarithmic at two
(positive) values of x: 1+ (I +I/c)"~ (Fig. 5). The
second term in the square bracket of (35) repre-
sents transitions between a pair of valleys equiva-
lent by inversion to the pair contributing the first
term (Fig. 4). In spite of the relative complexity
of both terms separately, the sum is remarkably
simple:

2l-

C(x,&~-Vz
where f is the Bardeen function23

1 —y2 1+yf(y}=-,'+ y ln
4y 1 —y

(38)

For the sake of simplicity we take both valleys as
of the same depth, D, = Dz = D. Equation (32) may
be rewritten as follows:

where

„,Iv'(x', s)+ v(x-, s)],120 D

1 2 (33)

and

x'= lq+k, , l/K„
s = d2/d1 = K1/Ks,

(34)

v'(X, s)=1 z G X, l 2
——G sX,

(35)
where

1 —c(2c+1)X I+2cX- cX
GX, c =1+ 24cX 1 —2cX- cX

FIG. 5. Polarizability factors G, corresponding to
transitions 1 2 and 2' 1' between the electron valleys
in Fig. 4 (upper curves) and full polarizability factor con-
nected with these transitions, vs the reduced wave vector

Vertical bars mark points of the logarithmic slope.

I q+k„, I
=K„+K„, . (38)

Away from these surfaces, the intervalley-transi-
tion integrals decrease rapidly with the distance.
Consequently, in the q spa, ce, the meaningful con-
tributions may be imagined as small hills well
apart. For some directions of q they are absent
and obviously do not contribute to the total po-
lar izability.

B. Transitions between electron valleys and hole valleys

Equation (31) gives

(D2 + Dm)1/a

(2 ~2 /d2 dm~wa Z [F(y, t1, c)+F(y, $2, c)

Hence, 1'(X, s) has a logarithmic slope only at X
= (1+s)/s. This should be so also beyond the very-
tight-binding approximation for the matrix ele-
ments (14) and (18) used here. If the curvatures
of the two valleys are identical, d, =d2, then s=1
and t'(X, 1) = —f(X/2), as for the intraband transi-
tions in the free-electron case.

Going back to the initial nomenclature, the equa-
tion for logarithmic-slope surfaces can be written
as follows:

1+2(c +c)' X+cX
1-2(ca )'"X X'

(38) where

—F(y, (,c)], (40)

—1+ (1 —c )y ($ + cy) + a y —1
F(y, &, c)=&+

4
ln

(] )2 p 2

2 1/2 $ + Cy $ —Cy p

ay -1 0 y —1

I( ~(1 2 2)1/2]2 P 2

k(I -n'y')"'»
I-( (I p 2)1/2]a p a

(41)

where
2 2 2

p 2 ~ 2d2 p p dy+d2
C2

p ~ d2 ~2) ~n +n ~2 ~2&d y+d2 D] +D2

(42)
y'=

2 D.', ~, f
'-=lp'I =

I q ~k1, 21, &aa ' &.
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Let us investigate in detail the slightly simpler
case of equal curvature for both valleys, d, =d~= l,
i.e. , c=1. Let F(y, $, 1) = F(-y, f) and y'=p'/(2D,
+2D')'/2 g, =D, /[(D2, +D', )/2]"2 ~2=D2/[(D', +D')/
2]"2; then $21+$2=2, and we have

2-3/2(D2 + D2)1/2
1 2 (21/}2

1+ 2

x Z [F(y, ~ )+F(y, (2 —t1)"') —F(y, ] )].
3f=3 ~

(43)

The slope of function I' is logarithmic along cer-
tain lines in the y —$ plane, for $ ( v 2, as shown
in Fig. 6. Figure 7 shows the slopes of F(y, 2),
F(y, p) and F(y, p) [note: (2~3)2+ (p)2=2].

The square-root behavior at y = 1 is a purely
mathematical effect, which disappears completely
in F(y, $)+F(y, (2- $ ) 2) —F(y, )sz), the only func-
tion of physical importance, where $») v 2. The
logarithmic slopes cancel each other at y
= —2'($ + (2 —$2) /2), but add up at y = —2'($ —(2 —$ )' 2).

With the situation considered in terms of the
reduced transition vector p the slope is logarithmic
when both electron and hole pockets are internally
tangent (in the case of transitions between two
electron valleys it is so when the pockets are ex-
ternally tangent). A general form of the equation
for the logarithmic slope surface, due to transi-
tions between electron valley n and hole valley n

(and vice versa), is as follows:

(44)

In this case also the logarithmic slope depends
critically on the direction in the q space. If pres-
ent, it occurs twice along the same direction, giv-
ing rise to an interesting volcano-type slope of the
transition integral and polarizability (Fig. 8).
Still, the formulas (40) and (43) have a rather il-
lustrative character only, owing to the arbitrary
choice of ~az.

In fact, these transitions are a part of the inter-
band transitions I of Fig. 3, distinguished rather
artificially to investigate the effect of transitions
between states at the Fermi level. The irregular
behavior analyzed above should therefore be mani-

FIG. 6. Positions of the
logarithmic-slope points of
the function F(y, $) in the
y —$ plane; y is the reduced
wave vector, whereas $ de-
pends on the characteristics
of the electron and hole pock-
ets.

FIG. 7. Polarizability factors F connected with the
transitions between electron and hole valleys vs the re-
duced wave vector y. The lowest curve represents the
full polarizability factor. Vertical bars indicate the
points of the logarithmic slope.

Let us consider &(q, &) for &u = 0 and in the q- 0
limit. From (9) and (15}we find

1
&(&4 0}= e1 + 2 ~~r F, s i

s

where

(45}

ep = 1 + (if0„/8 ) (46)

The intervalley contributions are neglected as
small in comparison with &~, and the second term
on the right-hand side of (45) summarizes all the
intravalley contributions. With (45) treated as
valid for all wave vectors q, we arrive at a static
screening of the Thomas-Fermi type. The
screened Coulomb potential assumes the form

(1/epr) e "»",
where ~» is the multipocket Thomas-Fermi
screening factor

(47)

fest as small kinks imposed on Penn-like polariza-
bility, Eq. (15).

So far we have been able to express analytically
(although with different degrees of accuracy) all
polarizability contributions relevant for our model
semimetal. Henceforth, we shall investigate its
physical properties.

VII. SCREENING AND PLASMA PROPERTIES OF
SEMIMETALS

A Long-range screening
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k„g, ,l )k, gl

FIG. 8. Various transition integrals relevant for the
model semimetal vs the wave vector q (static case,
schematically): X„ intravalley, metal-like transitions
(II and III in Fig. 3): X&, interband, insulatorlike tran-
sitions (I in Fig. 3): X«, transitions between two elec-
tron (or hole) valleys: y~z, transitions between electron
valley and hole valley (or vice versa, IV and V in Fig.
3). In both intervalley cases q is assumed as being
parallel to the corresponding intervalley vectors k~ or
keI ~

Three facts must be noted: (i) For a given den-
sity of pocket electrons and holes n„ the screen-
ing factor K» is larger when the number of pockets
is higher, because Z, n,"3& (Z, n,)"'. (ii) The high
value of the interband dielectric constant e~ (=100
for Bi~ ) tends to increase the screening radius
Kyp therefore favoring long-range interactions in
semimetals. However, the concept of the Thomas-
Fermi screening is not often applicable. (iii) Us-
ing the ellipsoidal valleys, we retain the spherical
symmetry of the screened potential (4'I). However,
in real systems, the interband polarizability [cor-
responding to n~(q, 0) in our case] is anisotropic,
and this would make the screening so, too. In a
system with the symmetry C~ the equipotential sur-
face around the point charge would be an ellipsoid
of revolution around an axis parallel to the trigonal
direction.

B. Static dielectric function-Kohn anomaly

In the static case,

e(q, o) =1 — 3 X~(q 0)+~X.(q 0)+~ X„.(q o) .
(49)

The intravalley transition integral for the valley s
is given by (S), with the appropriate inverse-effec-
tive-mass tensor Q~, and carrier density n, . Since

y, (q, 0) incorporates

(50)

[where f(y) is defined by (38)], it has an infinite
slope on the surface q 0 ~ q =4kaF, . It follows that

the same behavior is displayed by function (49) at
the set of surfaces corresponding to all the free-
carrier pockets. The intervalley transitions, rep-
resented by X. .. , give rise to similar behavior at
other surfaces in the q space [Eqs. (3S) and (44)].

The Kohn effect therefore may, in principle, oc-
cur in the phonon dispersion curves ' a number
of times for every direction in the BZ. In prac-
tice, however, it can hardly be observed under
the present experimental conditions, because its
amplitude must be expected to be much smaller
than for simple metals, especially under inter-
valley conditions.

It is not yet clear whether in calculating the
phonon frequencies it is enough to screen the ionic
interactions in the semimetal with the static di-
electric function (49). It goes as q

~ for q- 0 and
so the acoustic sum rule" is formally fulfilled, as
it is for simple metals. However, the large ampli-
tude of the semiconductor-type contribution to the
polarizability (Fig. 8) suggests the need to use the
full dielectric matrix &(q+K, q+K, 0) rather than
its diagonal version, Eq. (49). Related problems
are discussed in Sec. VIII.

Various contributions to e(q, 0) are shown in
Fig. 8. One sees that )t (q, 0) dominates over the
intravalley-transition integrals y, (q, 0) [by the
factor - (hA„)2/(h kryo, )], except in the small-q
region. This is why the exact behavior of y, (q, 0)
at large q is not very important. Figure 8 shows
also one of the contributions due to transitions be-
tween different electron valleys —g„. Their maxi-
ma are in the region of large g~. Therefore, even
if they are comparable with yp in amplitude, they
seem to play a minor role. Qne should remember,
however, that they have logarithmic slopes at cer-
tain surfaces in the q space. The same concerns
also the volcano-type contributions g,„(Fig. 8) due
to transitions between electron and hole valleys.
It is interesting to note that electron and hole in-
travalley transitions contribute to e(q, 0) in the
same way.

The above considerations show that for (q I

& min{k~,}, the static dielectric function is dom-
inated by the intravalley anisotropic contributions.
If [q [ & max[kgb, }, it behaves much like the Penn
dielectric function (15), with small logarithmic-
slope kinks superimposed for some directions of

q (Fig. 9).

C. Plasma oscillations

The dispersion relation for plasma frequencies
of the system can be arrived at by solving the
equation e (q, ~) =0. In semimetals we must expect
in addition to the usual high-frequency plasma os-
cillations concerning all electrons also low-fre-
quency plasma oscillations involving only free
carriers in the pockets. Qscillations of this kind
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result, "which, however, corresponds strictly to
q = 0 and so does not show the anisotropy.

I I

o k„Vc.,
FIG. S. Static dielectric function for semimetal vs

wave vector q (schematically). Logarithmic-slope kinks
are not shown.

have been first discussed by Pines.
To simplify the final formulas we shall consider

only the case q- 0 and assume that the plasma fre-
quency is low enough as compared with 8, /K.
Thus we can put (d =0 in the formula for the inter-
band polarizability (17). Its imaginary part then
becomes 0. When q- 0 and & & 0 2 (q, ~) also
disappears, and the damping of plasma oscillations
may be neglected. We find easily

t' X(q ~). o
eo (51)

p 4)

where &so=4»e n, /m. Now we can write the ex-
pression for the real part of the dielectric function
(neglecting for the sake of simplicity small terms,
which are due to intervalley transitions):

& (q, ur)=fJ —
o o mr@, q 8,

(d
(52)

from which follows the formula for the multipocket
plasma frequency for small q,

1 q o" q o o 4»e'n.
&my(q) =

o &o ~ &o =
Q' m

(53)

Summation s goes over all electron and hole pock-
ets, and the multivalley inverse effective mass
tensor is given by

Q»
—Q~ Q»

s +p
(54)

lt follows from (53) that ~, can be anisotropic in

q. The number of independent parameters of the
tensor O follows from symmetry. For a cubic
crystal there would be only one parameter (i.e. ,
isotropy), but for the bismuth structure, for in-
stance, there are two parameters. The previously
mentioned anisotropy of op(q, ~) for noncubic crys-
tals may also contribute in (53).

Equation (52) may be compared with Abrikosov's

c(X, Y, (o) = 5» v + 4» Z n„».(X, Y, u),
n, n'

4»n„„.(X, Y, (u) = —v(X)X„„.(X, Y, (g)),

(55)

X... (Xi Y ~) = ~ f(E», f)
K, K'

(n, k'le' 'In, k )(n, k le' 'In, k)
&. ~-En e +@(d++

(n, kIe' 'In, k )(n, k I e ' 'In, k)
E„p-E„.g. —S(gp —i5

(55)
where X=K+q, Y=K +q, K, K are reciprocal-
lattice vectors, and

(n, ki e ""'"'In, k') = 5p, f.;,g&,
' fu„g(r)u„.f„-(r)

x 'lR I' d o~ (57)

The results for e(q, &u) suggest that only intra-
valley transitions II and III and interband transi-
tions I (Fig. 3) play an important role in semi-
metals. The intravalley (metal-like) contribution
may be calculated easily within the small-pocket
approximation. Using E„„;g= E„R and I n, k+K)
= (n, k& we obtain

X„(X,Y, w) =(n, k„i e ' 'in, k„+q)

x&n, k„+ql e' 'In, k„&z„(q, ur)

+ (n, k„ I

e'v'
I n, k„-q )

x (n, k„—qI e ' '
I n, k„&&„(-q, —(u) . (58)

In the very-tight-binding approximation [see (14)]
the formula becomes simplified to

X.(» Y ~) ™p.(X)p. (Y)&.(q o)

+p„(-X)p„(-Y)Z„(-g —(g) . (59)

Now let us take up the insulatorlike transitions
I. To have at least some information about the
contribution concerned we assume that both bands
are very flat, so that 8, g

—E„g.= 8, over th
Jones zone (JZ), and concentrate on the static
case. The following sum rule will be used:

VIII. DIELECTRIC MATRIX-PROBLEM OF INVERSION

All the results obtained so far neglect local fields
in crystals. Nevertheless, they may be useful for
an approximate interpretation of optical experi-
ments [e(0, &o)], or for calculating the screened po-
tential of a charged impurity [&(q, 0)]. The descrip-
tion of the collective phenomenon, the phonon in
semimetals, requires the dielectric matrix it
seems. In the SCF approximation it takes the
form12 14
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~« -E.)[&sl e '"'I f&«l e' "I s& &sl e"'I f&

~«le "'ls&]=(~'/m)X Y&sle *"""ls& .

SO X ~ Y4 4 (X, Y, O)=(4" P„(X —Y), (62)

where p„(Q) is the form factor of the electron
charge distribution for the lower (valence) band
over the Jones zone

p„(Q) =N Z f(z„ f)&v, kl e '5'l v, k& .
fg JZ

(63)

To make a. suggestion, formula (62) may perhaps
be applicable to real systems, when we treat p„(Q)
as a sum of the Brillouin-zone form factors for
all valence bands.

Formula (62) shows correct behavior in the q- 0
limit. ~~ The right formula for polarizability
should converge to (15) on the main diagonal. Be-
sides, by definition (55), y~(X, Y, 0) should be Her-
mitian in the indices X, Y. Therefore, the follow-
ing form may be useful as the polarizability matrix
for the insulatorlike transitions:

4vop(X, Y, 0) —
q P(X)P(Y)p„(X —Y), (64)

where for cubic crystals P(X) = IQ„/(h, + XX').
We assume in the present that the adiabatic ap-

proximation holds (a,lthough perhaps it does not
for pocket carrier concentrations as low as, e.g. ,
in Bi). Otherwise we would have to derive the di-
electric matrix for a coupled electron-lattice sys-
tem, which is very difficult. The phonon dynami-
cal matrix in the adiabatic approximation has the
follow jng form 7

D,",.(q) =(iaaf, m, ,)-'"[c,.(q) —5. ..Z c,„,.(o)],
(65)

4ve' g (q+K) (q+K')'
K K' Iq+Kt'

&« '(q+K, q+K', O) e*'"' ~ ""~",
where Z, is the charge of the nucleus at position

Its proof follows from an expansion of the expecta-
tion value of the double commutator
[[H, e ' '"], e' '] in the eigenstate (s& of H= p~/2m
+ V(r). Equation (60) is a generalization of the sum
rule for the oscillator strengths. For the two-
flat-bands system the formula (60) can be approxi-
mately written as follows:

S [(v, kl e '"'"
l c, k+X)&c, k+Xl e' 'l v, k)

+(v, kl e' 'l c, k -X& &c, k -X le-'"'lv, k &

=(h /m)X ~ Y(v, kl e " '"l v, k& . (61)

Using it in the two-flat-band version of (55), we
have

K, K'

~R, K'~R, R

K E S, K fc S or Kfc S, K 6 S

K, KQS
(68)

the inverse being

K, K E$
KFS, K f SorKfcS, K ES

6yy, , K, K QS
&R,X

(69)
with e„' R, defined by the equation $K4 exam I"

t

R, in the unit cell. If the charge neutrality of the
system is to be preserved, the following sum rule
must be fulfilled 7:

Iql Iq+Kl'
lim 2 (. '(q, q+K, O) Z, e '"' 4=0.
q-0 s, % I q+ K I

~

(66)
Both expressions depend on 4. '(X, Y, 0), so there
arises the problem of inverting the matrix g(X, Y,O).
Essentially, for the infinite system considered,
&(q+K, q+ K, 0) = e~ x, (q) is an infinite matrix in

K, K . There seem to be no general criteria and
prescriptions for the inversion procedure for in-
finite matrices. The problem can be formulated
as the "integral" equation for & ', "but it also is
difficult to solve. We therefore have to concen-
trate on approximations suggested by physical in-
tuition.

Hayashi and Shimizu, 33 Hanke and Bilz, 34 and
Brown have shown that the inverting of the di-
electric matrix, rewritten in the representation of
localized or Wannier functions, comes down to
inverting a certain matrix indexed by lattice vec-
tors. The more localized the functions, the lower
becomes, in practice, the dimension of the matrix
to be inverted.

Bertoni et aL.' claim they have inverted the di-
electric matrix for silicon analytically. It seems
they have assumed the off-diagonal terms to be
"small, " so as to be able to write

&K, K
—&K&K, K +~K, K

1 1 1 (67)
&i, K =&K, K

——&K, K
EK' 6R EK

This is exact to the first order in 6.
The other approach, suggested by formula (64)

[approximately, p„(Q) is large if the corresponding
energy gap $,(Q) is large], is to assume that there
are only a few K's for which the external potential
creates contributions to a total potential that are
not negligible when K4 K . Let us put $ for this
set of "a few" reciprocal lattice vectors. One has
the quasidiagonal form

K, K ES
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-1

xaam»

~, —QK

In the consistent microscopic theory, (66) can
be satisfied only if self-consistent band-structure
calculations are carried out. To avoid this diffi-
cult step, Bertoni et al.3' used (66) as an additional
equation rather than as the consistency test. The
off-diagonal elements of the dielectric matrix
estimated previously within the pseudopotential
approach have been made to satisfy (66) by multi-
plying them by a suitably chosen numerical factor.

In practice it is a convenient procedure, for it
ensures that in the q- 0 limit acoustic-phonon fre-
quencies tend to zero in spite of all the approxi-
mations made in the process of the derivation and
inversion of the dielectric matrix. Basically,
however, this procedure is far from satisfactory.

IX. CONCLUSIONS

The dielectric properties of a semimetal are
rather close to those of a degenerate semiconduc-
tor. Only the intravalley (metal-like) electron
transitions and interband (semiconductorlike}
transitions seem to be important. They usually
predominate over intervalley transitions, which
are specific for a semimetal.

It has to be remembered, however, that both
intra- and intervalley transitions produce, on cer-
tain surfaces in the q space, logarithmic slopes
in the static dielectric function. For ellipsoidal
carrier pockets these surfaces, owing to intra-
valley transitions, also have the shape of an ellip-
soid, which is centered at q=0 but is twice as
large as the pockets. Polarizability contributions
for intervalley transitions have been estimated,
for spherical pockets; in this case the logarithmic-
slope surfaces have the shape of spheres centered
on intervalley vectors. Such transitions introduce
into the static dielectric function the hill-type
(transitions between like valleys) and volcano-type
(transitions between unlike valleys) contributions.

There may be the low-frequency plasma oscil-
lation of all the pocket carriers in the system.
The anisotropy of the energy bands within the
valleys leads to an anisotropy of this multipocket
plasma frequency, even in the q-0 limit. The
additional anisotropy may come from the anisot-
ropy of the interband (semiconductorlike) polariza-
bility, which is possible for noncubic crystals.
In the latter case even the static Thomas-Fermi
screening would be anisotropic.

The generalization of the sum rule for the oscil-
lator strengths has been given and applied to de-
rive an approximate formula for the static dielec-
tric matrix. It has shown the importance of the
charge-distribution form factor for valence bands
in the description of the serniconductorlike po-
larizability matrix. The formula obtained has a
relatively simple form and the correct analytic
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APPENDIX A: CALCULATION OF THE FUNCTION (q, ~)

We fix the origin of the coordinate system at the
center of the ellipsoid. We may write

2Q d k
s(q, ~}= 3 t

b5 f-0 A —2k ~ O» ~ q+isgn(~)5F

(Al)
where A=5~-q, q =q ~ O» ~ q, and the k integra-
tion goes over the volume of the ellipsoid, k ~ 0 ~ k
= k~~. Now we rotate the coordinate system to co-
incide with the system of the principal axis of the
ellipsoid and then rescale every dimension to
transform the ellipsoid into the unit sphere. We
obtain

2Q k'p~ (qy ~) (n &3 1/2
~O» ~

~h«& A —2Q k

~ /I 20 k~ SZ (q, u))= —sgn((u)m( „„, d k
2mj IO

(A2)

x 6(A —2Q ~ k),

where Q, -=(q 0» T),.(T ' 0 T),.',.
akim (T is the

matrix of rotation) a,nd the integration goes over
the unit sphere. Introducing the spherical coor-
dinates, we can easily calculate the integrals using

dyyln = ~(x —d )ln —xa,I a I 2 x-a
0 y+a x+a

dip sing 5(cosrp —a) = I al =I

I@l =k, q,
with the final result (11).

APPENDIX B: PROPERTIES OF THE SINGLE, PARABOLIC,
ELLIPSOIDAL BAND SYSTEM

Assuming that the matrix elements in (8) are
unity, we have for the dielectric function in the
one-band case the formula

&(q, ~) =1 —(4me'/q'}[Z(q, &u)+i'(q, —~)], (Bl)

properties in the q-0 limit. It is expected that
it may be useful in calculating the phonon frequen-
cies of some semiconductor or insulator systems.
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which is identical with the Lindhard formula for
the free-electron gas. The ellipsoidal character
of the band enters only through the argument q
and the parameters scaled with l

O~ l
' 3.

l O l

'
the geometric mean of effective masses, may be
called the screening effective mass for the one-
band system (in electron mass units).

Let us summarize the properties of the hypo-
thetical system, characterized by the single, para-
bolic, ellipsoidal band: (i) The constant &(q, &o)

4ne2n q 8 q
m q' (S2)

surfaces are ellipsoids given by the equation
q 0" .q = const. (ii) The surfare of the logarith-
mic slope of &(q, 0) is rendered by the equation
q ~ 0» ~ q=4kss (or q=2ks). (iii) The Thomas-
Fermi screening is isotropic. (iv) The plasma
frequency is an anisotropic function of q in the
q- 0 limit:
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